

REMEDIAL INVESTIGATION REPORT SITE 16, OPEN DISPOSAL AND BURNING AREA

NAVAL AIR STATION WHITING FIELD MILTON, FLORIDA

Unit Identification Code: N60508

Contract No. N62467-89-D-0317/116

Prepared by:

Harding Lawson Associates 2590 Executive Center Circle, East Tallahassee, Florida 32301

Prepared for:

Department of the Navy, Southern Division Naval Facilities Engineering Command 2155 Eagle Drive North Charleston, South Carolina 29418

Linda Martin, Code 1859, Engineer-in-Charge

January 2000

CERTIFICATION OF TECHNICAL DATA CONFORMITY (MAY 1987)

The Contractor, Harding Lawson Associates, hereby certifies that, to the best of its knowledge and belief, the technical data delivered herewith under Contract No. N62467-89-D-0317/116 are complete and accurate and comply with all requirements of this contract.

DATE:	January	18.	2000	

NAME AND TITLE OF CERTIFYING OFFICIAL:

Rao Angara

Task Order Manager

NAME AND TITLE OF CERTIFYING OFFICIAL:

Eric A. Blomberg, P.G. Project Technical Lead

(DFAR 252.227-7036)

FOREWORD

To meet its mission objectives, the U.S. Navy performs a variety of operations, some requiring the use, handling, storage, or disposal of hazardous materials. Through accidental spills and leaks and conventional methods of past disposal, hazardous materials may have entered the environment in ways unacceptable by today's standards. With growing knowledge of the long-term effects of hazardous materials on the environment, the Department of Defense initiated various programs to investigate and remediate conditions related to suspected past releases of hazardous materials at their facilities.

One of these programs is the Installation Restoration (IR) program. This program complies with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act (SARA), the Resource Conservation and Recovery Act and the Hazardous and Solid Waste Amendments of 1984. These acts establish the means to assess and clean up hazardous waste sites for both private sector and Federal facilities. The CERCLA and SARA form the basis for what is commonly known as the Superfund program.

Originally, the Navy's part of this program was called the Naval Assessment and Control of Installation Pollutants (NACIP) program. Early reports reflect the NACIP process and terminology. The Navy eventually adopted the program structure and terminology of the standard IR program.

The IR program is conducted in several stages as follow:

- preliminary assessment (PA),
- site inspection (SI) (formerly the PA and SI steps were called the initial assessment study under the NACIP program),
- remedial investigation and feasibility study, and
- remedial design and remedial action.

Southern Division, Naval Facilities Engineering Command implement the IR program while the U.S. Environmental Protection Agency and the Florida Department of Environmental Protection oversee the Navy environmental program at Naval Air Station (NAS) Whiting Field. All aspects of the program are conducted in compliance with State and Federal regulations, as ensured by the participation of these regulatory agencies.

Questions regarding the CERCLA program at NAS Whiting Field should be addressed to Ms. Linda Martin, Code 1859, at (803) 820-7341.

EXECUTIVE SUMMARY

A remedial investigation and feasibility study (RI/FS) is being conducted at Naval Air Station (NAS) Whiting Field in Milton, Florida, by Southern Division, Naval Facilities Engineering Command (SOUTHNAVFACENGCOM) as part of the Department of Defense Installation Restoration (IR) program. The IR program was designed to identify and abate or control contaminant migration resulting from past operations at naval installations.

A phased approach was implemented to conduct the RI. Phase I was completed in May 1992. The subsequent phases of the RI were designated as Phase IIA and Phase IIB. Fieldwork for Phase IIA was completed in March 1994. Fieldwork for RI Phase IIB was completed in November 1996.

This RI report contains the results of assessment activities used to characterize site-specific chemicals detected in environmental media at Site 16, Open Disposal and Burning Area, at NAS Whiting Field. Data obtained from these activities were used to evaluate the nature and extent of contamination at the site and support feasibility studies (if required) and baseline risk assessments. Human health and ecological baseline risk assessments are included with the RI report.

The fieldwork conducted at Site 16 during the RI included the following tasks:

- geophysical survey,
- soil gas survey,
- surface soil sampling,
- test pitting,
- subsurface soil sampling,
- surface water sampling,
- monitoring well installation,
- groundwater sampling, and
- geologic and hydrogeologic investigations.

Soil, surface water, and groundwater samples were analyzed for target compound list (TCL) organic analytes and target analyte list (TAL) inorganic analytes. The following conclusions are based on the RI at Site 16, Open Disposal and Burning Area, at NAS Whiting Field:

- Geophysical survey results suggested the presence of two separate large areas of geophysical anomalies indicating general disposal areas rather than trenched fill areas. Smaller geophysical anomalies present east of the site are interpreted to represent random disposal areas rather than points of controlled fill.
- Ten test pits were excavated at the locations of geophysical anomalies at Site 16. Materials encountered during test pit excavations include construction debris, metallic debris, and aircraft parts.
- Methane and volatile organic compounds (VOCs) were detected during the soil gas survey conducted at Site 16. The highest soil gas concentrations (exceeding 5,000 parts per million [ppm] methane)

were reported near the northeastern boundary of the southern landfill boundary.

- Two VOCs, 14 semivolatile organic compound (SVOCs), 6 pesticides, and 2 polychlorinated biphenyl (PCB) compounds were detected in 30 Site 16 surface soil samples. No VOCs detected in surface soils exceeded regulatory limits.
- The SVOCs, benzo(g,h,i)perylene and dibenzo(a,h)anthracene, exceeded the Region III risk-based concentration (RBCs). Two SVOCs, benzo(a)-pyrene and benzo(g,h,i)perylene, exceeded the industrial cleanup target levels for Florida. Benzo(a)pyrene and dibenzo(a,h)anthracene and exceeded the industrial soil cleanup target levels (SCTLs) for Region III RBCs. Benzo(a)pyrene and benzo(b)fluoranthene exceed the U.S. Environmental Protection Agency (USEPA) Region III RBCs and Florida residential cleanup goals for surface soil.
- Dieldrin was detected in two samples at concentrations exceeding the residential SCTL for Florida and for USEPA Region III RBC. No other pesticides or PCBs were detected at concentrations that exceeded either Florida or Federal SCTL.
- Twenty-three inorganic analytes and cyanide were detected in the 30 surface soil samples. Eighteen inorganic analytes exceeded the background screening values for surface soil. Beryllium, iron, and lead exceeded the Florida residential SCTLs. Arsenic and beryllium exceeded the residential values for the Florida SCTLs and the USEPA Region III RBCs. Arsenic also exceeded the USEPA Region III RBC and the Florida industrial SCTL.
- Seven VOCs, 11 SVOCs, and 4 pesticides compounds were detected in the five Site 16 subsurface soil samples. None of the detected concentrations of VOCs, SVOCs, or pesticides exceeded the USEPA Region III RBCs for industrial-use soils.
- Twenty inorganic analytes were detected in the five subsurface soil samples. Eight analytes (calcium, chromium, iron, manganese, potassium, vanadium, zinc, and cyanide) were detected at concentrations exceeding the background screening values. None of these inorganics exceeded industrial standards for either the Florida SCTLs or USEPA Region III RBCs.
- Arsenic was detected in all five subsurface soil samples at concentrations ranging from 1.5 to 15.1 milligrams per kilogram (mg/kg). Three of the five environmental samples and the duplicate sample exceeded the industrial SCTL for Florida (3.7 mg/kg) and the USEPA Region III RBC (3.8 mg/kg).
- Lead was detected in all five subsurface soil samples at concentrations ranging from 6.8 to 766 mg/kg. Lead concentrations exceeded the industrial values of the SCTLs for the USEPA Region III RBCs (400 mg/kg) in two samples.

- The pH values of the groundwater samples collected from monitoring wells were below the lower range for the Federal and State secondary maximum contaminate levels (MCLs) of 6.5 standard units but were within the range of pH values observed in background groundwater samples collected at NAS Whiting Field.
- No VOCs, SVOCs, pesticides or PCBs were detected in the surface water sample collected at Site 16. Eleven inorganic analytes were detected in the surface water sample, but only aluminum exceeded the Florida Class III fresh surface water values. Aluminum was detected at a concentration (758 micrograms per liter $[\mu g/\ell]$) exceeding the Florida groundwater guidance concentration of 200 $\mu g/\ell$.
 - No VOCs were detected in the groundwater samples collected from the shallow monitoring wells at Site 16 nor were VOCs detected in background groundwater samples. One SVOC, bis(2-ethylhexyl)phthalate, was detected in groundwater samples collected from the shallow monitoring wells at concentrations below the Federal MCL and Florida groundwater guidance concentrations of 4.8 and 6 $\mu g/\ell$ for bis(2-ethylhexyl)phthalate. Bis(2-ethylhexyl)phthalate was not detected in background groundwater samples. One pesticide (4,4'-dichlorodiphenyltrichloroethane [DDT]) was detected in a shallow groundwater monitoring well at a concentration of 0.15 $\mu g/\ell$, which exceeds the Florida groundwater guidance concentration of 0.1 $\mu g/\ell$. No PCB compounds were detected in any shallow Phase IIB groundwater samples.
 - Twenty inorganic analytes (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, vanadium, zinc and cyanide) were detected in shallow groundwater samples collected from Site 16. Thirteen inorganic analytes (aluminum, barium, cadmium, calcium, copper, iron, magnesium, manganese, potassium, sodium, vanadium, zinc, and cyanide) were detected at concentrations exceeding the background screening concentrations. Six inorganic analytes (aluminum, antimony, beryllium, cadmium, iron, and manganese) were detected at concentrations exceeding either Federal or State regulatory limits.
- Eight VOCs (1,2-dichloroethane, 1,2-dichloroethene [total], benzene, chloroform, ethylbenzene, toluene, trichloroethene, and xylenes [total]) were detected in the groundwater samples collected from the intermediate monitoring wells at Site 16. 1,2-Dichloroethane, 1,2-dichloroethene, benzene, trichloroethene, and xylenes were detected at concentrations that either equaled or exceeded the Florida groundwater guidance concentrations.
 - Three SVOCs (naphthalene, phenol, and bis(2-ethylhexyl)phthalate) were detected in the groundwater samples collected from the intermediate monitoring wells at Site 16. None of the detected SVOCs were found in background groundwater samples. Bis(2-ethylhexyl)phthalate was detected at a concentration equal to the Federal MCL of 6 μ g/ ℓ and exceeding the Florida groundwater guidance concentration of 4.8 μ g/ ℓ for bis(2-ethylhexyl)phthalate.

- One pesticide (4,4'-DDT), detected at a concentration of 0.14 $\mu g/\ell$, exceeded the Florida groundwater guidance concentration of 0.1 $\mu g/\ell$. No PCB compounds were detected in any Phase IIB intermediate depth groundwater samples.
- Fourteen inorganic analytes were detected in intermediate ground-water samples collected from Site 16. Seven inorganic analytes (barium, calcium, iron, magnesium, manganese, sodium, and zinc) were detected at concentrations exceeding the background screening concentrations. Four inorganic analytes (aluminum, antimony, iron, and manganese) were detected at concentrations exceeding either Federal or State regulatory limits.
- Five VOCs (1,2-dichloroethane, 1,2-dichloroethene [total], benzene, toluene, and trichloroethene) were detected in the groundwater samples collected from monitoring wells screened in the deeper level at Site 16. 1,2-Dichloroethane, 1,2-dichloroethene, benzene, and trichloroethene were detected at concentrations exceeding the Federal MCLs. 1,2-Dichloroethane and benzene were detected at concentrations exceeding the Florida groundwater guidance concentrations.
- Three SVOCs (naphthalene, phenol, and bis(2-ethylhexyl)phthalate) were detected in groundwater samples collected from monitoring wells screened in the deep surficial aquifer at Site 16. None of the detected SVOCs were found in background groundwater samples. Only bis(2-ethylhexyl)phthalate was detected at concentrations exceeding both the Federal MCL and the Florida groundwater guidance concentration.
- No pesticides or PCB compounds were detected in any groundwater samples collected from monitoring wells screened in the deeper level of the surficial water table.
- Fifteen inorganic analytes were detected in deep groundwater samples collected from Site 16. Seven inorganic analytes (aluminum, copper, iron, lead, manganese, potassium, and sodium) were detected at concentrations exceeding the background screening concentrations. Three inorganic analytes (aluminum, iron, and manganese) were detected at concentrations exceeding either Federal or State regulatory limits.
- The groundwater flow direction is toward the southwest and likely discharges to Clear Creek. Clear Creek is located approximately 400 feet west-southwest of the site. The average horizontal hydraulic gradient for the site is 0.0066 feet per foot. The geometric mean for the hydraulic conductivity data for monitoring wells in the site area is 22.2 feet per day (ft/day) and the average seepage velocity value is 0.38 ft/day.
- The human health risk assessment identified 8 PAHs (benzo(a)-anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, carbazole, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene), 1 pesticide (dieldrin) and 10 inorganic analytes

(aluminum, arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, and vanadium) as human health chemical of potential concerns (HHCPCs) for surface soil at Site 16. Three inorganic analytes (arsenic, iron, and lead) were identified as HHCPCs for subsurface soil at Site 16. Five VOCs (1,2-dichloroethane, 1,2-dichloroethene [total], benzene, chloroform, trichloroethene), one SVOC (bis(2-ethylhexyl)phthalate), one pesticide (4,4'-DDT), and six inorganics (aluminum, arsenic, barium, cadmium, iron, and manganese) were identified as HHCPCs for groundwater in Site 16.

- The total excess lifetime cancer risk (ELCR) at Site 16, associated with ingestion of soil by a hypothetical future resident, current and hypothetical future trespasser, and hypothetical future occupational worker, exceeded Florida's target risk level of concern (1×10^{-6}) due primarily to carcinogenic PAHs and arsenic. The background levels of arsenic at Site 16 exceed the Florida residential SCTL and may result in an unacceptable carcinogenic risk. It is likely that naturally occurring arsenic contributes to the Florida Department of Environmental Protection (FDEP) target risk-level exceedance.
- Noncancer risk levels for soil, subsurface soil, and surface water meet the USEPA and FDEP target hazard index (HI) of one.
- The surface water ELCR for hypothetical future residents exceeds Florida's target level of concern due to beryllium. It should be noted, however, that this ELCR is based only on one sample.
- The ELCR for groundwater associated with residential ingestion and inhalation of volatiles while showering exceeded the Florida target level of concern due primarily to VOCs (primarily benzene) and arsenic; however, groundwater contamination is being addressed as a separate RI site under a facilitywide investigation.
- The central tendency risks from surface soil and surface water to a hypothetical current and future trespasser, and a hypothetical future occupational worker (soil only) met the Florida level of concern (1×10⁻⁶) for Site 16. Central tendency residential risks remain slightly above the FDEP target levels. The hypothetical future residential groundwater risks (carcinogenic and noncarcinogenic) remain above the FDEP target risk levels, but provide the risk managers and decision makers with a perspective of the hypothetical risk range to future residents.
- The ecological risk assessment selection of ecological contaminant of potential concerns (ECPCs) for the surface soil samples collected at Site 16 include thirteen SVOCs (carbazole, bis(2-ethylhexyl)p-hthalate, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)-anthracene, fluoranthene, indeno (1,2,3-cd) pyrene, phenanthrene, and pyrene), one PCB (Aroclor-1254), one pesticide (dieldrin), and ten inorganic constituents (aluminum, barium, cadmium, copper, lead, manganese, mercury, silver, vanadium, and zinc).

- ECPCs selected for the surface water sample collected from the ephemeral wetland at Site 16 include seven inorganic analytes (aluminum, barium, beryllium, iron, lead, manganese, and zinc).
- Risks were identified for terrestrial wildlife resulting from exposure to ECPCs in surface soil; therefore, reductions in the survivability, growth, and reproduction of wildlife receptor populations at Site 16 may occur.
- ECPCs selected for the unfiltered groundwater samples collected at Site 16 include three VOCs (benzene, trichloroethene, and xylenes), one SVOC (bis(2-ethylhexyl)phthalate), one pesticide (4,4'-DDT), and ten inorganics (aluminum, barium, cobalt, copper, cyanide, iron, lead, manganese, vanadium, and zinc).
- Reduction in terrestrial plant and soil invertebrate biomass used as forage material was evaluated by comparing exposure concentrations for surface soil with toxicity benchmarks. Based on this comparison, it is unlikely that plant and invertebrate biomass or plant cover availability would be reduced such that small mammal and bird populations at Site 16 would be affected.
- Potential risks for aquatic receptors were evaluated for exposures to ECPCs in groundwater. The concentrations of ECPCs in groundwater as they discharge to Clear Creek 450 feet downgradient of Site 16 were estimated based on application of a 10-fold attenuation factor to the reasonable maximum exposure concentration. Based on the screening evaluation of groundwater, risks to aquatic receptors in Clear Creek associated with exposure to groundwater ECPCs from Site 16 are not expected. The ecological risk assessment (ERA) for Site 39 will provide additional information regarding potential risks for aquatic receptors in Clear Creek based on actual site-related surface water and sediment data.
- In summary, the results of the ERA suggest that only sublethal risks (i.e., reductions in growth and reproduction) to small mammal and bird and predatory bird populations are predicted. These risks are likely associated with ingestion of cadmium, lead, and zinc in surface soil and food items that have bioaccumulated these inorganic constituents.

Based upon the interpretation of findings from the RI activities, a feasibility study is recommended for Site 16 to evaluate potential strategies for the reduction in human health and ecological risks associated with surface soil at the site. In addition, the presence of organic and inorganic analytes in Site 16 groundwater samples at concentrations exceeding Florida's target risk levels indicates that additional sampling and remedial measures may be required. However, all groundwater contamination issues will be addressed as part of the RI for the facilitywide groundwater study to be completed in the future.

TABLE OF CONTENTS

Chapt	ter	Title	Page No.
1.0	INTRO	DDUCTION	. 1-1
	1.1		. 1-1
	1.2		
	1.3		
	1.4	REPORT ORGANIZATION	. 1-6
2.0	PREVI	IOUS INVESTIGATIONS	. 2-1
	2.1	INITIAL ASSESSMENT STUDY	. 2-1
	2.2	VERIFICATION STUDY	. 2-1
3.0	FIELI	D INVESTIGATIVE METHODS	. 3-1
	3.1	GEOPHYSICAL SURVEY	. 3-1
	3.2	SOIL GAS SURVEY	. 3-2
	3.3	GEOLOGIC ASSESSMENT	3-2
	3.4	HYDROGEOLOGIC ASSESSMENT	
	3.5	SURFACE SOIL ASSESSMENT	
	3.6	SUBSURFACE SOIL ASSESSMENT	. 3-9
	3.0	3.6.1 PCPT Investigations	
		3.6.2 Split Spoon Sampling	
1111		3.6.3 Test Pitting	2 11
	j 7	SURFACE WATER ASSESSMENT) 11
	3.8		
	5.0	GROUNDWATER ASSESSMENT	. 3-11
4.0	STTE	SPECIFIC DATA QUALITY ASSESSMENT	À _ 1
4.0	/ 1	ANALYTICAL PROGRAM	. 4-1
	4.1	DATA REVIEW	. 4-1
	4.2	4.2.1 Precision	. 4-1
		4.2.1 Flectsion	4-2
		4.2.2 Accuracy	. 4-2
		4.2.3 Representativeness	. 4-8
		4.2.4 Comparability	. 4-1/
	, ,	4.2.5 Completeness	. 4-1/
	4.3	SUMMARY	. 4-1/
- 0		STIGATIVE RESULTS	
5.0	INVE	STIGATIVE RESULTS	. 5-1
	5.1	GEOLOGIC RESULTS	
	5.2		
	5.3	GEOPHYSICAL RESULTS	
	5.4	SOIL GAS SURVEY	. 5-15
	5.5	SURFACE SOIL ANALYTICAL RESULTS	
	5.6	SUBSURFACE SOIL RESULTS	
	5.7	SURFACE WATER RESULTS	
	5.8	GROUNDWATER RESULTS	. 5-48
		5.8.1 Phase I Groundwater Samples	
		5.8.2 Phase II Groundwater Samples	. 5-50

TABLE OF CONTENTS (Continued)

Chap	ter	Title	Page No.
6.0	HUMA	N HEALTH RISK ASSESSMENT	6-1
	6.1	DATA EVALUATION	
7.0	6.2	SELECTION OF HUMAN HEALTH CHEMICALS OF POTENTIAL CONCERN .	6-2
7.0	• • •	6.2.1 Surface Soil	
		6.2.2 Subsurface Soil	6-4
		6.2.3 Surface Water	
		6.2.4 Groundwater	
	6.3		
	0.5	6.3.1 Surface Soil	
		6.3.2 Subsurface Soil	
		6.3.3 Surface Water	
		6.3.4 Groundwater	6-22
		6.3.5 Exposure Point Concentrations (EPC)	6-22
	6.4		
	6.5		
	0.5	6.5.1 Surface Soil	
		6.5.2 Subsurface Soil	
		6.5.3 Site 16 Surface Water	
*		6.5.4 Site 16 Groundwater	
		6.5.5 Cumulative Risk Summary	6-38
	6.6	UNCERTAINTY ANALYSIS	
	6.7	REMEDIAL GOAL OPTIONS	6-46
	6.8	SUMMARY OF HUMAN HEALTH RISK ASSESSMENT FOR SITE 16	6-47
7.0	ECOL	OGICAL RISK ASSESSMENT	7-1
	7.1	SITE CHARACTERIZATION	7-2
	7.2	PROBLEM FORMULATION	7-5
		7.2.1 Identification of Receptors	7-5
		7.2.2 Identification of Exposure Pathways	
		7.2.3 Identification of Endpoints	
	7.3	HAZARD ASSESSMENT AND SELECTION OF ECPCS	7-8
	7.4	EXPOSURE ASSESSMENT	
		7.4.1 Calculation of EPCs	
		7.4.2 Terrestrial Wildlife	
		7.4.3 Terrestrial Plants and Invertebrates	
		7.4.4 Aquatic Receptors	
	7.5	ECOLOGICAL EFFECTS ASSESSMENT	7-27
		7.5.1 Terrestrial Wildlife	
		7.5.2 Terrestrial Plants and Invertebrates	
		7.5.3 Aquatic Receptors	
	7.6	RISK CHARACTERIZATION	
	- • -	7.6.1 Terrestrial Wildlife	7-33
		7.6.2 Terrestrial Plants	
		7.6.3 Terrestrial Invertebrates	
		7.6.4 Aquatic Receptors	
	7 7	INCERTAINTY ANALYSIS	7-37

TABLE OF CONTENTS (Continued)

Chap	ter	Title Pa	age No.
	7.8	SUMMARY OF ECOLOGICAL ASSESSMENT FOR SITE 16	7-41
8.0	8.1	AMINANT FATE AND TRANSPORT POTENTIAL ROUTES OF MIGRATION CONTAMINANT PERSISTENCE AND FATE 8.2.1 Processes 8.2.2 Persistence and Fate of Site 16 CPCs 8.2.3 Transport of Contaminants	8-1 8-2 8-2 8-5
9.0	9.1		
10.0	PROF	FESSIONAL REVIEW CERTIFICATION	10-1
REFE	RENCES	S	
APPE	NDICES	S	
AI AI AI AI AI AI AI	opendi opendi opendi opendi opendi opendi opendi opendi opendi	IX B: Geophysical Data IX C: Monitoring Well and Test Pit Logs IX D: Soil Analytical Data IX E: Surface Water Analytical Data IX F: Groundwater Analytical Data IX G: Human Health Risk Data IX H: Ecological Risk Data IX I: AQUIRE Data IX J: Navy Response to Comments	11

LIST OF FIGURES

Figur	ce Title	Page	No.
1-1	Parility I parties Man	,	2
1-1	Facility Location Map		- 2 - 3
1-2	Site 16 Site Plan Man	. I	- 3 - 4
3-1	Site 16, Site Plan Map	. I.	-4 -3
3-1	Monitoring Well Location Map	. J	- 5 - 5
3-3	Surface Soil Sample Locations		-8
3-4	Subsurface Soil Test Pit, and Surface Water Sample Locations		
5-1	Plan View, Southwest Disposal Area	5.	- 2
5-2	Geologic Cross Section, Southwest Disposal Area, North to South, A		_
	to A'		- 3
5-3	Geologic Cross Section, Southwest Disposal Area, West to East, B to		
	B'	. 5	-4
5-4	Geologic Cross Section, Southwest Disposal Area, Northwest to		
	Southeast, C to C'		- 5
5 - 5	Groundwater Contour Map of the Water Table in the Sand-And-Gravel		
	Aquifer, Southwest Disposal Area, January 1997	. 5	- 9
5-6	Groundwater Contour Map of the Water Table in the Sand-And-Gravel		1.0
c 7	Aquifer, Southwest Disposal Area, August 1997		LO
5 - 7	Distribution of Interpreted Total VOC Concentrations Detected at 1.		0.0
5-8	Feet Below Land Surface in Soil Gas Field Screening Samples	. 5-2	20
5-8	Distribution of Interpreted Methane Concentrations Detected at 1.5	E 1	0.1
5-9	Feet Below Land Surface in Soil Gas Field Screening Samples		Z L
3-9	Distribution of Interpreted Total VOC Concentrations Detected at 3. Feet Below Land Surface in Soil Gas Field Screening Samples		22
5-10	Distribution of Interpreted Methane Concentrations Detected at 3.0		22
3-10	Feet Below Land Surface in Soil Gas Field Screening Samples		2 2
5-11	Surface Soil Sample Locations		
	Subsurface Soil, Test Pit, and Surface Water Sample Locations		
6-1	Site 16 Complete Exposure Pathways for Human Receptors		
6-2	Cancer Risk Summary Current Land Use for Surface Soil at Site 16.		
6-3	Noncancer Risk Summary Current Land Use for Surface Soil at Site 16		
6-4	Cancer Risk Summary Future Land Use for Surface Soil at Site 16 .		
6-5	Noncancer Risk Summary Future Land Use for Surface Soil at Site 16		
6-6	Cancer Risk Summary Current Land Use for Subsurface Soil at Site 16		
6-7	Noncancer Risk Summary Current Land Use for Subsurface Soil at Site		
	16	. 6-3	37
6 - 8	Cancer Risk Summary Current Land Use for Surface Water at Site 16	. 6-3	39
6-9	Noncancer Risk Summary Current Land Use for Surface Water at Site		
	16	. 6-4	40
	Cancer Risk Summary Future Land Use for Surface Water at Site 16 .		41
	Noncancer Risk Summary Future Land Use for Surface Water at Site 16		
	Cancer Risk Summary Future Land Use for Groundwater at Site 16		
	Noncancer Risk Summary Future Land Use for Groundwater at Site 16	. 6-4	
7-1	Site 16, Vegetative Cover Map		-3
7 - 2	Contaminant Pathway Model for Site 16 Ecological Receptors		-6
7 - 3	Ecological Chemical of Potential Concern Selection Process	. 7-1	\mathbf{r}_0

LIST OF TABLES

isk III. Terregiskoppy various och stillstative til Street.

Table	Title Title	Page No.
3-1	Summary of Monitoring Well Construction Details	. 3-6
4-1	Precision Summary for Soil and Groundwater Field Duplicate Samples	
4-2	Accuracy Exceedences for MS/MSD Samples	
4-3	Accuracy Summary for Surrogate Recoveries Outside QC Criteria	
4-4	Summary of Compounds Exceeding Instrument Calibration for Site 16	. 4-7
4-4	SDGs	4-10
4-5	Representativeness Summary for Field QC Samples for Site 16 SDGs .	4-14
4-6	Summary of DQO Assessment - PARCC Parameters	
5-1	Summary of Water-Level Elevations	
5-2	Summary of Horizontal Hydraulic Gradients	
5-3	Summary of Vertical Hydraulic Gradients	
5-4	Summary of Hydraulic Conductivity (K) Data from Slug Tests	
5-5	Summary of Seepage Velocities	
5-6	Summary of Active Soil Gas Survey, July 26 through August 14, 1995	5-16
5-7	Organic Analytes Detected in Site 16 Surface Soil Samples	
5-8	Inorganic Analytes Detected in Site 16 Surface Soil Samples	
5-9	Comparison of Analytes Detected in Background Surface Soil Samples	
J-7	for the Troup Loamy Sand and Lakeland Sand	
5 10	Summary of Organic Compounds Detected in Site 16 Surface Soil	. 5-52
7-10		5 3/
c 11	Samples	. 3-34
J-11		5 36
E 10	Samples	·. 5-36
	Inorganic Analytes Detected in Site 16 Subsurface Soil Samples	. 5-43
5-14	Summary of Organic Compounds Detected in Site 16 Subsurface Soil	F //
c 1c	Samples	. 5-44
2-13	Summary of Inorganic Analytes Detected in Site 16 Subsurface Soil	5 16
c 16	Samples	. 5-46
2-Tp	Organic and Inorganic Analytes Detected in Site 16 Surface Water	r / 0
c 17	Sample	
	Summary of Groundwater Field Parameters	
2-18	Summary of Organic Compounds Detected in Site 16 Groundwater Sample	
c 10	Phase IIA November 1993	. 5-54
5-19	Summary of Inorganic Analytes Detected in Site 16 Groundwater	
	Samples Phase IIA November 1993	
	Organic Compounds Detected in Site 16 Groundwater Samples, Phase II	
	July to August 1996	5 - 60
5-21	Organic Compounds Detected in Site 16 Groundwater Samples, Phase II	B
	July 1997	. 5-63
5-22	Inorganic Analytes Detected in Phase IIB Groundwater Samples at Sit	ce
	16 August 1996	. 5-65
5-23	Inorganic Analytes Detected in Site 16 Groundwater Samples, Phase	
	IIB July 1997	. 5-68
5 - 24	Summary of Organic Compounds Detected in Site 16 Groundwater Sam-	
	ples	. 5-71

LIST OF TABLES (Continued)

<u>Table</u>	e Title Page	<u>No</u>
5-25	Summary of Inorganic Analytes Detected in Site 16 Groundwater	
	Samples	73
6-1	Selection of Human Health Chemicals of Potential Concern for Surface	_
		- 5
6-2	Selection of Human Health Chemicals of Potential Concern for Subsur-	^
<i>c</i> 2		- 9
6-3	Selection of Human Health Chemicals of Potential Concern for Surface	1 1
6-4	Water	13
0-4	tered Groundwater at Site 16	15
6-5	Summary of Potential Exposure Pathways at Site 16 6-	5U T 2
6-6	Exposure Point Concentrations for Human Health Chemicals of Poten-	20
0 0	tial Concern for Surface Soil at Site 16 6-1	23
6-7	Exposure Point Concentrations for Human Health Chemicals of Poten-	
• ,	tial Concern for Subsurface Soil 6-	24
6 - 8	Exposure Point Concentrations for Human Health Chemicals of Poten-	
	tial Concern for Surface Water at Site 16 6-	25
6-9	Exposure Point Concentrations for Human Health Chemicals of Poten-	
	tial Concern for Unfiltered Groundwater at Site 16 6-	26
	Risk Summary, Current Land Use at Site 16 6-	
	Risk Summary, Future Land Use at Site 16 6-	
	Summary of Remedial Goal Options for Surface Soil at Site 16 6-	
	Summary of Remedial Goal Options for Subsurface Soil at Site 16 6-	
	Summary of Remedial Goal Options for Groundwater at Site 16 6-	
	Summary of Remedial Goal Options for Surface Water at Site 16 6-	
7-1	Ecological Risk Assessment Endpoints Selected for Site 16	- 9
7 - 2	Selection of Ecological Chemicals of Potential Concern in Surface	1 2
7 - 3	Soil Associated with Site 16	13
/ - 3	Water at Site 16	17
7-4	Selection of Ecological Chemicals of Potential Concern in Unfiltered	Ι,
,	Groundwater at Site 16	18
7 - 5	Estimation of Potential Chemical Exposures for Representative	
	Wildlife Species at Site 16	22
7-6	Ecological Receptors Evaluated For Site 16	24
7-7	Exposure Parameters for Representative Wildlife Species	25
7 - 8	Estimation of Bioaccumulation Factors for Site 16	28
7 - 9	Summary of Results from Biological Toxicity Testing 7-	32
7-10	Summary of Hazard Indices for Terrestrial Wildlife Associated with	
	Exposure to Site 16 Surface Soil	
	Risks for Representative Wildlife Species from Surface Water ECPCs . 7-	36
7-12	Comparison of Site 16 Groundwater ECPC Exposure Concentrations to	
	Toxicity Benchmark Values	38

GLOSSARY

计计分列性分类 医水明光虫 蟾蜍 医骶骨的反应

ABB-ES ABB Environmental Services, Inc. AQUIRE Aquatic Information Retrieval

ARAR applicable or relevant and appropriate requirement ATSDR Agency for Toxic Substances and Disease Registry

AVGAS aviation gasoline

AWQC ambient water quality criteria

BAF bioaccumulation factor
BAT Bengt-Arne-Torstensson
bls below land surface

°C degrees Celsius

CAR Contamination Assessment Report

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act

CFR Code of Federal Regulations
CLP Contract Laboratory Program
cm/sec. centimeters per second

CO₂ carbon dioxide

CPC chemical of potential concern
CRDL contract-required detection limit

CT central tendency

DCA dichloroethane

DDE dichlorodiphenyldichloroethane
DDD dichlorodiphenyldichloroethane
DDT dichlorodiphenyltrichloroethane

DQO data quality objective

ECPC ecological contaminant of potential concern

ELCR excess lifetime cancer risk

EM electromagnetic

EPC exposure point concentration ERA ecological risk assessment

FAC Florida Administrative Code

FDEP Federal Department of Environmental Protection

FS Feasibility Study

ft/day feet per day

ft²/day square feet per day

ft/ft feet per foot ft/yr feet per year

GIR general information report

g/mole grams per mole

HASP Health and Safety Plan

HEAST Health Effects Assessment Summary Tables
HHCPC human health chemical of potential concern

GLOSSARY (Continued)

human health risk assessment HHRA hazard index HΙ Harding Lawson Associates HLA HQ hazard quotient HRS Hazard Ranking System IAS initial assessment study instrument detection limit IDL Integrated Risk Information System IRIS IR installation restoration lethal dose to 50 percent of test population LD_{50} LOAEL lowest observed adverse effects level MAG magnetometer MCL maximum contaminant level milligrams per kilogram mg/kg milligrams per kilogram per day mg/kg-day mg/l milligrams per liter matrix spike and matrix spike duplicate MS/MSD micrograms per kilogram μg/kg micromhos per centimeter μ mho/cm n porosity NACIP Navy Assessment and Control of Installation Pollutants Naval Air Station NAS NCP National Oil and Hazardous Substances Contingency Plan Naval Energy and Environmental Support Activity NEESA no observable adverse effects level NOAEL National Priority List NPL NTU nephelometric turbidity unit 0_2 oxygen OVA organic vapor analyzer &D percent difference PA preliminary assessment PAH polynuclear aromatic hydrocarbon PARCC precision, accuracy, representativeness, completeness, and comparability polychlorinated biphenyl PCB **PCPT** piezocone penetrometer test PDE potential dietary exposure QA quality assurance QC quality control QAPP Quality Assurance Program Plan RBC risk-based concentration

WHF-S16.RI FGW.01.00

RGO

RI

remedial goal option

remedial investigation

GLOSSARY (Continued)

RI/FS RME %RPD RRF RTV	remedial investigation and feasibility study reasonable maximum exposure relative percent difference relative response factor reference toxicity value
SARA SCTL SDG SFF SI SOUTHNAV-	Superfund Amendments and Reauthorization Act soil cleanup target level sample delivery group site foraging frequency site inspection
FACENGCOM SQL SU SVOC	Southern Division, Naval Facilities Engineering Command sample quantitation limit standard unit semivolatile organic compound
TAL TCE TCL TM	target analyte list trichloroethene target compound list trade mark total recoverable petroleum hydrocarbons
UCL µg/l USDA USEPA	upper confidence limit micrograms per liter U.S. Department of Agriculture U.S. Environmental Protection Agency

volatile organic compound

VOC

1.0 INTRODUCTION

Harding Lawson Associates (HLA), under contract to the Department of Navy, Southern Division, Naval Facilities Engineering Command (SOUTHNAVFACENGCOM) is submitting the Remedial Investigation (RI) Report for Site 16, the Open Disposal and Burning Area at Naval Air Station (NAS) Whiting Field located in Milton, Florida. The RI Report for Site 16 is one in a series of site-specific reports that are being completed in conjunction with the NAS Whiting Field General Information Report (GIR) (HLA, 1998) to summarize the previous investigations and to present the results of the RI.

The Remedial Investigation and Feasibility Study (RI/FS) is being conducted on behalf of the Navy at Whiting Field under contract No. N62467-89-D-0317. The RI was conducted in three phases: the Phase I RI field program was completed in May 1992; the Phase IIA RI field program was conducted between May 1992 and March 1994; and the Phase IIB RI field program was completed in August 1997.

<u>Installation Location and Description</u>. NAS Whiting Field is located in Santa Rosa County, in Florida's northwest coastal area, approximately 7 miles north of Milton and 20 miles northeast of Pensacola (Figure 1-1). NAS Whiting Field presently consists of two air fields separated by an industrial area. The installation consists of approximately 2,560 acres. Figure 1-2 presents the installation layout and locations of RI/FS sites at NAS Whiting Field. A complete description of historic operations at the facility is presented in Section 1.3 and Appendix A of the NAS Whiting Field GIR (HLA, 1998).

- 1.1 PURPOSE OF THE RI/FS. The purpose of the NAS Whiting Field RI is to identify and characterize the nature and extent of chemicals in environmental media on site and to identify potential risks to human and ecological receptors that might be posed by toxic or hazardous chemicals present at Site 16. Chemicals were potentially released to the environment during past waste disposal practices or spills. The data collected during the RI field program may also be used in an FS to screen, evaluate, and select remedial alternatives to provide permanent, feasible solutions to environmental impacts that may be a result of past waste disposal practices or spills.
- 1.2 SITE DESCRIPTION AND BACKGROUND. The following is a physical description of Site 16 and a brief summary of past activities, as summarized in the Initial Assessment Study (IAS) conducted by Envirodyne Engineers, Inc. (May 1985).

Site 16 is located in the southwestern part of the facility, directly west of the South Air Field (Figure 1-2). The site is approximately 12 acres in size and is currently forested with planted pine trees (Figure 1-3). The land surface slopes gently to the west at an average grade of five percent. In the past, significant surface erosion occurred at several areas where no vegetation was present and no berms were installed to control erosion.

For over twenty years (1943-1965), this area served as the primary waste disposal area for the facility. There were two large pits into which general refuse plus waste from aircraft operation and maintenance were disposed. Aviation wastes included paints, solvents, waste oil, hydraulic fluid, and wastewater from paint

stripping and other operations. Dielectric fluids containing polychlorinated biphenyls (PCBs) may also have been disposed of at the site. Estimated annual disposal volumes were 3,000 to 4,000 tons (Geraghty and Miller, 1986). To reduce volume, diesel fuel was used to ignite the waste.

According to the U.S. Department of Agriculture (USDA) (USDA, 1980), the soil at Site 16 is classified as Troup loamy sand, with some Lakeland sand. The Troup loamy sand type is characterized as a thick sandy surface layer overlying a loamy red subsoil to a depth of 40 to 80 inches below land surface (bls). Because the soil at the site is predominantly silty sand, storm water infiltrates directly into the soil.

The topography of Site 16 slopes toward Clear Creek, which is located 450 feet west of the site. Although overland transport of surface water runoff toward Clear Creek is possible, most of the on-site rainfall infiltrates directly into the ground due to erosion control measures and the porous nature of the sandy soil at Site 16.

A small (less than 0.1 acre) ephemeral wetland is located along the site's eastern boundary (Figure 1-3). Because much of the site was disturbed by the trench and fill operations, it is very likely that this wetland is the result of subsidence within an old trench. The ephemeral wetland area is shallow (less than 2 feet deep) and is recharged by storm water runoff, thus it remains dry for most of the year.

1.3 REGULATORY SETTING. The Navy Installation Restoration (IR) program was designed to identify and abate or control contaminant migration resulting from past operations at naval installations. The IR program is the Navy response authority under Section 120 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986 and Executive Order 12580. CERCLA requires that Federal facilities comply with the act, both procedurally and substantively. SOUTHNAVFACENGCOM is the agency responsible for the Navy IR program in the southeastern United States. Therefore, SOUTHNAVFACENGCOM has the responsibility to process NAS Whiting Field through preliminary assessment (PA), site inspection (SI), RI/FS, and remedial response selection in compliance with the guidelines of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 Code of Federal Regulations [CFR] 300).

Section 105(a)(8)(A) of the SARA requires the U.S. Environmental Protection Agency (USEPA) to develop criteria to set priorities for remedial action for chemicals detected in environmental media based on relative risk to human health and the environment. To meet this requirement, USEPA has established the Hazard Ranking System (HRS) as Appendix A to the NCP. First promulgated in 1982, HRS was amended on March 14, 1991 (55 Federal Register No. 241:51532-51667), to comply with the requirements of Section 105(c)(1) of SARA to increase the accuracy of the assessment of relative risk. HRS (March 1991) has been substantially revised and is designed to prioritize sites after the SI phase of the CERCLA process.

The HRS score for NAS Whiting Field was generated in 1993. The score was sufficient to place NAS Whiting Field on the National Priority List (NPL).

In January 1994, the USEPA placed NAS Whiting Field on a proposed list of sites to be included on the NPL (40 CFR 300, Federal Register, January 18, 1994), and on May 31, 1994, NAS Whiting Field was placed on the NPL effective June 30, 1994 (40 CFR 300, Federal Register, May 31, 1994). As a result, the RI/FS for NAS Whiting Field must follow the requirements of the NCP, as amended by SARA, and regulatory guidance for conducting RI/FS programs under CERCLA.

1.4 REPORT ORGANIZATION. The RI Report includes ten chapters (Chapters 1.0 to 10.0) organized as follows. Chapter 1.0 presents the purpose, site description, and regulatory setting for the RI at NAS Whiting Field. Chapter 2.0 summarizes previous investigations. Chapter 3.0 presents the investigative methodology for conducting the assessment. Chapter 4.0 presents the site-specific data quality assessment. Chapter 5.0 presents the investigative results of the assessment. Chapter 6.0 presents the Human Health Risk Assessment and Chapter 7.0 presents the Ecological Risk Assessment. Chapter 8.0 presents the fate and transport of chemicals determined to be human and/or ecological chemicals of potential concern. Chapter 9.0 provides a summary of the conclusions and recommendations. Chapter 10.0 presents professional review certification.

2.0 PREVIOUS INVESTIGATIONS

This chapter summarizes the previous investigations at Site 16, Open Disposal and Burning Area at NAS Whiting Field.

2.1 INITIAL ASSESSMENT STUDY. Background information was gathered for the IAS (Envirodyne Engineers, Inc., 1985) by conducting a record search, performing an on-site survey, and conducting interviews with long-time employees and retired personnel familiar with the site. Interviews with facility personnel and record reviews indicated that prior to the 1970s most of the hazardous waste was reportedly disposed of in various pits on-base.

For over twenty years (1943-1965), this area served as the primary waste disposal area for the facility. There were two large pits into which general refuse plus aircraft operation and waste were disposed of. Aviation waste included paints, solvents, waste oil, hydraulic fluid, and wastewater from paint-stripping and other operations. Dielectric fluids containing PCBs may also have been disposed of at the site. Estimated annual disposal volumes were 3,000 to 4,000 tons (Envirodyne Engineers, Inc., 1985).

Envirodyne Engineers, Inc., recommended in the IAS that Site 16 warranted further investigation under the Navy's IR program to assess potential long-term impacts. A Confirmation Study was recommended in the IAS for Site 16, which included sampling and monitoring of environmental media to confirm the presence or absence of suspected contamination. The Confirmation Study would typically consist of two parts: verification and characterization; however, only the Verification Study was conducted.

<u>2.2 VERIFICATION STUDY</u>. The Verification Study (Geraghty & Miller, 1986) provided an assessment of the physical and chemical conditions existing at Site 16 as summarized below.

One monitoring well (WHF-16-1) was installed at Site 16 as part of the Verification Study. The monitoring well was installed to a depth of 42 ft bls at a location believed to be hydraulically downgradient of the waste pits (ABB Environmental Services, Inc. [ABB-ES], 1995d). The groundwater sample from monitoring well WHF-16-1 was submitted for analysis of USEPA Priority Pollutants and herbicides. The only Priority Pollutant compounds detected were bis(2-ethylhexyl)phthalate, lead, and zinc. Lead and zinc were both detected at concentrations below Florida primary drinking water standards (Chapter 17-22.104, Florida Administrative Code [FAC])in effect at the time of investigation (Geraghty and Miller, 1986).

The conclusion from the Verification Study indicated that a characterization study was needed to further investigate the nature and extent of contamination at Site 16; however, the IR program was modified in 1987-88 to be congruent with CERCLA and SARA regulatory requirements. As a result, the existing investigations (IAS, Verification Study) were used to support the updated program. Specifically, the IAS and Verification Study functioned as the PA/SI, and the characterization study was not performed.

WHF-\$16.RI FGW.01.00

3.0 FIELD INVESTIGATIVE METHODS

Field investigative methods to collect data during the RI are described in the RI/FS Work Plan, Volume II (E.C. Jordan, 1990), which provides descriptions of sampling methods, field personnel responsibilities, sample management, chain of custody, project documentation, change in field methods, protocols on corrective actions, decontamination procedures, waste management handling, and other general project standards and procedures in Section 3.1, General Site Operations of the Work Plan.

Field and laboratory quality assurance and quality control (QA/QC) requirements for the RI activities comply with the RI/FS Quality Assurance Project Plan (QAPP) located in Appendix A of the RI/FS Work Plan, Volume II (E.C. Jordan, 1990). Health and safety requirements were in accordance with the general Health and Safety Plan (HASP) located in Volume III of the RI/FS Work Plan (E.C. Jordan, 1990).

Field investigative methods not covered in the documents identified above are described in Technical Memorandum No. 7, RI Phase IIB Workplan (ABB-ES, 1995e) and in the NAS Whiting Field GIR (HLA, 1998).

These field and laboratory investigation techniques are in general conformance with USEPA standard operating procedures in effect at the time of the investigations (USEPA, 1991a and 1996a) and were followed during the RI sampling and analysis program.

The following sections provide a brief description of the field investigation and types of environmental samples collected and analyzed for an assessment of the surface soil, subsurface soil, surface water, groundwater, and hydrogeology at Site 16.

3.1 GEOPHYSICAL SURVEY. Geophysical surveys at Site 16 were conducted between May 26 and June 14, 1992. The purpose of the geophysical surveys was to assess the lateral and vertical extent of the waste disposal pits and locate buried metallic or nonmetallic objects that may indicate other potential waste disposal areas. The geophysical methods were also used to locate possible underground utility lines, fuel distribution lines, and other anthropogenic obstructions that need to be avoided with other intrusive subsurface exploration activities (i.e., test pits).

Geophysical methods used at the site include electromagnetic (EM) induction, direct current (DC) resistivity, using the Wenner array method, and magnetometry (MAG). Blackhawk Geosciences, Inc., Golden, Colorado, was subcontracted by ABB-ES to conduct the geophysical tasks. A technical report describing the methodology, results, and conclusions of the geophysical survey was prepared in February 1993 (ABB-ES, 1993). The following paragraph presents a brief description of the geophysical field program.

In an attempt to determine the depth of fill material in confirmed landfill sites, the DC method was used to measure resistivity. Results from this survey were inconclusive, and the method was not considered reliable for calculating depth of fill.

WHF-S16.RI FGW.01.00 Data from the EM and MAG surveys at Site 16 were collected along north-south grid lines that were spaced 40 feet apart, with stations spaced every 10 feet along the lines. The grid lines were oriented with a magnetic compass and measuring tape. These grid lines were later surveyed by a Florida-licensed surveyor. The location of the grid and the plotted geophysical data are presented on Figures A-1 through A-4 in Appendix B (Geophysical Data). The results of the geophysical survey are presented in Section 5.3.

3.2 SOIL GAS SURVEY. A soil gas survey was conducted in June 1995 at Site 16 to assess the presence of methane gas or other VOCs potentially emanating from the site. Soil gas samples were collected across the site and up to 400 feet beyond the site boundary. Sample locations were determined based on a 100- by 100-foot grid spacing based on a random origin. The grid origin was located at an area that was assumed not to be influenced by soil gas emanating from the site. All grid lines were oriented in north-south and east-west directions. The grid area at Site 16 included the areal extent of the disposal areas based on previous geophysical survey interpretation. Figure 3-1 presents the locations of the active soil gas survey points.

At each location, an open-ended stainless-steel tube was pushed or manually driven to the proposed sampling depths of 1.5 feet and 3.0 feet bls. Organic vapor measurements were made at the two sampling depths. The air within the stainless-steel tube was purged with a vacuum pump to obtain a representative sample of soil gas. Total organic vapor concentrations were measured using a Portafid II^{M} or a Foxboro OVA-128 $^{\mathsf{M}}$ organic vapor analyzer (OVA). Using a granulated carbon filter, methane gas concentrations were also recorded. A comparison of the two measurements allowed a quantitative analysis of the net presence of VOCs. Soil gas samples were not submitted for laboratory analysis.

A common problem associated with the use of the OVAs was probe flame-out due to either high humidity or high carbon dioxide (CO₂)/low oxygen (O₂) levels in the soil-gas samples. If an OVA flame-out occurred, a landfill gas analyzer (LFG- $10^{\rm M}$) was used to measure methane and CO₂ levels. The results of the soil gas survey are presented in Section 5.4.

3.3 GEOLOGIC ASSESSMENT. Several subsurface exploration techniques were used during Phase I and II investigations to evaluate and characterize the stratigraphy at Site 16 and investigate for the potential presence of a continuous confining clay layer at the site. Exploration techniques included monitoring well installation, piezocone penetrometer test (PCPT) soundings, and test pits.

Detailed lithologic descriptions for monitoring wells and PCPT soundings are presented in Phase I Technical Memorandum No. 1, Geologic Assessment (ABB-ES, 1992a) and in Phase IIA Technical Memorandum No. 2, Geologic Assessment (ABB-ES, 1995a). A summary of the geological assessment results is presented in Section 5.1 and the monitoring well boring logs and test pit logs for Site 16 are presented in Appendix C of this report.

3.4 HYDROGEOLOGIC ASSESSMENT. The hydrogeologic assessment of Site 16 (Open Disposal and Burning Area) included Site 15 (Southwest Landfill), an adjacent site, and utilized groundwater monitoring wells associated with Site 1466, an

upgradient underground storage tank (UST) site. Sites 31A (Sludge Drying Beds) and 31B (Sludge Disposal Area) are also adjacent sites; however, no hydrologic data have been generated by investigations of these sites. Hydrogeologic data from Sites 15, 16, and 1466 were combined to provide a larger data set for a better understanding of the hydrogeologic conditions at the Open Disposal and Burning Area.

The hydrogeologic field investigation activities included collecting water-level data from 40 monitoring wells (Figure 3-2) and conducting slug test analyses on 6 monitoring wells. Results of the Phase IIA hydrological assessment are presented in Phase IIA Technical Memorandum No. 4, Hydrogeologic Assessment (ABB-ES, 1995c). Monitoring well construction details for these sites are presented in Table 3-1. Results of the hydrogeologic assessment are presented in Section 5.2 of this report.

3.5 SURFACE SOIL ASSESSMENT. Characterization of surface soil (land surface to 1.0 foot bls) was required to support the ecological risk assessment and human health risk assessment (exposure of transient persons to site soil). Soil samples from previous studies were biased based on visual and geophysical anomalies. As a result, soil samples from random locations were warranted to confirm the presence or absence of contamination, and characterize the nature and extent of contamination.

For Site 16, the surface soil assessment included the collection of three surface soil samples during Phase IIA and 17 surface soil samples during Phase IIB. The locations of the surface soil samples collected during Phase IIA and IIB are shown on Figure 3-3. Results of the surface soil assessment are presented in Section 5.5 of this report.

The surface soil samples were collected from the land surface to a maximum depth of 12 inches bls using a decontaminated stainless-steel auger. Soil samples were described using the Unified Soil Classification System and recorded in a bound field logbook by HLA personnel.

The surface soil samples at Site 16 were analyzed for TCL VOCs, SVOCs, pesticides and PCBs, and TAL inorganics.

Background screening criteria were established by collecting background samples across the installation from each USDA soil type identified at NAS Whiting Field. These data are presented in Subsection 3.3.1 of the GIR (HLA, 1998). The arithmetic mean of analytes detected in the background soil samples was calculated by adding individual analyte concentrations and then dividing the sum by the number of samples from which the analytes were detected. Surface soil sample analytical results were compared to twice the arithmetic mean of analyte concentrations detected in background surface soil samples associated with the Troup loamy sand and Lakeland sand soil types also present at Site 16. A statistical summary for the combined surface soil type background data and the surface soil sampling results are discussed in Section 5.5 of this report. Soil sample analytical data are presented in Appendix D of this report.

Table 3-1
Summary of Monitoring Well Construction Details

Monitoring Well Designation	RI Phase of Well Completion	Well Diameter (inches)	Land Surface Elevation (feet msl)	TOC Elevation (feet msl)	Total Well Depth (feet BTOC)	Approximate Screened Interval (feet BTOC)		
Southwest Landf	ill and Adjacent	Areas	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
Site 15, Southwes	t Landfill							
WHF-15-1	VS	4	64.17	66.35	73.60	63 to 73		
WHF-15-2S	IIA	2	57.18	59.58	32.90	17 to 32		
WHF-15-2I	IIA	2	57.24	60.10	63.20	53 to 63		
WHF-15-2D	IIA	2	57.05	59.39	112.44	107 to 112		
WHF-15-3S	IIA	2	67.35	69.29	37.94	22 to 37		
WHF-15-3I	IIA	2	67.26	69.69	87.83	77 to 87		
WHF-15-3D	IIA	2	67.84	69.44	119.48	109 to 119		
WHF-15-4S	IIA	2	140.62	143.29	109.15	94 to 109		
WHF-15-5S	IIA	2	101.73	104.14	68.18	58 to 68		
WHF-15-5I	IIA	2	102.05	105.17	98	85 to 98		
WHF-15-5D	IIA	2	102.81	106.11	128.38	115 to 125		
WHF-15-6S	IIA	2	71.87	74.29	43.73	28 to 43		
WHF-15-6D	IIA	2	72.56	75.08	123.36	113 to 123		
WHF-15-7S	IIB	2	116.96	120.18	88.85	71 to 88		
WHF-15-7I	IIB	2	116.59	119.85	121.5	105 to 121		
WHF-15-7D	, IIB	2	116.36	119.49	147.53	135.5 to 145.5		
WHF-15-8S	IIB	2	77.03	79.67	55	38 to 55		
WHF-15-8I	IIB	2	76.69	79.48	85.2	73 to 85		
WHF-15-8D	IIB	2	76.19	79.08	115	103 to 115		
Site 16, Open Dis	posal Burning A	rea						
WHF-16-1	vs ·	4	47.47	50.04	43.00	33 to 43		
WHF-16-2	1	4	79.38	82.19	74.20	69 to 74		
WHF-16-2S	IIA	2	80.77	83.66	49.80	34 to 49		
WHF-16-2I	IIA	2	78.02	80.60	130.14	120 to 130		
WHF-16-3S	IIA	2	48.60	51.69	23.25	8 to 23		
WHF-16-3I	IIA	2	48.73	51.31	52.87	47 to 52		
WHF-16-3	IIA	2	48.60	51.22	78.91	73 to 78		
WHF-16-3D	IIA	2	48.64	51.40	118.08	108 to 118		
WHF-16-4S	IIA	2	52.19	54.79	22.38	7 to 22		
WHF-16-4II	IIA	2	50.62	53.01	64.80	54 to 64		
WHF-16-4D	IIA	2	49.88	52.87	122.54	112 to 122		
WHF-16-5	liA	2		37.54	13.50	3 to 13		
WHF-16-6S	IIB	2	53.67	56.57	26	10 to 25		
See notes at end of table.								

Table 3-1 (Continued) **Summary of Monitoring Well Construction Details**

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Monitoring Well Designation	RI Phase of Well Completion	Well Diameter (inches)	Land Surface Elevation (feet msl)	TOC Elevation (feet msl)	Total Well Depth (feet BTOC)	Approximate Screened Interval (feet BTOC)			
Site 16, Open Disposal Burning Area (Continued)									
WHF-16-6I	IIB	2	NA	56.77	60	50 to 60			
WHF-16-6D	IIB	2	53.58	56.77	62.1	50 to 62			
WHF-16-7S	IIB	2	35.05	38.27	14	3 to 14			
WHF-16-71	IIB	2	35.14	38.17	46.5	33 to 46			
WHF-16-7D	IIB	2	35.19	38.05	75.2	63 to 75			
Site 1466									
WHF-1466-6S	UST	2	173.40	173.09	131	120 to 131			
WHF-1466-6I	UST	2	173.01	173.06	160	150 to 160			
WHF-1466-6D	UST	2	173.21	173.05	190.5	180 to 190			
WHF-1466-6DD	UST	2	172.86	172.90	220	208 to 220			

Notes: RI = remedial investigation.

msl = mean sea level.

TOC = top of casing.

BTOC = below top of casing.

VS = Verification Study.

IIA = Remedial Investigation Phase IIA. IIB = Remedial Investigation Phase IIB.

-- = not available.

UST = underground storage tank.

I = Remedial Investigation Phase I.

3.6 SUBSURFACE SOIL ASSESSMENT. The RI subsurface investigation at Site 16 included a PCPT investigation, split-spoon sampling conducted during monitoring well installation, test pit excavation, and subsurface soil sampling.

Subsurface soil samples were compared to USEPA Region III Risk-Based Concentrations (RBCs), Florida Soil Cleanup Target Levels (SCTLs), and background subsurface soil data for NAS Whiting Field, which is presented in Subsection 3.3.1 of the GIR (HLA, 1998). Table 3-18 in the GIR presents a statistical summary of the background subsurface soil data at NAS Whiting Field.

The locations of the subsurface soil samples collected from the test pits at Site 16 are shown on Figure 3-4. Results of the subsurface soil assessment are presented in Section 5.6 of this report.

Five subsurface soil samples were collected from five different test pits at Site 16. Sample 16SS0201 was collected from TP-16-02 from 2 to 3.5 feet bls. Sample 16SS0302 was collected from TP-16-03 from 6 to 8 feet bls. Sample 16SS0403 and duplicate sample 16SS0403A were collected from TP-16-04 from 9 to 10 feet bls. Sample 16-SS-06-04 was collected from TP-16-06 from 10.5 feet bls. Sample 16-SS-10-05 was collected from TP-16-10 from 2 feet bls. The locations of the test pits are presented on Figure 3-4. Each soil sample was analyzed for TCL VOCs, SVOCs, pesticides, PCBs, TAL metals, and cyanide.

3.6.1 PCPT Investigations Three PCPT explorations were performed at Site 16 (WHF-16-CPT-1, WHF-16-CPT-2, and WHF-16-CPT-3) during Phase I of the RI (ABB-ES, 1992a); four additional PCPT explorations were performed (16Q001, 16Q002, 16Q003, 16Q007) in 1995. The location of the PCPT exploration is shown on Figure 3-2.

The PCPT exploration consisted of a stainless-steel cone tip (equipped with electronic sensors) connected to stainless-steel rods that were hydraulically driven into the overburden soils. Measurements of end-bearing resistance, friction resistance, and pore pressure were recorded from the sensors throughout the sounding. The analog signals from the cone tip sensors were digitized for data logging and analyses of the digital data was completed in the field using a data acquisition software system. Based on the cone readings, a lithologic description of the soil was computed with the aid of the software package.

The cone tip was advanced until the friction resistance of the overburden soils exceeded the power of the hydraulic system (i.e., refusal). At that point, the exploration was terminated. The primary purpose of extending the PCPT probe was to collect in situ groundwater samples using the Bengt-Arne-Torstenssen (BAT) screening technique. The BAT in situ groundwater sampling technique is described in Phase IIA Technical Memorandum No. 5, Groundwater Assessment (ABB-ES, 1995d). A summary of the sounding designations, completion dates, proposed and actual depths, and the lithologic descriptions for the soundings is presented in Phase IIA Technical Memorandum No. 2, Geologic Assessment (ABB-ES, 1995a).

3.6.2 Split Spoon Sampling Lithologic data were also obtained by collecting subsurface soil samples at monitoring well locations (see Figure 3-2). A 2-foot split-spoon sample was collected for visual inspection by an HLA geologist and all pertinent data were entered into a bound logbook. Detailed soil descriptions and other pertinent data are presented in the boring logs for the soil boring investigation, located in Phase IIA Technical Memorandum No. 2, Geologic Assessment (ABB-ES, 1995a) and in Section 5.1 of this report. Split-spoon

The state of the s

samples were generally collected at 5-foot intervals during drilling of the monitoring wells. Monitoring well installations were conducted in conjunction with the hydrogeologic and groundwater investigations, which are summarized in Phase IIA Technical Memoranda 4 and 5, respectively (ABB-ES, 1995c and 1995d).

3.6.3 Test Pitting Ten test pits were excavated at Site 16 in October 1992, following the completion of the geophysical survey. UXB International, Inc., (Chantilly, Virginia) was subcontracted by HLA to conduct the test pit excavations.

The ten test pits were excavated at those locations (Figure 3-4) where geophysical anomalies potentially defined buried materials. The purpose of the test pits was to characterize waste materials (if present) by providing a description of the waste and collection and chemical analysis of a subsurface soil sample. The analytical data were used to characterize the nature of soil contamination within the test pits.

Prior to excavating the test pits at Site 16, the proposed areal dimensions and orientation of the test pits were surveyed by UXB with a hand-held magnetometer, a terrain conductivity meter (FEREX $^{\text{M}}$ 4.021), and a metal detector. Site-specific field activities also included clearing of vegetation when necessary.

After the test pit location and orientation had been determined, the four corners of the test pit were staked. The staked locations were referenced to the grid coordinates defined for the geophysical survey. A backhoe was used to excavate a rectangular pit. The physical description of each soil layer and waste type was recorded in the field logbook during test pit excavation. A subsurface soil sample was collected directly from the backhoe bucket during the excavation. The depth of the subsurface soil samples ranged from 2 feet bls to 10.5 feet bls at Site 16 test pits. Following sample collection, the test pit was backfilled with excavated soil using the backhoe.

- 3.7 SURFACE WATER ASSESSMENT. Surface water assessment activities included collecting a surface water sample (16W00101) during Phase IIB from the ephemeral wetland at Site 16. The ephemeral wetland occurs during heavy rain periods and is shown on Figure 3-3. The surface water sampling at Site 16 was conducted to assess the nature of surface water contamination from storm water runoff or contaminated surface soil (if present). A summary of the analytes detected in surface water is discussed in Section 5.7 of this report. Surface water analytical data are presented in Appendix E of this report.
- 3.8 GROUNDWATER ASSESSMENT. Groundwater assessment activities included collecting groundwater samples with a BAT sampler during Phase I and collecting groundwater samples from monitoring wells installed in Phase IIA and IIB. Groundwater sampling was conducted at Site 16 to assess the lateral and vertical extent of potential groundwater contamination. The locations of the monitoring wells and BAT samples are shown in Figure 3-2.

The RI Phase I investigation at Site 16 included the collection of four groundwater samples using a PCPT and BAT sampler at three locations and installation of one monitoring well (WHF-16-2). The PCPT and monitoring well locations are shown on Figure 3-2. Groundwater samples were collected from the

BAT sampling locations at depths ranging from 28 to 100 feet bls. Monitoring well WHF-16-2 was not sampled as part of the Phase I investigation. The four BAT samples were analyzed for volatile organic compound (VOCs) and target analyte list (TAL) inorganic analytes at an off-site laboratory.

During the Phase IIA investigation, ten new monitoring wells were installed and groundwater samples were collected from the new wells and the existing wells (Figure 3-2). Samples were analyzed for target compound list (TCL) VOCs, semivolatile organic compound (SVOCs), pesticides and PCBs, and TAL inorganic analytes. A summary of the analytical results is provided in Section 5.8 of this report.

The Phase IIA groundwater samples were collected from the monitoring wells using a Teflon™ bailer after purging the monitoring wells with a submersible or bladder pump. Purging and sampling methodology was followed as presented in Paragraph 2.1.7.2 of the GIR (HLA, 1998). The groundwater samples were analyzed for CLP (Naval Energy and Environmental Support Activity [NEESA] Level C) TCL VOCs, SVOCs, pesticides, PCBs, and TAL inorganics.

During Phase IIB of the RI, the seventeen existing monitoring wells at Site 16 were sampled using low-flow sampling techniques. Purging and sampling methodology was followed as presented in Paragraph 2.1.7.2 of the GIR (HLA, 1998). The groundwater samples were analyzed for CLP (NEESA Level D) TCL VOCs, SVOCs, pesticides, PCBs, and TAL inorganics. Samples for TAL inorganics were unfiltered (total analysis) if turbidity was below 10 nephelometric turbidity units (NTUs). If turbidity was greater than 10 NTUs, an additional groundwater sample was collected and filtered (dissolved-phase inorganics) using a 45-micron filter. The purpose of the additional groundwater sample was to assess uncertainty associated with a turbid unfiltered groundwater sample.

All Site 16 monitoring wells were sampled during August 1996. Five Site 16 monitoring wells were resampled for VOCs during November 1996. Fifteen Site 16 monitoring wells were resampled for either VOCs or TAL inorganics during July 1997.

Analyses were also conducted to assess secondary water quality parameters and provide data for assessing remedial alternatives in the FS. The analyses included alkalinity, chloride, sulfates, color, hardness, ammonia nitrates, total Kjeldahl nitrogen, nitrate and nitrite, Ph, phosphorous, total dissolved solids, and sulfides.

A summary of the analytes detected in groundwater during these sampling events is discussed in Section 5.8 and the groundwater analytical data is presented in Appendix F of this report.

4.0 SITE SPECIFIC DATA QUALITY ASSESSMENT

This chapter describes how the data generated during Phase IIB of the RI at Site 16 were managed and evaluated. Section 4.1 describes the analytical program and data management for the RI at Site 16. Section 4.2 summarizes the precision, accuracy, representativeness, comparability, and completeness (PARCC) report on the data. Section 4.3 presents a summary of the Data Quality Assessment.

The soil and groundwater samples collected during Phase IIA of the RI were qualified according to USEPA functional guidelines for evaluation of organic (USEPA, 1991b) and inorganic (USEPA, 1988a) analytical data analyzed using USEPA CLP protocol. The Data Quality Objective (DQO) assessment for the Phase IIA soil samples is presented in detail in the RI/FS Phase IIA Technical Memorandum No. 3 (ABB-ES, 1995b). The DQO assessment for the Phase IIA groundwater samples is presented in detail in the RI/FS Phase IIA Technical Memorandum No. 5 (ABB-ES, 1995d).

4.1 ANALYTICAL PROGRAM. Environmental and quality control samples collected during the Phase IIB of the RI at Site 16 were analyzed using field screening methods and laboratory analytical methods. Site 16 analytical results and quality control data are included with sample delivery groups (SDGs) WF008, WF11A, WF013, WF014, WF023, WF026, WF027, WF031B, WF037, and WF051. The field QC data are presented in Appendix A of this report. Sampling locations are presented in Chapter 3.0 and sample results are presented in Chapter 5.0 of this report. The analytical data are presented in Appendices D, E, and F, which are soil, surface water, and groundwater, respectively.

Environmental samples (surface soil, subsurface soil, surface water, and groundwater) were collected and analyzed at an off-site laboratory using SW-846 methodology (USEPA, 1986a) for analysis of VOCs, SVOCs, pesticides, PCBs, total recoverable petroleum hydrocarbons (TRPH), metals, and cyanide. The laboratory analytical program is described in more detail in Section 2.2 of the NAS Whiting Field GIR (HLA, 1998).

Analytical results obtained for all environmental samples during the RI sampling events were submitted as NEESA Level D (USEPA Level IV) analytical packages for VOCs, SVOCs, pesticides, PCBs, TRPH, metals, cyanide, and wet chemistry.

- 4.2 DATA REVIEW. Data validation is the technical review of individual analytical results relative to the following criteria:
 - DQOs and the QAPP in the NAS Whiting Field Work Plan (E. C. Jordan Co., Inc., 1990 and ABB-ES, 1995e).
 - NEESA guidance document 20.2-047B, Sampling and Chemical Analysis Quality Assurance Requirements for the Navy Installation Program (NEESA, 1988).
 - USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, February 1994 (USEPA, 1994a).

• USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994 (USEPA, 1994b).

The data validation process is described in Section 2.3 of the NAS Whiting Field GIR (HLA, 1998).

The data were reviewed, validated, and evaluated using the PARCC criteria specified in the DQOs. PARCC criteria are described in Section 2.3 of the NAS Whiting Field GIR (HLA, 1998). The Site 16 Phase IIB soil, surface water, and groundwater analytical data were validated by Laboratory Data Consultants, Inc. (LDC), of Carlsbad, California in 1996-97. The subsections below summarize the PARCC criteria evaluation of the analytical data.

4.2.1 Precision Precision is a measure of the agreement or repeatability of a set of replicate results (relative percent difference [RPD]) obtained from duplicate laboratory analyses of samples collected from the same location and depth interval. Precision for analytical data collected during the RI sampling events was evaluated using results of field duplicate samples, laboratory duplicate samples, matrix spike and matrix spike duplicate (MS/MSD) samples, and/or consecutive laboratory control samples. The evaluation of precision for the field duplicate samples at Site 16 is presented in Table 4-1 and summarized below.

Organic Analytes. The RPD criteria for eight organic compounds (acetone, 1-2-dichloroethene, naphthalene, dieldrin, 4,4'-dichlorodiphenyldichloroethene [DDE], alpha-chlordane, gamma-chlordane, and Aroclor-1260) did not meet the control limit for at least one SDG as shown in Table 4-1. All other organic analytes were within the control limit for RPD. Since acetone is widely recognized as a laboratory contaminant, the acetone spike in the sample and duplicate may not have been introduced in the field. Furthermore, the high imprecision of acetone (as high as 111 percent RPD) may be the result of poor laboratory instrument stability rather than improper sample collection and handling.

<u>Inorganic Analytes</u>. The RPD criteria for nine inorganic analytes (aluminum, chromium, copper, iron, lead, magnesium, potassium, zinc, and cyanide) in at least one SDG did not meet the control limit (Table 4-1). According to the data validation (LDC, 1996-97), the exceedences in the inorganic analytes are considered moderately imprecise. Exceedances of RPD values may have been due to sample heterogeneity or poor laboratory instrument stability.

4.2.2 Accuracy Accuracy is a measure of the agreement between the true value and the value measured using an analytical method (percent recovery). Accuracy also is evaluated during data validation by assessing initial and continuing calibration data for the analytical instrument. Accuracy for analytical data collected during the RI sampling events was assessed by evaluating percentage recoveries for MS/MSD samples, surrogate recoveries, laboratory control samples, and initial and continuing calibration standard results. A summary of accuracy exceedences for MS/MSD samples at Site 16 is presented in Table 4-2 and summarized below.

The percent recovery for some of the MS/MSD samples was above or below the target range; therefore, some analytical results may be biased high or low. Some of the analytical results for SVOCs and inorganic analytes were qualified based on the evaluation of percent recovery. According to the data validation (LDC, 1996-97),

Table 4-1 Precision Summary for Soil and Groundwater Field Duplicate Samples

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

SDG Number Sample ID		Compound	Sample Concentration (D ₁)	Duplicate Concentration (D ₂)	RPD (%)	Contro Limit (%)
Soil						
WF013						
Organics (µg/kg)	16S00101	Acetone	4	9	77	,50
		bis(2-Ethylhexyl)phthalate	45	ND	NC	50
		4,4'-DDE	3.2	2.0	46	50
		4,4'-DDT	3.8	2.7	34	50
Organics (µg/kg)	16S01001	Acetone	14	4	111	50
		bis(2-Ethylhexyl)phthalate	60	58	3	50
		Dieldrin	33	60	58	50
		4,4'-DDE	13	22	51	50
		4,4'-DDT	6.4	9.0	34	50
		Alpha-chlordane	6.8	12	55	50
		Gamma-chlordane	4.0	7.9	66	50
		Aroclor-1260	48	110	78	50
AL Metals (mg/kg)	16S00101	Aluminum	4,250	5,480	25	30
		Arsenic	0.94	1.2	24	30
		Barium	13.2	13.6	3	30
		Beryllium	0.09	ND	NC	30
		Cadmium	0.28	0.30	7	30
		Calcium	210	173	19	30
		Chromium	4.0	5.8	37	30
		Copper	4.8	3.0	46	30
•		Iron	2,340	2,910	22	30
		Lead	7.8	7.5	4	30
		Magnesium	103	150	37	30
		Manganese	185	151	20	30
		Nickel	ND	1.9	NC	30
		Potassium	99.6	141	34	30
		Selenium	0.19	ND	NC	30
		Sodium	129	108	18	30
		Vanadium	6.8	8.6	23	30
		Zinc	6.4	6.9	8	30
		Cyanide	0.12	0.12	0	30

WHF-\$16.RI FGW.01.00

Table 4-1 (Continued) Precision Summary for Soil and Groundwater Field Duplicate Samples

SDG Number	Sample ID	Compound	Sample Concentration (D ₁)	Duplicate Concentration (D ₂)	RPD (%)	Control Limit (%)
Soil WF013						
TAL Metals (mg/kg)	16S01001	Aluminum	2,000	1,780	12	30
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Arsenic	0.76	0.64	17	30
		Barium	4.9	4.0	20	30
		Cadmium	ND	0.23	NC	30
		Calcium	101	99.8	1	30
		Chromium	3.9	3.3	16	30
		Copper	10.2	8.6	17	30
		Iron	1,470	1,310	12	30
		Lead	13.5	12.4	9	30
		Magnesium	38.5	29.9	25	30
		Manganese	5.6	4.9	13	30
		Mercury	0.20	- 0.17	16	30
		Potassium	ND	77.6	NC	30
		Selenium	0.13	ND	NC	30
		Silver	4.1	3.6	13	30
		Sodium	139	118	16	30
		Vanadium	3.4	3.2	6	30
		Zinc	4.1	3.4	19	30
		Cyanide	0.10	0.17	52	30
Surface Water						
WF11A						
Organics (µg/kg)	09W00101	Toluene	ND	1	NC	50
TAL Metals (mg/kg)	09W00101	Aluminum	123	129	5	30
		Arsenic	0.60	ND	NC	30
		Barium	1.1	1.3	17	30
		Calcium	760	726	5	30
		Iron	118	105	12	30
		Magnesium	234	236	1	30
		Manganese	12.2	12.0	2	30
		Potassium	313	298	2	30
		Sodium	904	893	1	30
		Zinc	5.4	3.8	34	30

Table 4-1 (Continued) Precision Summary for Soil and Groundwater Field Duplicate Samples

SDG Number	Sample ID	Compound	Sample Concentration (D ₁)	Duplicate Concentration (D ₂)	RPD (%)	Contro Limit (%)
Groundwater						
WF026						
Organics (µg/ℓ)	16G00403	Acetone	3	2	40	40
		1,2-Dichloroethene (total)	1	2	67	40
		Benzene	600	600	0	40
		Phenol	8	8	0	40
		Naphthalene	1	2	67	40
		Bis (2-ethylhexyl) phthalate	1	ND	NC	40
Organics (µg/\$)	16G00403DL	Acetone	18	24	29	40
		Benzene	700	740	6	40
TAL Metals (mg/l)	16G00403	Aluminum	278	290	4	25
		Arsenic	1.0	ND	NC	25
		Barium	28.6	27.5	4	25
		Calcium	3,110	3,300	6	25
		Chromium	2.3	2.9	23	25
		Copper	ND	1.3	NC	25
		Iron	1,370	879	44	25
		Lead	4.0	2.7	39	25
		Magnesium	1,320	987	29	25
		Manganese	41.3	33.5	21	25
		Potassium	540	713	28	25
		Sodium	2,570	2,590	8.0	25
		Vanadium	2.2	ND	NC	25
		Zinc	103	945	161	25
		Cyanide	2.9	1.6	58	25
WF027						
Organics (µg/ℓ)	16G00501	Bis(2-ethylhexyl)phthalate	2	ND	NC	40
TAL Metals (µg/l)	16G00501	Aluminum	12.6	16.7	28	25
		Barium	10	10	0	25
		Calcium	239	234	2	25
		Cobalt	3.2	ND	NC	25
		iron	9.2	5.3	54	25
		Magnesium	276	261	6	25

Table 4-1 (Continued) Precision Summary for Soil and Groundwater Field Duplicate Samples

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

SDG Number	Sample ID	Compound	Sample Concentration (D ₁)	Duplicate Concentration (D ₂)	RPD (%)	Control Limit (%)
		Manganese	ND	2.1	NC	25
		Sodium	1,550	1,450	7	25
		Zinc	2.6	1.6	48	25
WF051						
Organics (µg/ℓ)	16G00401	Acetone	18	14	25	40
TAL Metals (mg/kg)	16G00101	Barium	20.5	20.7	1	25
		Calcium	514	520	1	25
		Copper	1.7	1.7	0	25
		Iron	11.2	14.7	27	25
		Magnesium	617	623	1	25
		Manganese	3.2	3.0	6	25
		Sodium	2,130	2,110	1	25
		Zinc	3.2	8.2	88	25

Notes: SDG = sample delivery group.

ID = identifier.

RPD = Relative Percent Difference.

% = percent.

 μ g/kg = micrograms per kilogram.

ND = not detected.

NC = not calculable.

DDE = dichlorodiphenyldichloroethene.

DDT = dichlorodiphenyltrichloroethane.

mg/kg = milligrams per kilogram.

TAL = target analyte list.

 D_1 = sample concentration.

 D_2 = duplicate concentration.

 $\mu g/\ell = micrograms per liter.$

$$RPD = 100 \times \frac{|D_1 - D_2|}{0.5(D_1 + D_2)}$$
 (1)

Table 4-2 Accuracy Exceedences for MS/MSD Samples

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

SDG Number MS/MSD Sample		Analyte	% Recovery MS/MSD	Control Limits (%)
Surface Soil				
WF013	16S01001	Phenol	-/96	26 to 90
		2-Chlorophenol	-/103	25 to 102
		Pentachlorophenol	-/110	17 to 109
Surface Water				
WF11A	09W00101	4-Chloro-3-methylphenol	104/107	23 to 97
		4-Nitrophenol	117/119	10 to 80
		2,4-Dinitrophenol	106/107	24 to 96
		Pentachlorophenol	120/119	96 to 103
Groundwater		,		
WF027	16G00501	4-Nitrophenol	91/91	10 to 80
		Pentachlorophenol	104/104	9 to 103

¹ MSD analysis are generally not performed for inorganic analysis; therefore, only the % recovery for the matrix spike is reported.

Notes: MS/MSD = matrix spike and matrix spike duplicate.

SDG = sample delivery group.

ID = identifier.

% = percent.

- = nothing detected.

the results of organic and inorganic MS/MSD analyses indicate that an acceptable level of accuracy was attained.

A summary of the surrogate spike samples and the surrogate compounds that were outside control limits for the Phase IIB samples collected at Site 16 is presented in Table 4-3. The required control limits were also identified for each surrogate compound. All the samples associated with these surrogates were qualified in accordance with the USEPA functional guidelines as presented in Subsection 3.3.4 of the GIR (HLA, 1998).

Initial calibrations were performed to ensure that the instrument was capable of producing acceptable qualitative and quantitative data for compounds on the volatile TCL. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve. Continuing calibrations were performed to ensure that the instrument was capable of reproducing acceptable qualitative and quantitative data.

Continuing calibration establishes the 12-hour Relative Response Factor (RRF) on which the quantitations are based and checks satisfactory performance of the instrument on a day-to-day basis. Initial and continuing calibrations for organic analytes are measured by the percent Relative Standard Deviation (%RSD) for initial calibrations and the percent Difference (%D) for continuing calibrations. Table 4-4 summarizes the organic compounds that exceeded the initial or continuing calibrations for surface soil and groundwater samples collected at Sites 16.

The evaluation of the RSD for the initial calibrations and the D for the continuing calibrations indicate that the response factors for the system performance check compounds (SPCCs) generally met the required criteria for VOCs, SVOCs, pesticides, and PCBs. Samples associated with those SDGs in which certain VOCs, SVOCs, pesticides, and PCBs exhibiting an RRF that did not meet the minimum requirements were qualified as UJ/J.

4.2.3 Representativeness Representativeness is the degree to which the data obtained from an environmental sample accurately reflects the presence or absence of contamination at a site. Field quality control samples (including source water blanks, equipment rinse blanks, and trip blanks) and laboratory quality control samples (including method blanks [organic analyses] and preparation blanks [inorganic analysis]) were used to assess representativeness. Representativeness also is assessed by review of the adherence to extraction and analysis holding times. The evaluation of representativeness in field quality control samples for Site 16 SDGs is presented in Table 4-5 and summarized below.

Trip Blanks. Acetone and methylene chloride were detected in trip blanks with a concentration ranging from 2 to 6 micrograms per liter $(\mu g/\ell)$ for acetone and 1 to 5 $\mu g/\ell$ for methylene chloride. Both acetone and methylene chloride are widely recognized as a laboratory contaminants commonly introduced during the calibration or cleaning of equipment.

Environmental samples associated with the trip blanks with results greater than the Instrument Detection Limit (IDL) but less than 10 times the amount detected in the trip blank were appropriately annotated with a J or UJ qualifier (LDC, 1996-1997).

Table 4-3 Accuracy Summary for Surrogate Recoveries Outside QC Criteria

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

SDG Number	Sample ID	Spiked Analyte	Surrogate Recovery (%R)	QC Limits (percent)
WF11A	16W00101	Decachlorobiphenyl	45/50	60 to 150
WF013	16S00801	Nitrobenzene-d5	3	23 to 120
		2-Fluorobiphenyl	3	30 to 115
		Terphenyl-d14	4	18 to 137
		Phenol-d5	2	24 to 113
		2-Fluorophenol	2	25 to 121
		2,4,6-Tribromophenol	3	19 to 122
		2-Chlorophenol-d4	3	20 to 130
		1,2-Dichlorobenzene-d4	2	20 to 130
	16R00101	Decachiorobiphenyl	58	60 to 150
	16S00101D	Tetrachloro-m-xylene	22/21	60 to 150
	16S00301	Tetrachloro-m-xylene	57	60 to 150
		Decachlorobiphenyl	57/54	60 to 150
	16S01001	Decachlorobiphenyl	44/41	60 to 150
	16S01201	Tetrachloro-m-xylene	55	60 to 150
	16S01301	Decachlorobiphenyl	55/55	60 to 150
WF023	16G00703	Decachlorobiphenyl	59/55	60 to 150
WF026	16G00201	Decachlorobiphenyl	43/37	60 to 150
	16G00203	Decachlorobiphenyl	44/43	60 to 150
	16G00403	Decachlorobiphenyl	40/39	60 to 150
	16G00403D	Decachlorobiphenyl	47/46	60 to 150
	16G00601	Decachlorobiphenyl	25/25	60 to 150
WF027	16G00304	Decachlorobiphenyl	46/43	60 to 150

Notes: QC = quality control.

SDG = sample delivery group.

ID = identifier.

%R = percent recovery.

Table 4-4 Summary of Compounds Exceeding Instrument Calibration for Site 16 SDGs

SDG	Compound	Initial Calibration (%RSD)	Continuing Calibration (%D)	Qualifier
WF11A	Endosulfan I	22		UJ
WF013	1,1-Dichloroethene	33.9		UJ
	Carbon disulfide	32.8	***	UJ
	2-Hexanone	41.7		UJ
	Chloromethane	••	27.2	UJ
	Vinyl chloride		27.2	UJ
	Acetone		68.1	UJ/J
	2-Butanone		69.9	UJ
	1,2-Dichloroethane		29.6	UJ
	4-Methyl-2-pentanone		31.4	UJ
	Chloroethane		26.3	UJ
	Acetone		51.7	UJ/J
	2-Butanone		40.8	UJ
	1,2-Dichloroethane		35.4	UJ
	2-Hexanone		27.5	UJ
	Chloromethane		41.8	UJ
	Vinyl chloride		31.7	UJ
	Chloroethane		41.7	UJ
	Acetone		31.7	UJ/J
	Carbon Disulfide		25.8	UJ
	2-Hexanone		38.4	UJ
	Benzo(g,h,i)perylene		29.0	UJ/J
	Endosulfan sulfate	24.0		UJ
WF014	1,1-Dichloroethene	33.9		UJ
	Carbon disulfide	32.8		UJ
	Acetone	31.3		UJ/J
	Acetone	4-	46.7	UJ/J
	Methylene chloride		32.3	UJ
	2-Butanone	·	54.2	UJ
	4-Methyl-2-pentanone		31.9	UJ
	2-Hexanone		60.0	UJ
	Acetone	 .	36.7	UJ/J
	Benzo(k)fluoranthene	**	30.7	UJ/J
	4-Nitrophenol		38.2	ÚĴ
	4-Nitroaniline		27.9	UJ

Table 4-4 (Continued) Summary of Compounds Exceeding Instrument Calibration for Site 16 SDGs

SDG	Compound	Initial Calibration (%RSD)	Continuing Calibration (%D)	Qualifier
WF014	Pentachlorophenol	**	29.4	UJ
	Benzo(g,h,i)perylene		35.3	UJ/J
	Endosulfan sulfate	24.0		UJ
WF023	Acetone	30.2		J
	Acetone		33.2	J
	Acetone		30.4	J
	Methylene chloride	·	31.7	J
	Carbon disulfide		27.2	J
	Chloroethane		27.5	J
	Carbon disulfide		27.5	J
	Methylene chloride	·	37.8	J
	4-Nitroaniline		37.8	J
	Chrysene		27.8	J
	4-Nitroaniline		31.5	J
	Chrysene		28.5	J
	Benzo(g,h,i)perylene	••	32.7	J
	4,4'-DDT	23.6		J
WF026	Acetone	33.8	•	J
	Chloromethane		46.5	. J
	Chloroethane		77.1	J
	1,1-Dichloroethane		28.6	J
	2-Butanone		30.3	J
	Chloromethane		32.5	J
	Chloroethane		32.4	J
	Acetone		37.9	J
	Carbon disulfide		28.0	J
	2-Butanone		27.8	J
	2,4-Dinitrophenol	~~	35.6	j
	4-Nitroaniline		29.4	J
	4,6-Dinitro-2-methylphenol		32.0	J
	Pentachlorophenol		27.8	J
	3,3'-Dichlorobenzidine	**	27.8	J
	4-Chloroaniline		36.8	J
	3-Nitroaniline		37.9	J
	2,4-Dinitrophenol		29.3	J

Table 4-4 (Continued) Summary of Compounds Exceeding Instrument Calibration for Site 16 SDGs

SDG	Compound	Initial Calibration (%RSD)	Continuing Calibration (%D)	Qualifier
	4-Nitroaniline		49.5	J
	4,6-Dinitro-2-methylphenol		29.4	J
	Pentachiorophenol		29.6	J
	3,3'-Dichlorobenzidine	**	54.1	J
	alpha-BHC	22.2	· 	J
	delta-BHC	22.1		J
WF027	2-Butanone	39.1		J
	Acetone	33.8		J
	Acetone	·	102.4	J
	2-Butanone		36.3	J
	Acetone		37.9	J
	Carbon disulfide		28.0	J
	2-Butanone		27.8	J
	Bromomethane	·	31.0	J
	Chloroethane	· <u></u>	63.9	J
	Acetone		37.2	J
	Chloromethane	<u></u>	32.4	J
	Chloroethane		28.4	J
	Acetone .		49.2	J
	2-Butanone		38.7	J
	4-Methyl-2-pentanone		35.7	J
	2-Hexanone		38.9	j
	Chloromethane		27.4	j
	Acetone		34.7	J
	2-Butanone		32.6	J
	4-Methyl-pentanone		32.9	J
	2-Hexanone		38.9	J
	4-Choroaniline	**	36.8	J
	3-Nitroaniline		37.9	J
	2,4-Dinitrophenol		29.3	J
	4-Nitroaniline		49.5	J
	4,6-Dinitro-2-methylphenol		29.4	J
	Pentachlorophenol	••	29.6	J
	3,3'-Dichlorobenzidine	a.e.	54.1	J
	3,3'-Dichlorobenzidine		30.4	J

Table 4-4 (Continued) Summary of Compounds Exceeding Instrument Calibration for Site 16 SDGs

Remedial Investigation Report Site 16, Open Disposal and Burning Area NAS Whiting Field, Milton, Florida

SDG	Compound	Initial Calibration (%RSD)	Continuing Calibration (%D)	Qualifier
WF031B	Di-n-octylphthalate	••	25.3	J
	Alpha-BHC	23.9		J
WF037	Di-n-octylphthalate		25.3	J
	Alpha-BHC	23.9		J

Notes: SDG = sample delivery group.

%RSD = percent relative standard deviation for initial calibrations.

%D = percent difference for continuing calibrations.

-- = not detected.

UJ = The analyte was not detected above the reported sample instrument detection limit (IDL); however, the reported concentration is approximate and may not reliably be presumed to be less than the IDL value.

J = The analyte was positively identified and is reported as an approximate concentration.

DDT = dichlorodiphenyltrichloroethane.

BHC = delta hexachlorocyclohexane.

Table 4-5 Representativeness Summary for Field QC Samples for Site 16 SDGs

			MINION, FION	ua			
SDG:	W	F013	WF023	WF026	WF	027	WF031B
Sample ID:	16T00101	16R00101	16T01301	16T01801	16R01501	16T01901	16T04001
Collect Date:	09-JAN-96	09-JAN-96	25-JUL-96	15-AUG-96	21-AUG-96	19-AUG-96	21-NOV-96
Sample Type:	Trip Blank	Rinsate Blank	Trip Blank	Trip Blank	Rinsate Blank	Trip Blank	Trip Blank
Volatile Organic Compounds	(μg/ !)						
Acetone			2	3		6	
Methylene Chloride				1		5	 .
Semivolatile Organic Compo	unds (µg/ℓ)						
Di-n-butylphthalate	NA	5	NA	NA	5	NA	NA
bis(2-ethylhexyl)phthalate	NA		NA	NA		NA	NA
Pesticides and PCBs (µg/1)							
None detected							
Inorganic Analytes (µg/ℓ)							
Arsenic	NA		NA	NA	0.5 U	NA	NA
Barium	NA		NA	NA		NA	NA
Beryllium	NA		NA	NA		NA	NA
Calcium	NA		NA	NA	64.0 U	NA	NA
Chromium	NA		NA	NA		NA	NA
Copper	NA		NA	NA		NA	NA
Iron .	NA	7.0 UJ	NA	NA		NA	NA
Lead	NA		NA	NA	0.80	NA	NA
Manganese	NA		NA	NA	<u></u>	NA	NA
Mercury	NA		NA	NA		NA	NA
Nickel	NA		NA	NA		NA	NA
Sodium	NA	30.0 UJ	NA	NA	26.9 U	NA	NA
Zinc	NA	3.4 UJ	NA	NA	1.8	NA	NA
TRPH	NA		NA	NA		NA	NA
Cyanide	NA		NA	NA		NA	NA
See notes at end of table.							

Table 4-5 (Continued) Representativeness Summary for Field QC Samples for Site 16 SDGs

			Willon, Florida				
SDG:	WF037			WF0	51		
Sample ID:	16T04001	16R03501	16R03601	16T06801	16T06901	16T07001	16T07101
Collect Date:	21-NOV-97	21-JUL-97	23-JUL-97	21-JUL-97	22-JUL-97	23-JUL-97	25-JUL-97
Sample Type:	Trip Blank	Rinsate Blank	Rinsate Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank
Volatile Organic Compound	is (µg/l)						
Acetone			NA	3			
Methylene chloride		1	NA	1			
Semivolatile Organic Comp	ounds (µg/1)						
Di-n-butylphthalate							
bis(2-Ethylhexyl)phthalate			, 				
Pesticides and PCBs (µg/ℓ)	1						
None detected							
Inorganic Analytes (µg/ℓ)							
Arsenic	NA	NA		NA	NA	NA	NA
Barium	NA	NA		NA	NA	NA	NA
Beryllium .	NA	NA		NA	NA	NA	NA
Cadmium	NA	NA		NA	NA	NA	NA
Calcium	NA	NA	166 U	NA	NA	NA	NA
Chromium	NA	NA		NA	NA	NA	NA
Copper	NA	NA	1.7 U	NA	NA	NA	NA
Iron	NA	NA	12.7 U	NA	NA	NA	NA
Lead	NA	NA	1.2	NA	NA	NA	NA
Manganese	NA	NA	0.68 U	NA	NA	NA	NA
Mercury	NA	NA		NA	NA	NA	NA
Nickel	NA	NA		NA	NA	NA	NA
Sodium	NA	NA NA	48.9 U	NA	NA	NA	NA
See notes at end of table.							

4-16

Table 4-5 (Continued) Representativeness Summary for Field QC Samples for Site 16 SDGs

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

SDG:	WF037		WF051						
Sample ID:	16T04001	16R03501	16R03601	16T06801	16T06901	16T07001	16T07101		
Collect Date:	21-NOV-97	21-JUL-97	23-JUL-97	21-JUL-97	22-JUL-97	23-JUL-97	25-JUL-97		
Sample Type:	Trip Blank	Rinsate Blank	Rinsate Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank		
Inorganic Analytes (µg/	(Continued)								
Zinc	NA	NA	2.6 U	NA .	NA	NA	NA		
TRPH	NA	NA .		NA	NA	NA	NA		
Cyanide	NA	NA		NA	NA	NA	NA		

Notes: QC = quality control.

SDG = sample delivery group.

ID = identifier.

 $\mu g/\ell$ = micrograms per liter.

-- = analyte not detected.

NA = not analyzed.

PCB = polychlorinated biphenyl.

U = sample result modified based on associated method blank.

J = estimated value.

Rinsate Blanks. One VOC (methylene chloride) was detected at a concentration of 1 μ g/ ℓ in a groundwater rinsate blank. One SVOC (di-n-butylphthalate) was detected at a concentration of 5 μ g/ ℓ .

i i yan in in a

Inorganics detected at concentrations exceeding the IDL but less than the contract-required detection limits (CRDLs) are lead and zinc. Lead was detected in two groundwater rinsate blanks at concentrations of 0.8 and 1.2 $\mu g/\ell$. Zinc was detected at a concentration of 1.8 $\mu g/\ell$ in one rinsate blank.

Laboratory Method and Preparation Blanks. Concentrations of VOCs, SVOCs, and metals were detected in the laboratory method blanks associated with SDGs WF11A, WF013, WF014, WF023, WF026, WF027, WF031B, WF037, and WF051.

Environmental samples associated with method blanks that contained methylene chloride and acetone with results greater than IDL but less than 10 times the amount detected in the laboratory preparation blanks were annotated with UJ qualifier (LDC, 1996-1997). For metals, sample results greater than IDL but less than 5 times the amount detected in the laboratory preparation blanks were appropriately annotated with a J or UJ qualifier (LDC, 1996-1997).

Sampling and analysis holding times for each analytical fraction were met in all samples.

Qualification of the environmental samples were required because of the detection of target analytes in laboratory and field blanks. Qualification of the RI data, based on blank contamination, was performed according to USEPA data validation guidelines (USEPA, 1994a and USEPA, 1994b). According to the data validation (LDC, 1996-1997), the analytes detected in the QA/QC blanks are considered common contaminants and were found at typical concentrations; therefore, the analytical results are considered to be representative.

- 4.2.4 Comparability Comparability is the confidence with which one data set can be compared with another and the degree to which the environmental data from each sampling event are considered equivalent. Comparability of the analytical data was assured by using standard operating procedures for sample collection, by using standard chemical analytical methods, and by reporting the analytical results in standard units (SUs). The sampling, shipment, and analytical protocols were consistent with USEPA standard operation procedures and methodologies described in work plans for NAS Whiting Field throughout the period of the RI.
- 4.2.5 Completeness Completeness is the percentage of useable data reported and validated compared with the total number of measurements made. Useable data are those measurements that were not rejected (qualified with an "R") during the validation process. Some of the analytical data were rejected. A few samples from SDG WF013 have metals data which were rejected. The goal for analytical completeness for the RI sampling event was 85 percent useable data. The completeness goal of 85 percent was met for all matrices and all parameters.
- 4.3 SUMMARY. Based on the results of the QC sample analyses, the established precision, accuracy, and representativeness goals of the project were achieved

(Table 4-6). Some field and/or laboratory-derived contamination was present in some of the QC samples which required the results of some environmental samples to be amended. QC sample results and data validation criteria indicated that a 94.4 to 100 percent completeness goal was achieved, thus satisfying the 85 percent goal. Standard methods of analyses and units of measure were used throughout the project; therefore, the QC criteria and the DQOs presented in the work plan were achieved.

Overall, the data generated during the sampling events meet established DQOs and are acceptable for use in site characterization, risk assessment, and evaluation of corrective measures.

Table 4-6 Summary of DQO Assessment - PARCC Parameters

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

		WINTON, TIC	711GG		
Sample Type	Precision ¹	Accuracy ²	Representativeness	Completeness (%)	Comparability
Surface Soil Samples - Site 16					
SDG WF013 and WF014					
TCL VOC	Acceptable	Acceptable	Acceptable	100	Acceptable
TCL SVOCs	Acceptable	Acceptable	Acceptable	99.5 ³	Acceptable
Pesticides and PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
TAL Metals and Total Cyanides	Acceptable	Acceptable	Acceptable	100	Acceptable
Surface Water Sample - Site 16					
SDG WF11A					
TCL VOC	Acceptable	Acceptable	Acceptable	100	Acceptable
TCL SVOCs	Acceptable	Acceptable	Acceptable	100	Acceptable
Pesticides and PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
TAL Metals and Total Cyanides	Acceptable	Acceptable	Acceptable	100	Acceptable
Groundwater Samples - Site 16					
SDG WF023, WF026, WF027, WF	031B, WF037, a	and WF051			
TCL VOC	Acceptable	Acceptable	Acceptable	100	Acceptable
TCL SVOCs	Acceptable	Acceptable	Acceptable	100	Acceptable
Pesticides and PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
TAL Metals and Total Cyanides ⁴	Acceptable	Acceptable	Acceptable	100	Acceptable

¹ Cumulative of sampling and analytical components.

Notes: All the units are expressed as the ratio of number of analytes meeting the quality control criteria to the total number of analytes.

DQO = data quality objective.

PARCC = precision, accuracy, reproducibility, completeness, and comparability.

% = percent.

TCL = target compound list.

VOC = volatile organic compound.

SVOC = semivolatile organic compound.

TAL = target analyte list.

PCB = polychlorinated biphenyl.

² Analytical component.

³ A few samples have results whose concentrations were rejected.

⁴ The accuracy for cyanide measurements associated with SDG WF037 was found to be unacceptable.

5.0 INVESTIGATIVE RESULTS

The following sections present the interpretation of geology and hydrogeology for the Southwest Disposal Area (i.e., Site 15 the Southwest Disposal Area and Site 16 the Open Disposal and Burning Area). Geophysical survey data, as well as analytical results of soil gas, surface soil, subsurface soil, surface water, and groundwater sampling events are presented for Site 16.

<u>5.1 GEOLOGIC RESULTS</u>. This section presents the results of the Phase IIA and IIB geologic investigations of Site 16 and, when necessary to present a clearer hydrogeologic picture, Site 15.

Surface soils (up to 12 inches deep) of the sites are generally described in test pit logs (Appendix C) as tan to yellowish-orange (fine- to very fine-grained) sand or tan to brown (fine- to very fine-grained) silty sand. The shallow soil (2 to 7 feet bls) tends to be red-orange to light tan in color and contains thin interbedded sand, silt, and clay layers at many exploration locations.

The subsurface lithology (greater than 7 feet bls) of Sites 15 and 16 consists of poorly graded (very fine- to medium-grained) sands displaying various shades of yellow, brown, and gray. Layers of well graded sands, clay, and silt are common to the deep borings at both sites (Monitoring Well Logs, Appendix C-2). The soil from shallow depths (referred to as interbedded sands, silts, and clays on cross sections) tends to be darker in color and contains significant amounts of clay and silt.

A plan view of Sites 15 and 16 is provided on Figure 5-1 and the geology of the two sites is depicted in cross sections (Figures 5-2, 5-3, and 5-4). These cross sections show that a continuous clay layer is not present directly beneath the Southwest Disposal Area. A 3-foot-thick clay layer was encountered sporadically during drilling, but is likely discontinuous across the area. Clay was detected at Site 15 in monitoring wells WHF-15-3D and WHF-15-5. These layers are relatively thin and discontinuous. Clay detected at Site 16 is beneath the northern area of the landfill (WHF-16-4D) and is not found in the southern area of the landfill. Clay exceeding 30 feet in thickness is present at a depth of approximately 65 feet bls at monitoring well WHF-16-2D (ABB-ES, 1995a). The horizontal extent of this layer is not known.

Detailed lithologic descriptions can be found in the boring and monitoring well logs presented in the RI Phase IIA Technical Memorandum No. 2 (ABB-ES, 1995a): A general discussion of the geology at NAS Whiting Field is presented in Subsection 1.4.5 of the GIR (HLA, 1998).

<u>5.2 HYDROGEOLOGIC RESULTS</u>. The hydrogeologic assessment included determining horizontal and vertical hydraulic gradients, hydraulic conductivities, and seepage velocities.

Groundwater Flow Direction. Table 5-1 summarizes the results of the water-level elevation measurements Sites 15 and 16. Figures 5-5 and 5-6 show groundwater

WHF-\$16.RI FGW.01.00

flow patterns as potentiometric surface maps for the periods of January 16 through 18 and August 7 through 9, 1997. The data indicated a groundwater flow direction to the south-southwest.

Horizontal and Vertical Gradients. Table 5-2 provides a summary of the horizontal hydraulic gradients calculated for the Southwest Disposal Area. The horizontal hydraulic gradients at Site 16 ranged from 0.0058 feet per foot (ft/ft) (monitoring wells WHF-16-6S and WHF-16-3S) to 0.0068 ft/ft (monitoring wells WHF-16-2S and WHF-16-4S). The average hydraulic gradients in each measurement event were 0.0063 ft/ft for January 1997 and 0.0060 ft/ft for August 1997. The overall average horizontal hydraulic gradient for all measurement events was 0.0061 ft/ft.

Table 5-3 presents a summary of the vertical hydraulic gradients calculated for the Southwest Disposal Area. The vertical hydraulic gradients were calculated using six well pairs at Site 16 in January and August of 1997. Values calculated for the paired monitoring wells in January ranged from -0.0015 ft/ft (upward movement) to 0.023 ft/ft (downward movement). Vertical hydraulic gradients were mostly in a downward direction.

Hydraulic Conductivity and Seepage Velocity. Thirteen slug tests were conducted during the RI and the hydraulic conductivity values calculated from slug test data are summarized in Table 5-4. A minimum of three trials of rising head slug tests were conducted for each monitoring well in the Southwest Disposal Area. A more detailed presentation of the evaluation of hydraulic conductivity data is presented in Section 2.3 (Table 2-2) of Technical Memorandum No. 4, Hydrogeologic Assessment (ABB-ES, 1995c).

The average hydraulic conductivity values for individual monitoring wells at Site 16 ranged from 0.27 feet per day (ft/day) $(9.5\times10^{-5}$ centimeters per second [cm/sec]) for WHF-16-3D to 46.5 ft/day $(1.64\times10^{-2}$ cm/sec) for WHF-16-3II. The geometric mean of the hydraulic conductivity values for Site 16 is 22.2 ft/day $(7.8\times10^{-3}$ cm/sec) or approximately 8,000 feet per year.

Seepage Velocity. Table 5-5 summarizes the average linear pore water velocity (seepage velocities) for the water table zone of the sand-and-gravel aquifer for sites in the Southwest Disposal Area. The calculations used an assumed effective porosity (n) of 0.35 for the area. The value represents silty through poorly graded sands (Fetter, 1988). Seepage velocities for Site 16 ranged from 0.56 to $0.77 \, \text{ft/day}$.

5.3 GEOPHYSICAL RESULTS. A multi-instrument geophysical survey was conducted at Site 16 in May and June 1992 (ABB-ES, 1993). Results of the magnetic, EM conductivity, and EM in-phase surveys all confirmed the lateral extent of the landfill, as shown on figures in Appendix B. Anomalies observed during the Site 16 survey are described below.

Two main landfill features were interpreted from the EM and total field data sets (Figure 5-6). The feature located in the northern portion of the site is approximately 400 feet by 350 feet. The feature located in the southern portion of the site is more irregular in shape with approximate dimensions of 370 feet by 550 feet. The western boundary of both features extends, at least, to the western site boundary fence line; because of interference by the metallic

Table 5-1 Summary of Water-Level Elevations

		T	Milton, Florid	a 	T	· · · · · · · · · · · · · · · · · · ·
	Well TOC		January 16	to 18, 1997	August	7 to 9, 1997
Monitoring Well Designation	Elevation (msl)	Well Depth (feet BTOC)	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet above msl)	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet above msi
Southwest Dispose	al Area					
Site 15, Southwes	t Landfill					
WHF-15-1	66.35	73.60	24.54	41.81	25.51	40.84
WHF-15-2S	59.58	32.90	16.79	42.79	18.09	41.49
WHF-15-2I	60.10	63.20	18.01	42.09	18.93	41.17
WHF-15-2D	59.39	112.44	17.33	42.06	18.24	41.15
WHF-15-3S	69.29	37.94	23.63	45.66	24.80	44.49
WHF-15-3I	69.69	87.83	24.25	45.44	25.57	44.12
WHF-15-3D	69.44	119.48	23.59	45.85	24.85	44.59
WHF-15-4S	143.29	109.15	95.55	47.74	97.24	46.05
WHF-15-5S	104.14	68.18	62.34	41.80	63.40	40.74
WHF-15-51	105.17	98	63.40	41.77	64.46	40.71
WHF-15-5D	106.11	128.38	64.34	41.77	65.40	40.71
WHF-15-6S	74.29	43.73	32.14	42.15	33.12	41.17
WHF-15-6D	75.08	123.36	33.19	41.89	34.15	40.93
WHF-15-7S	120.18	88.85	73.36	47.09	74.90	45.55
WHF-15-7I	119.85	121.5	73.03	47.14	74.56	45.61
WHF-15-7D	119.49	147.53	72.63	47.18	74.17	45.64
WHF-15-8\$	79.67	55	41.67	38.00	41.79	37.88
WHF-15-8I	79.48	85.2	41.48	38.00	42.24	37.24
WHF-15-8D	79.08	115	41.09	37.99	42.35	36.73
Site 16, Open Disp	oosal Burning	Area				
WHF-16-1	50.04	43.00	10.26	39.76	10.87	39.17
WHF-16-2	82.19	74.20				
WHF-16-2S	83.66	49.80	35.26	46.93	36.49	45.70
WHF-16-2I	80.60	130.14	33.88	46.72	35.11	45.49
WHF-16-3S	51.69	23.25	12.23	39.46	12.92	38.77
WHF-16-3I	51.31	52.87	12.04	39.27	12.67	38.64
WHF-16-3II	51.22	78.91	12.12	39.10	12.75	38.47
WHF-16-3D	51.40	118.08	8.34	43.06	9.28	42.12
WHF-16-4S	54.79	22.38	14.15	40.64	14.86	39.93
WHF-16-4II	53.01	64.80	12.81	40.20	13.47	39.54
WHF-16-4D	52.87	122.54	12.80	40.07	13.45	39.42
See notes at end o	f table.					

Table 5-1 (Continued) Summary of Water-Level Elevations

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

	Well TOO		January 10	6 to 18, 1997	August 7 to 9, 1997			
Monitoring Well Designation	Well TOC Elevation (msl)	Well Depth (feet BTOC)	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet above msl)	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet above msl)		
Southwest Disposal Area								
Site 16, Open Dis	posal Burning	Area (Continue	d)					
WHF-16-5	37.54	10.00	3.35	34.19	3.67	33.87		
WHF-16-6S	56.57	26	13.96	42.61	14.73	41.84		
WHF-16-6D	56.77	62.1	14.18	42.61	15.09	41.68		
WHF-16-7S	38.27	14	3.53	34.74	4.00	34.27		
WHF-16-7I	38.17	46.5	2.11	36.06	2.50	35.67		
WHF-16-7D	38.05	75.2	1.99	36.06	2.39	35.66		
Site 1466, Aviation	on Gas Dispos	al Area						
WHF-1466-6S	173.40	173.09	118.48	54.61	120.63	52.46		
WHF-1466-6I	173.01	173.06	118.43	54.63	120.61	52.45		
WHF-1466-6D	173.21	173.05	118.50	54.55	120.62	52.43		
WHF-1466-6DD	172.86	173.90	118.37	54.49	120.49	52.37		

Notes: TOC = top-of-casing.

msl = mean sea level. BTOC = below top of casing.

-- = not available.

Table 5-2 **Summary of Horizontal Hydraulic Gradients**

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

		January 16 to	o 18, 1997	August 7 to 9, 1997		
Well Designation	Distance Between Wells (feet)	Water Level (msl)	Horizontal Gradient (ft/ft)	Water Level (msl)	Horizonta Gradient (ft/ft)	
Southwest Disp	oosal Area					
Site 16, Open I	Disposal Burning Area					
WHF-16-2S	930	46.93	0.0068	45.70	0.0062	
WHF-16-4S		40.64		39.93		
WHF-16-6S	540	42.61	0.0058	41.84	0.0057	
WHF-16-3S		39.46		38.77		
	Average ç	ıradient	0.0063		0.0060	

ft/ft = feet per foot.

Table 5-3 Summary of Vertical Hydraulic Gradients

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

	Bottom of Vertical Distr		Ja	nuary 16 to 18, 19	997	Au	ugust 7 and 9, 1997	
Well Number Well Elevation (msl)	Vertical Distance Between Screens (feet)	Groundwater Elevation (msl)	Vertical Gradient (ft/ft) ¹	Vertical Flow Direction	Groundwater Elevation (msl)	Vertical Gradient (ft/ft)	Vertical Flow Direction	
Southwest Dis	posal Area							
Site 16, Open	Disposal Burning /	Area						
WHF-16-3S	23.25	29.12	39.46	0.006	Downward	38.77	0.0045	Downward
WHF-16-3I	52.87	26.54	39.27	0.006	Downward	38.64	0.006	Downward
WHF-16-3II	78.91	39.17	39.10	0.101	Upward	38.47	-0.093	Upward
WHF-16-3D	118.08		43.06			42.12		
WHF-16-4S	22.38	41.42	40.64	0.0106	Downward	39.93	0.009	Downward
WHF-16-4II	64.80	47.74	40.20	0.0027	Downward	39.54	0.0025	Downward
WHF-16-4D	122.54		40.07			39.42		
WHF-16-6S	26	36.1	42.61	0.0	Stagnant	41.84	0.0044	Downward
WHF-16-6D	62.1		42.61			41.68		

¹ Vertical gradients are computed as follows: the difference between groundwater elevations of associated monitoring wells is divided by the vertical distance between screened intervals.

Notes: msl = mean sea level. ft/ft = feet per foot.

Table 5-4 Summary of Hydraulic Conductivity (K) Data from Slug Tests

吸收一块

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Well Number	Range of K (ft/day)	Number of Usable Runs	Average K (ft/min)	Average K (ft/day)	Average K (cm/sec)
Site 16, Open Di	sposal Burning Area				
WHF-16-2S	27.20 to 30.96	4	0.020015	28.8	1.01x10 ⁻⁵
WHF-16-2I	9.18 to 10.39	4	0.00676	9.7	3.4x10 ⁻⁴
WHF-16-3S	3.99 to 4.55	3	0.0298	42.9	1.51x10 ⁻⁵
WHF-16-3I	4.92 to 5.28	5	0.00352	5.06	1.78x10 ⁻⁴
WHF-16-3II	43.9 to 49.1	3	0.03228	46.5	1.64x ¹ 0 ⁻⁵
WHF-16-3D	0.27 to 0.299	3	0.00019	0.27	9.5x10 ⁻²
		G	ieometric Mean	22.2	7.8x10 ⁻⁴

Notes: Average is the arithmetic average

ft/day = feet per day. ft/min = feet per minute.

cm/sec = centimeters per second.

Table 5-5 Summary of Seepage Velocities

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

		Mintern, i Torrada		······	
Investigation Area	Monitoring Well Pair	Horizontal ¹ Gradient (ft/ft)	K² (ft/day)	Effective Porosity (n)	Seepage Velocity (ft/day) ³
Site 16, Open Disposal Burning Area	WHF-16-4S and WHF-16-2S	0.0069	28.8	0.35	0.56
	WHF-16-6S and WHF-16-3S	0.0063	42.9	0.35	0.77
				Arithmetic average	0.38

¹ Horizontal gradients are the average value for all groundwater measurements performed between September 30, 1993, and November 9, 1996.

Notes: ft/ft = feet per foot.

K = hydraulic conductivity.

ft/day = feet per day.

² The K is averaged where values are available for both wells in the well pair.

³ The seepage velocity is computed as follows: seepage velocity = (horizontal gradient) X (K)/(effective porosity).

fencing, EM induction could not be used in proximity of the fence to accurately define and confirm the actual boundary.

Several small geophysical anomalies were detected east of the southern landfill feature (Figure 3-1). These smaller features were interpreted to be random disposal areas, rather than points of controlled filling activities. A mounded feature, located at grid coordinates 680E, 190S (Figure B-1, Appendix B of this report) was associated with a high amplitude magnetic anomaly and a conductivity anomaly. This suggests a pit may have been dug at this location and filled with ferromagnetic metal and subsequently covered.

The survey grid was extended to the east in an attempt to extend past all the anomalies. But after three attempts, it was discontinued because these isolated anomalies appeared to be not associated with the open disposal activities at Site 16. The potential for the existence of buried drums at this location was not investigated further.

5.4 SOIL GAS SURVEY. The soil gas screening program consisted of sampling 60 locations at Site 16 (Figure 3-1). The soil gas samples were analyzed in the field with either a Portafid II[™] or a Foxboro OVA-128[™] OVA and recorded. The methodology is described in Section 3.1 of this report. Table 5-6 presents the analytical results obtained from the soil gas survey including total VOCs and methane (filtered reading) from depths of 1.5 and 3.0 feet bls. Figures 5-7 through 5-10 present these results as isopleth maps that were prepared using the data generated by the soil gas screening event. These figures show that soil gas samples collected near the eastern boundary of the site have measurable concentrations of total VOCs and methane. This suggests that land-filled materials are generating the organic vapors.

5.5 SURFACE SOIL ANALYTICAL RESULTS. Tables 5-7 and 5-8 summarize the analytical results for organic and inorganic analytes detected in the 20 surface soil samples and 3 duplicates collected at Site 16. Tables 5-9, 5-10, and 5-11 summarize the frequency of detection, range of detection limits, range of detection concentrations, mean of detected concentrations, and background screening values for the combined background data set for Troup loamy sand and Lakeland sand soil types, and SCTLs for Florida and the USEPA Region III RBCs (Florida Department of Environmental Protection [FDEP], 1999). The surface soil sample locations and analytical results above SCTLs are shown on Figure 5-11.

Organic analytes detected in surface soil samples consist of 2 VOCs, 14 SVOCs, 6 pesticides, and 2 PCBs.

 $\underline{\text{VOCs}}$. Toluene and xylenes (total) were the only VOCs detected in the 20 surface soil samples (and two duplicates) collected at Site 16. Toluene was detected in one sample (16S00501) at a concentration of 1.0 micrograms per kilogram ($\mu g/kg$). Xylenes (total) were detected in three samples (16-SL-01, 16-SL-02, and 16-SL-03) at a concentrations ranging from 1.0 to 5.0 $\mu g/kg$. Detected concentrations of the two VOCs are lower than the Florida residential and industrial SCTLs and the USEPA Region III RBCs for residential- and industrial-use soil.

 $\underline{\text{TCL SVOCs}}$. Anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, carbazole, chrysene, dibenzo(a,h)-anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, pyrene, and bis(2-ethylhexyl)phthalate were detected in surface soil samples collected at Site 16.

Table 5-6 Summary of Active Soil Gas Survey, July 26 through August 14, 1995

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Sample ID	Depth (feet)	Total VOC (ppm)	Methane (ppm)	Methane/VOC (percent)	Rinsate Blank (ppm)
16V011	1.5	0	0	NA	0
	3.0	0	0	NA	
16V012	1.5	1	0	.0	2
	3.0 . 1		80	67	
16V013	1.5	4	1	25	0
	3.0	W	W	NA	
16V014	1.5	0	0	NA	0
	3.0	0	0	NA	
16V015	1.5	0	0	NA	0
	3.0	0	0	NA ·	
16V016	1.5	2	0 .	0	1,
	3.0	0	0	NA	
16V017	1.5	0	0	NA	3
	3.0	W	W	NA	
16V018	1.5	2	0	0	1
	3.0	w	W	NA	
16V019	1.5	2	0	0	1
	3.0	3	0	0	
16V020	1.5	0	0	NA	2
	3.0	0	0	NA	•
16V021	1.5	0	0	NA	0
	3.0	0	0	NA	
16V022	1.5	0	. 0	· NA	1
	3.0	0	0	NA	
16V023	1.5	NS	NS	NA	0
	3.0	NS	NS	NA	
16V024	1.5	0	0	NA	0
	3.0	0	0	NA	
16V025	1.5	0	0	NA	0
	3.0	0	0	NA	~
16V026	1.5	0	0	NA `	0
	3.0	0	0	NA	
16V027	1.5	1	0	0	6
	3.0	3	0 .	0	

WHF-S16.RI FGW.01.00

Table 5-6 (Continued) Summary of Active Soil Gas Survey, July 26 through August 14, 1995

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Sample ID	Depth (feet)	Total VOC (ppm)	Methane (ppm)	Methane/VOC (percent)	Rinsate Blank (ppm)
16V028	1.5	0	0	NA	0
	3.0	0	0	NA	
16V029	1.5	NS	NS	NA	0
	3.0	27	27	100	
16V030	1.5	0	0	NA	1
	3.0	0	0	NA	
16V031	1.5	0	0	NA	0
	3.0	3	0	0	
16V032	1.5	0	0	NA	1
	3.0	0	0	NA	
16V033	1.5	2	1	50	1
	3.0	70	70	100	
16V034	1.5	0	0	NA	0
	3.0	2,000	1,500	75	
16V035	1.5	2	2	100	0
	3.0	>5,000	>5,000	NA	
16V036	1.5	W	W	NA	0
	3.0	W	W	NA	
16V037	1.5	0 .	0	NA	0
	3.0	0	0	NA	
16V038D	1.5	0	0	NA	0
	3.0	2,500	1,500	60	
16V039	1.5	0	0	NA	0
	3.0	0	0	NA	
16V040	1.5	0	0	NA	0
	3.0	0	0	NA	
16V041	1.5	0	0	NA	0
	3.0	0	0	NA	
16V042	1.5	0	0	NA	2
Α.	3.0	0	0	NA	
16V043	1.5	0	0	NA	0
	3.0	2	0	0	
16V044	1.5	600	300	50	0
	3.0	1,300	1,300	100	

WHF-S16.RI FGW.01.00

Table 5-6 (Continued) Summary of Active Soil Gas Survey, July 26 through August 14, 1995

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Sample ID	Depth (feet)	Total VOC (ppm)	Methane (ppm)	Methane/VOC (percent)	Rinsate Blank (ppm)
16V045	1.5	0	0	NA	0
	3.0	>5,000	>5,000	NA	
	4.5	>1,000	>1,000	NA	
	6.0	>1,000	> 1,000	NA	
16V046	1.5	0	0	NA	0
	3.0	0	0	NA .	
16V047	1.5	0	0	NA	2
	3.0	3	1	33	
6V048	1.5	0	0	NA	0
	3.0	0	0	NA	
16V049	1.5	0	0	NA	0
	3.0	0	0	NA	
16V050	1.5	0	0	NA NA	0
	3.0	0	0	NA	
16V051	1.5	0	0	NA	0
	3.0	0	0	, NA	
16V052	1.5	0	0	NA	0
	3.0	2	2	NA	
16V053	1.5	1	0	. 0	0
	3.0	NS	NS	NA	
16V054	1.5	0	0	NA	0
	3.0	0	0	NA	
16V055	1.5	1,200	1,200	100	· 1
	3.0	1,800	1,800	100	
16V056	1.5	0	0	NA	0
	3.0	0	0	NA	
6V057	1.5	. 0	0	NA	0
	3.0	0	0	NA	
16V058	1.5	. 0	0	NA	0
	3.0	0	. 0	NA	
16V059	1.5	0	0	NA ·	0
	3.0	0	0	NA	
16V060	1.5	O	0	NA	0
	3.0	0	0	NA	

WHF-S16.RI FGW.01.00

Table 5-6 (Continued) Summary of Active Soil Gas Survey, July 26 through August 14, 1995

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Sample ID	Depth (feet)	Total VOC (ppm)	Methane (ppm)	Methane/VOC (percent)	Rinsate Blank (ppm)
16V061	1.5	0	0	NA	0
	3.0	0	0	NA	
16V062	1.5	5	0	0	1
	3.0	0	0	NA	
16V063	1.5	0	0	NA	0
	3.0	0	0	NA	
16V064	1.5	0	0	NA NA	0
	3.0	0	0	NÄ	
16V065	1.5	0	0	NA	0
	3.0	0	0	NA	
16V066	1.5	0	0	NA	1
	3.0	0	0	NA	
16V067	1.5	0	0	NA	2
	3.0	0	0	NA	
16V068	1.5	0	0	NA	0
	3.0	0	0	NA	
16V069	1.5		0	NA	0
	3.0	0	0	NA	
16V070	1.5	0	0	NA	0
	3.0	0	0	NA	

Notes: ID = identification.

VOC = volatile organic compound.

ppm = parts per million.

W = water saturated soil

NA = not applicable.

NS = not sampled.

> = greater than.

.atri nati. ... 4.

Table 5-7 Organic Analytes Detected in Site 16 Surface Soil Samples

		·	Milton,	Florida				
Location Identifier:	16-SL-01	16-SL-02	16-SL-03	16S001	168001	16S002	16S003	16S004
Sample Identifier:	16-SL-01	16-SL-02	16-SL-03	16S00101	16S00101D	16\$00201	16S00301	16S00401
Date Sampled:	11-AUG-92	11-AUG-92	11-AUG-92	08-JAN-96	08-JAN-96	09-JAN-96	09-JAN-96	08-JAN-96
Laboratory Sample No.:	S22454002	S22454003	S22454004	RA856001	RA856018	RA856006	RA856007	RA856003
Volatile Organic Compounds (/g/kg)							
Toluene		÷=						
Xylenes (total)	5 J	2 J	1 J					
Semivolatile Organic Compoun	ds (µg/kg)							
Anthracene								
Benzo(a)anthracene		- -				. ·		
Benzo(a)pyrene							*-	
Benzo(b)fluoranthene				•••				
Benzo(g,h,i)perylene						· 		
Benzo(k)fluoranthene					**			
Carbazole								**
Chrysene	••							••
Dibenzo(a,h)anthracene	••			••			••	
Fluoranthene	**					~=		
Indeno (1,2,3-cd) pyrene								
Phenanthrene		~~					 ' ,	
Pyrene						, 		**
bis(2-Ethylhexyl)phthalate			43 J					
Pesticides and PCBs (µg/kg)								
4,4'-DDD		**						••
4,4'-DDE		5.5 J	5.5 J	3.2 J	2 J		••	
4,4'-DDT		9.1 J	5.2 J	3.8 J	2.7 J	. 		
Aroclor-1254			••	·			36 J	
Aroclor-1260				••				
Dieldrin	33	~-					2.5 J	
alpha-Chlordane	-	~*						
gamma-Chlordane		**	**					
See notes at end of table.								

Table 5-7 (Continued) Organic Analytes Detected in Site 16 Surface Soil Samples

			Milton, Flo	orida				
Location Identifier:	16S005	16S006	16S007	16S008	16S009	16S010	16S010	16S011
Sample Identifier:	16S00501	16S00601	16S00701	16S00801	16S00901	16S01001	16S01001D	16S01101
Date Sampled:	08-JAN-96	09-JAN-96	10-JAN-96	09-JAN-96	08-JAN-96	09-JAN-96	09-JAN-96	10-JAN-96
Laboratory Sample No.:	RA856002	RA856009	RA870004	RA856008	RA856004	RA856014	RA856015	RA870005
Volatile Organic Compounds (μ	g/kg)							
Toluene	1 J							
Xylenes (total)	18 B							
Semivolatile Organic Compound	<u>ls</u> (μg/kg)							
Anthracene	- 1 . ;	95 J						
Benzo(a)anthracene		2,300	250 J		67 J			56 J
Benzo(a)pyrene		3,100	310 J	****	130 J			71 J
Benzo(b)fluoranthene	:	3,600	350 J	**	300 J			86 J
Benzo(g,h,i)perylene	••	1,200	120 J					
Benzo(k)fluoranthene	 . +	3,200	340 J					73 J
Carbazole		97 J	••					
Chrysene	 .	3,200	270 J		120 J			62 J
Dibenzo(a,h)anthracene	:	700	110 J					
Fluoranthene		2,300	260 J		86			59 J
Indeno(1,2,3-cd)pyrene	••	1,900	240 J	**	90 J		**	••
Phenanthrene	<u>-</u>	440	52 J			**	••	
Pyrene	- : :	1,700	170 J		150			44 J
bis(2-Ethylhexyl)phthalate		· 	110 J	50 J			58 J	78 J
Pesticides and PCBs (µg/kg)					•			
4,4'-DDD		•	18 J	**				2.1 J
4,4'-DDE	_	100	53		11	13 J	22	51
4,4'-DDT	•	89	22		.16	6.4 J	9	28
Aroclor-1254	 ;	<i></i> /		130				
Aroclor-1260	<u>-</u> -			. 		48 J	110 J	
Dieldrin		130	<u></u> :	9.2	17	33 J	60	
alpha-Chlordane	••				2.6 J	6.8 J	12 J	
gamma-Chlordane		- -			2.2 J	4 J	7.9 J	

Table 5-7 (Continued) Organic Analytes Detected in Site 16 Surface Soil Samples

Sample Identifier: 16S01201 16S01301 16S01401 16S01501 16S01601 16S0170 Date Sampled: 09-JAN-96 09-JAN-96 10-JAN-96 08-JAN-96 10-JAN-96			Milton, Fl	orida			
Date Sampled: 09-JAN-96 09-JAN-96 10-JAN-96 08-JAN-96 10-JAN-96	Location Identifier:	16S012	16\$013	16S014	16S015	16S016	16S017
Name	Sample Identifier:	16S01201	16S01301	16S01401	16\$01501	16S01601	16S01701
Volatile Organic Compounds (yg/kg) Toluene	Date Sampled:	09-JAN-96	09-JAN-96	10-JAN-96	08-JAN-96	10-JAN-96	10-JAN-96
Toluene	Laboratory Sample No.:	RA856010	RA856011	RA870003	RA856005	RA870007	RA870006
Semivolatile Organic Compounds (µg/kg) Image: Compound of the property	Volatile Organic Compounds (ug/kg)					
Semivolatile Organic Compounds (µg/kg)	Toluene						
Anthracene	Xylenes (total)						
Benzo(a)anthracene <td>Semivolatile Organic Compour</td> <td>ids (µg/kg)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Semivolatile Organic Compour	ids (µg/kg)					
Benzo(a)pyrene	Anthracene						
Benzo(b)fluoranthene	Benzo(a)anthracene						
Benzo (g,h,i) perylene 490	Benzo(a)pyrene	120 J					
Benzo (k) fluoranthene	Benzo(b)fluoranthene						
Carbazole	Benzo(g,h,i)perylene	490					
Chrysene 54 J	Benzo(k)fluoranthene						
Dibenzo(a,h)anthracene <	Carbazole				**		
Fluoranthene	Chrysene	54 J				••	
Indeno (1,2,3-cd) pyrene 62 J	Dibenzo(a,h)anthracene			 ,		**	
Phenanthrene	Fluoranthene				•-		
Pyrene	Indeno(1,2,3-cd)pyrene	62 J					
bis(2-Ethylhexyl)phthalate 45 J 48 J Pesticides and PCBs (µg/kg) 4,4'-DDD	Phenanthrene						
Pesticides and PCBs (μg/kg) 4,4'-DDD	Pyrene	***				••	
4,4'-DDD	bis(2-Ethylhexyl)phthalate					45 J	48 J
4,4'-DDE 26 J 4,4'-DDT 7.1 J Aroclor-1254 </td <td>Pesticides and PCBs (µg/kg)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Pesticides and PCBs (µg/kg)						
4,4'-DDT 7.1 J Aroclor-1254 Aroclor-1260	4,4'-DDD						
Aroclor-1254	4,4'-DDE	26 J				**	
Aroclor-1260	4,4'-DDT	7.1 J	122	 .			
	Aroclor-1254	••					
See notes at end of table	Aroclor-1260			••			
Coo notes at one or table.	See notes at end of table.						

Table 5-7 (Continued) Organic Analytes Detected in Site 16 Surface Soil Samples

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Location Identifier:	16S012	165013	16S014	16S015	16S016	16\$017
Sample Identifier:	16S01201	16801301	16S01401	16\$01501	16S01601	16S01701
Date Sampled:	09-JAN-96	09-JAN-96	10-JAN-96	08-JAN-96	10-JAN-96	10-JAN-96
Laboratory Sample No.:	RA856010	RA856011	RA870003	RA856005	RA870007	RA870006
Pesticides and PCBs (µg/kg)	(Continued)					
Dieldrin	2.9 J	7.2 J				
alpha-Chlordane		1.6 J				
gamma-Chlordane		1 J				

Notes: $\mu g/kg = micrograms per kilogram$.

-- = analyte not detected.

J = estimated value.

PCB = polychlorinated biphenyl.

DDD = dichlorodiphenyldichloroethane.

DDE = dichlorodiphenyldichloroethene.

DDT = dichlorodiphenyltrichloroethane.

Table 5-8 Inorganic Analytes Detected in Site 16 Surface Soil Samples

			Milton	, Florida				
Location Identifier:	16-SL-01	16-SL-02	16-SL-03	16\$001	16S001	16S002	168003	16S004
Sample Identifier:	16-SL-01	16-SL-02	16-SL-03	16S00101	16S00101D	16S00201	16S00301	16S00401
Date Sampled:	11-AUG-92	11-AUG-92	11-AUG-92	08-JAN-96	08-JAN-96	09-JAN-96	09-JAN-96	08-JAN-96
Laboratory Sample No.:	S22454002	S22454003	S22454004	RA856001	RA856018	RA856006	RA856007	RA856003
Inorganic Analytes (mg/kg)								
Aluminum	10,900	18,600	14,200	4,250 J	5,840 J	6,570 J	10,600 J	11,100 J
Antimony								
Arsenic	1.9 J	1.4 J	3.1	0.94 J	1.2 J	1.6 J	2.5 J	1.5 J
Barium	19.4 J	14.7 J	42.9 J	13.2 J	13.6 J	11.2 J	42.8 J	13.1 J
Beryllium	0.12 J	0.12 J	0.12 J	0.09 J			0.11 J	0.09 J
Cadmium			1.6	0.28 J	0.3 J	0.36 J	0.43 J	0.25 J
Calcium	427 J	345 J	1,180 J	210 J	173 J	260 J	907 J	80.8 J
Chromium	10.5	14.7	14.9	4	5.8	4.5	11.2	10.3
Cobalt	1.3 J	0.95 J	1.7 J				1.4 J	
Copper	9.7	8.3	50.8	4.8 J		3.8 J	13.2	4.4 J
Cyanide				0.12 J	0.12 J	-	0.13 J	
Iron	6,300	8,150	13,600	2,340 J	2,910 J	4,090 J	5,450 J	5,160 J
Lead	76	6.7 J	121	7.8 J	7.5 J	6.5 J	74.3 J	4.4 J
Magnesium	106 J	134 J	228 J	103 J	150 J	91.3 J	264 J	127 J
Manganese	80.3	19.2	228	185	151	97.2	123	95.8
Mercury			0.1				'	
Nickel		-	5.5 J		1.9 J		2.7 J	2.3 J
Potassium	-		230 J	·				
Selenium				0.19 J		••		0.15 J
Silver			0.87 J					
Sodium	196 J	189 J	232 J	129 J		120 J	157 J	
Thallium					***		0.18 J	0.13 J
Vanadium	23.2	28.9	22.7	6.8 J	8.6 J	10.2 J	19.4	17.5
Zinc	22.7	12.5	128	6.4	6.9	8	59.2	6.3

Table 5-8 (Continued) Inorganic Analytes Detected in Site 16 Surface Soil Samples

			Milton, F	lorida				
Location Identifier:	16\$005	16S006	16\$007	16S008	16S009	16S010	16S010	168011
Sample Identifier:	16S00501	16S00601	16S00701	16S00801	16S00901	16S01001	16S01001D	16S01101
Date Sampled:	08-JAN-96	09-JAN-96	10-JAN-96	09-JAN-96	08-JAN-96	09-JAN-96	09-JAN-96	10-JAN-96
Laboratory Sample No.:	RA856002	RA856009	RA870004	RA856008	RA856004	RA856014	RA856015	RA870005
Inorganic Analytes (mg/kg)								
Aluminum	5,610 J	7,890 J	8,820 J	9,300 J	8,050 J	2,000 J	1,780 J	8,210 J
Antimony			5.9 J					••
Arsenic	1.3 J	2.2 J	5.6	3.4	2.8	0.76 J	0.64 J	12.1
Barium	6.1 J	53.6	257	13.3 J	55.7	4.9 J	4 J	92.5
Beryllium	0.06 J	0.08 J		0.11 J	0.11 J	••		0.06 J
Cadmium		2.2	7.6					
Calcium	70.8 J	796 J	2,350	302 J	1,080	101 J	99.8 J	1,230
Chromium	4	11.5	29.2	11	11.3	3.9	3.3	24.5
Cobalt	0.69 J	1.5 J	4.1 J					3.9 J
Copper		71.7	202	5.2 J	20	10.2	8.6	139
Cyanide	0.14 J	0.2 J			0.18 J	0.1 J	0.17 J	
Iron	3,220 J	10,300 J	30,300	6,380 J	5,370 J	1,470 J	1,310 J	48,900
Lead	5.2 J	236 J	759	19.8 J	173 J	13.5 J	12.4 J	436
Magnesium	82.7 J	154 J	443 J	54.6 J	298 J	38.5 J	29.9 J	255 J
Manganese	112	132	275	21.5	120	5.6	4.9	270
Mercury		0.09	0.65 J			0.2	0.17	0.18 J
Nickel	-	4 J	17.7		5.1 J	**	·	26
Potassium			180 J			**	77.6 J	107 J
Selenium	0.15 J	• •				0.13 J		
Silver		1.2 J	7.1			4.1	3.6	2.2 J
Sodium		137 J	361 J	149. J	124 J	139 J	118 J	189 J
Thallium	-							
Vanadium	7.3 J	14.9	14.4	28.2	21.8	3.4 J	3.2 J	16.7
Zinc	4.8	155	773	13.1	161	4.1 J	3.4 J	488

Table 5-8 (Continued) Inorganic Analytes Detected in Site 16 Surface Soil Samples

Location Identifier:	16S012	16S013	16S014	16S015	16S016	16S017
Sample Identifier:	16S01201	16S01301	16\$01401	16S01501	16S01601	16S01701
Date Sampled:	09-JAN-96	09-JAN-96	10-JAN-96	08-JAN-96	10-JAN-96	10-JAN-96
Laboratory Sample No.:	RA856010	RA856011	RA870003	RA856005	RA870007	RA870006
Inorganic Analytes (mg/kg)						
Aluminum	13,900 J	9,130 J	8,050 J	5,010 J	7,280 J	4,320 J
Antimony	**	**			**	
Arsenic	6.6	1.6 J	1.5 J	1.4 J	2.2 J	1.3 J
Barium	39.5 J	12.3 J	19.7 J	7.8 J	10.7 J	6.7 J
Beryllium	0.23 J	0.1 J	0.09 J	0.06 J		**
Cadmium	2.1	0.21 J	0.21 J	0.23 J	0.38 J	0.26 J
Calcium	658 J	441 J	670 J	96.5 J	327 J	158 J
Chromium	19.3	8	5.4	3.2	5.5	3.5
Cobalt	1.2 J	0.7 J	0.85 J		••	
Copper	80.1	5.6	6.1	2.9 J	5.4 J	5.8
Cyanide	0.16 J			0.51 J		••
Iron	13,500 J	4,760 J	4,030	2,920 J	5,290	3,070
Lead	128 J	60 J	22.9	4.4 J	15.8	29.6
Magnesium	168 J	142 J	186 J	84.2 J	95.8 J	56.6 J
Manganese	88.1	54.7	372	253	32.3	34.3
Mercury	0.11		0.05 J		0.06 J	0.06 J
Nickel	5.9 J	֥	4.1 J		· 	2.5 J
Potassium			69.7 J		76.9 J	
Selenium	0.19 J		0.15 J	0.2 J		
Silver	1.3 J				**	

Table 5-8 (Continued) Inorganic Analytes Detected in Site 16 Surface Soil Samples

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Location Identifier:	16S012	16S013	16S014	16S015	16S016	16S017
Sample Identifier:	16S01201	16S01301	16S01401	16\$01501	16S01601	16S01701
Date Sampled:	09-JAN-96	09-JAN-96	10-JAN-96	08-JAN-96	10-JAN-96	10-JAN-96
Laboratory Sample No.:	RA856010	RA856011	RA870003	RA856005	RA870007	RA870006
Inorganic Analytes (mg/kg) (C	Continued)					
Sodium	145 J	117 J	181 J	114 J	186 J	170 J
Thallium				-	••	
Vanadium	26.5	14	11.2	7 J	13.3	7.3 J
Zinc	177	16.3	8	4.7	16.7	14.7
	·					

Notes: mg/kg = milligrams per kilogram.
J = estimated value.

-- = analyte not detected.

Table 5-9 Comparison of Analytes Detected in Background Surface Soil Samples for the Troup Loamy Sand and Lakeland Sand

				Milton, Florida			
Analyte	Frequency of Detection ¹	Range of Detection Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Values⁴	USEPA Region III RBCs Residential/ Industrial ⁵	Soil Cleanup Target Levels for Florida Residential/ Industrial/Leachability ⁸
Volatile Organic	Compounds (µ	g/kg}					
None detected							
Semivolatile Org	anic Compound	<u>ls</u> (µg/kg)					
None detected							
Pesticides and P	CBs (µg/kg)						
none detected							
Inorganic Compo	ounds (mg/kg)						
Aluminum	11/11	40 to 40	2,510 to 21,300	6,750	13,500	87,800/200,000	72,000//SPLP ¹⁰
Antimony	2/11	2.6 to 12	2.9 to 5	4	8	⁸ 3.1/82	26/240/5
Arsenic	11/11	2 to 2	0.655* to 3.7	1.3	2.6	⁷ 0.43/3.8	0.8/4.62/29
Barium	11/11	40 to 40	2.7 to 26.2	9.4	18.8	⁸ 550/14,000	110/87,000/1,600
Beryllium	5/11	0.05 to 1	0.05 to 0.35	0.18	0.36	⁷ 16/410	120/800/63
Cadmium	3/11	0.58 to 1	0.22 to 0.9	0.49	0.98	83.9/100	75/1,300/8
Calcium	11/11	1,000 to 1,000	82 to 401	223	446	/	//
Chromium	11/11	2 to 2	2.4 to 16.3	5	10	823/610	210/420/38
Cobalt	8/11	0.33 to 10	0.75 to 3*	1.4	2.8	8470/12,000	4,700/110,000/SPLP10
Copper	9/11	5 to 5	2.1 to 8.5	<u>.</u> . 4	8	8310/ 8,2 00	110/76,000/SPLP10
iron	11/11	20 to 20	2,225* to 12,400	3,872	7,744	82,300/61,000	23,000/480,000/SPLP ¹⁰
Lead	11/11	0.6 to 1	1.8 to 9.8	5.1	10.2	⁹ 400	400/920/SPLP ¹⁰
Magnesium	11/11	1,000 to 1,000	62.85* to 316	122	244	/	//
Manganese	11/11	3 to 3	20.8* to 314	162	324	⁸ 160/4,100	1,600/22,000/SPLP ¹⁰
Mercury	4/11	0.03 to 0.1	0.04 to 0.07	0.06	0.12	⁸ 2.3/61	3/26/2.1
Nickel	4/11	2.3 to 8	1.7 to 5.9	3.4	6.8	⁸ 160/4,100	110/28,000/130
Potassium	3/11	128 to 1,000	81.3* to 96.8	88.5	177	/	//

Table 5-9 (Continued) Comparison of Analytes Detected in Background Surface Soil Samples for the Troup Loamy Sand and Lakeland Sand

111

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Analyte	Frequency of Detection ¹	Range of Detection Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Values ⁴	USEPA Region III RBCs Residential/ Industrial ⁵	Soil Cleanup Target Levels for Florida Residential/ Industrial/Leachability ⁶
Inorganic Anal	l <u>ytes</u> (mg/kg) (Coi	ntinued)					
Selenium	5/11	0.39 to 1	0.15* to 0.4	0.23	0.46	839/1,000	390/10,000/5
Silver	4/11	0.32 to 2	0.35 to 0.35	0.35	0.70	839/1,000	390/9,100/17
Sodium	11/11	1,000 to 1,000	143 to 265*	191	382	·/	//
Thallium	1/11	0.44 to 2	0.58* to 0.58*	0.58	1.16	⁸ 5.5/14	//
Vanadium	11/11	10 to 10	4.95* to 31.1	9.5	19	⁸ 55/1,400	15/7,400/980
Zinc	10/11	4 to 4	4.3 to 16.3	7.9	15.8	82,300/61,000	23,000/560,000/6,000
Cyanide	1/11 😘 .	0.23 to 0.5	0.14 to 0.14	0.14	0.28	⁸ 160/4,100	30/28,000/40

¹ Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values). ² Value indicated by an asterisk is the average of a sample and its duplicate. If the target analyte is not detected in either the environmental sample or associated duplicate, the value used for the nondetection is one-half the reporting limit.

Notes: USEPA = U.S. Environmental Protection Agency.

RBC = risk-based concentration.

TCL = target compound list.

 $\mu g/kg = micrograms per kilogram.$

PCB = polychlorinated biphenyl. mg/kg = milligrams per kilogram.

-- = criteria not available.

³ The mean of detected concentrations is the arithmetic mean of all environmental samples in which the analyte was detected; it includes a single value for an environmental sample and associated duplicate. The arithmetic mean does not include those environmental samples in which the analyte was not detected.

⁴ The background screening value for organics is the mean detected concentration and will not be used for screening purposes in the risk assessment. The background screening value for inorganics is two times the mean detected background concentration and will be used for screening purposes in the risk assessment. ⁵ Source: USEPA Region III RBC Table (October 1, 1998).

Source: Soil Cleanup Target Levels for Chapter 62-777, Florida Administrative Code (FDEP, 1999).

⁷ The values correspond to a human cancer risk level of 1 in 1,000,000.

⁸ The calculated values correspond to a noncancer hazard quotient of 0.1.

⁹ Office of Solid Waste and Emergency Response Directive No. 9355.4-12, Revised Interim Recommended Soil Cleanup for CERCLA and RCRA Sites (USEPA, 1994c).

¹⁰ Leachability values may be derived using the SPLP test to calculate site-specific soil cleanup target levels or may be determined using the toxicity characteristic leaching procedure in the event oily wastes are present.

¹¹ FDEP-approved site-specific soil cleanup target level for arsenic at covered landfill sites (Appendix K).

Table 5-10 Summary of Organic Compounds Detected in Site 16 Surface Soil Samples

				Milton, Florida			
Analyte	Frequency of Detection ¹	Reporting Limits Range	Detected Concentrations Range ²	Mean of Detected Concentrations ³	Background Screening Values⁴	USEPA Region III RBCs Residential/ Industrial ⁵	Soil Cleanup Target Levels for Florida Residential/ Industrial/Leachability ⁶
Volatile Organic Compound	ls (µg/kg)						
Toluene	1/20	6 to 13	1	1	ND	81,600,000/41,000,000	380,000/2,600,000/500
Xylenes (total)	3/20	6 to 13	1 to 5	2.7	ND	⁸ 16,000,000/410,000,000	5,900,000/40,000,000/200
Semivolatile Organic Comp	ounds (µg/kg)						
Anthracene	1/20	350 to 420	95	95	ND	82,300,000/61,000,000	18,000,000/260,000,000/2,500,000
Benzo(a)anthracene	4/20	350 to 420	56 to 2,300	668	ND	⁷ 870/7,800	1,400/5,000/3,200
Benzo(a)pyrene	5/20	350 to 840	71 to 3,100	746	ND	⁷ 87/780	100/500/8,000
Benzo(b)fluoranthene	4/20	350 to 840	86 to 3,600	1,084	ND	⁷ 870/7,800	1,400/4,800/10,000
Benzo(g,h,i)perylene	3/20	350 to 420	120 to 1,200	603	ND	/	2,300,000/41,000,000/32,000,000
Benzo(k)fluoranthene	3/20	350 to 420	73 to 3,200	1,204	ND	⁷ 8,700/78,000	15,000/52,000/25,000
Carbazole	1/17	350 to 420	97	97	ND	⁷ 32,000/290,000	53,000/190,000/600
Chrysene	5/20	350 to 420	54 to 3,200	741	ND	⁷ 87,000/780,000	140,000/450,000/77,000
Dibenzo(a,h)anthracene	2/20	350 to 420	110 to 700	405	ND	⁷ 87/780	100/500/30,000
Fluoranthene	4/20	350 to 420	59 to 2,300	676	ND	8310,000/8,200,000	2,900,000/48,000,000/1,200,000
Indeno(1,2,3-cd)pyrene	4/20	350 to 420	62 to 1,900	573	ND	⁷ 870/7,800	1,500/5,300/28,000
Phenanthrene	2/20	350 to 420	52 to 440	246	ND	/	2,000,000/30,000,000/250,000
Pyrene	4/20	350 to 420	44 to 1,700	516	ND	8230,000/6,100,000	2,200,000/37,000,000/880,000
bis(2-ethylhexyl)phthalate	7/20	350 to 420	43 to 116.5*	70.1	ND	⁷ 46,000/410,000	76,000/280,000/3,600,000
Pesticides and PCBs (µg/kg	1						
4,4'-DDD	2/20	3.6 to 21	2.1 to 18	10.1	ND	⁷ 2,700/24,000	4,600/18,000/4,000
4,4'-DDE	9/20	3.6 to 21	2.6* to 100	30.2	ND	⁷ 1,900/17,000	3,300/13,000/18,000
4,4'-DDT	9/20	3.6 to 21	3.25* to 89	20.8	ND	⁷ 1,900/17,000	3,300/13,000/11,000
See notes at end of table.							

Table 5-10 (Continued) Summary of Organic Compounds Detected in Site 16 Surface Soil Samples

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

					winton, nonda			
Analyte		Frequency of Detection ¹	Reporting Limits Range	Detected Concentrations Range ²	Mean of Detected Concentrations ³	Background Screening Values ⁴	USEPA Region III RBCs Residential/ Industrial ⁵	Soil Cleanup Target Levels for Florida Residential/ Industrial/Leachability ⁸
Pesticides and PCBs (µg/kg) (Continued)				ND				
Dieldrin		8/20	3.6 to 21	2.5 to 130	31	ND	⁷ 40/360	70/300/4
alpha-Chlordane	٠.	3/20	1.8 to 99	1.6 to 9.4*	4.5	ND	⁷ 1,800/14,000	3,100/12,000/9,600
gamma-Chlordane		3/20	1.8 to 99	1 to 5.95*	3.1	ND	⁷ 1,800/14,000	3,100/12,000/9,600
Aroclor-1254		2/20	36 to 210	36 to 130	83	ND	⁷ 320/2,900	500/2,100/17,000
Aroclor-1260		1/20	36 to 210	79*	79	ND	⁷ 320/2,900	500/2,100/17,000

¹ Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

7

Notes: USEPA = U.S. Environmental Protection Agency.

RBC = risk-based concentration.

 $\mu g/kg = micrograms per kilogram.$

Bold indicates analyte exceeded cleanup target level.

ND = not detected.

* = average of a sample and its duplicate.

-- = criteria not available.

PCB = polychlorinated biphenyl.

DDD = dichlorodiphenyldichloroethene.

DDE = dichlorodiphenyltrichloroethene.

DDT = dichlorodiphenyltrichloroethane.

² Value indicated by an asterisk is the average of a sample and its duplicate. If the target analyte is not detected in either the environmental sample or associated duplicate, the value used for the nondetection is one-half the reporting limit.

³ The mean of detected concentrations is the arithmetic mean of all environmental samples in which the analyte was detected; it includes a single value for an environmental sample and associated duplicate. The arithmetic mean does not include those environmental samples in which the analyte was not detected.

⁴ The background screening value for organics is the mean detected concentration and will not be used for screening purposes in the risk assessment. The background screening value for inorganics is two times the mean detected background concentration and will be used for screening purposes in the risk assessment.

⁵ Source: USEPA Region III RBC Table (October 1, 1998).

Source: Soil Cleanup Target Levels for Chapter 62-777, Florida Administrative Code (FDEP, 1999).

⁷ Values correspond to a human cancer risk level of 1 in 1,000,000.

⁸ Values correspond to a noncancer hazard quotient of 0.1.

Table 5-11 Summary of Inorganic Analytes Detected in Site 16 Surface Soil Samples

Analyte	Frequency of Detection ¹	Reporting Limits Range	Detected Concentrations Range ²	Mean of Detected Concentrations ³	Background Screening Values ⁴	USEPA Region III RBCs Residential/ Industrial ⁵	Soil Cleanup Target Levels for Florida Residential/ Industrial/Leachability ^s
Inorganic Compounds (m	g/kg)						
Aluminum	20/20	40	1,890* to 18,600	8,724	15,848	87,800/200,000	72,000//SPLP ¹⁰
Antimony	1/20	2.7 to 12	5.9	5.9	8	83.1/82	26/240/5
Arsenic	20/20	2	0.7* to 12.1	2.8	3.2	⁷ 0.43/3.8	0.8/114.62/29
Barium	20/20	40	4.45* to 257	36.8	23.2	⁸ 550/14,000	110/87,000/1,600
Beryllium	15/20	1	0.06 to 0.295*	0.12	0.36	⁷ 16/410	120/800/63
Cadmium	17/20	0.61 to 1	0.21 to 7.6	1.3	0.58	⁸ 3.9/100	75/1,300/8
Calcium	20/20	1,000	70.8 to 2,350	584	396	/	//
Chromium	20/20	2	3.2 to 29.2	10.6	11	823/610	210/420/38
Cobalt	11/20	- 10	0.69 to 4.1	1.7	3	8470/12,000	4,700/110,000/SPLP ¹⁰
Copper	19/20	5	2.9 to 202	34.1	9.4	8310/8,200	110/76,000/SPLP10
lron .	20/20	20	1,390* to 48,900	9,240	8,832	82,300/61,000	23,000/480,000/SPLP1
Lead	20/20	0.6 to 1	4.4 to 759	110	11.4	⁹ 400	400/920/SPLP10
Magnesium	20/20	1,000	34.2* to 443	157	268	/	//
Manganese	20/20	3	5.25* to 372	129	392	⁸ 160/4,100	1,600/22,000/SPLP ¹⁰
Mercury	9/20	0.08 to 0.1	0.05 to 0.65	0.17	0.12	⁸ 2.3/61	3.4/26/2.1
Nickel	11/20	2.4 to 8	2.3 to 26	7.2	7.2	⁸ 160/4,100	110/28,000/130
Potassium	6/20	133 to 1,000	69.7 to 288.8*	159	177	/	//
Selenium	7/20	0.41 to 1	0.15 to 0.345*	0.21	0.46	839/1,000	390/10,000/5
Silver	6/20	0.33 to 2	0.87 to 7.1	2.8	0.70	839/1,000	390/9,100/17
Sodium	18/20	1,000	114 to 361	178	406	/	//
Thallium	2/20	0.46 to 2	0.13 to 0.18	0.16	1.16	⁸ 5.5/14	//
Vanadium	20/20	10	3.3* to 28.9	15.8	21.8	⁸ 55/1,400	15/7,400/980
Zinc	20/20	4	3.75* to 773	104	15.4	82,300/61,000	23,000/560,000/6,000
Cyanide	8/20	0.24 to 0.5	0.12* to 0.51	0.2	0.28	⁸ 160/4,100	30/28,000/40
See notes at end of table.							

Table 5-11 (Continued) Summary of Inorganic Analytes Detected in Site 16 Surface Soil Samples

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

1 Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

² Value indicated by an asterisk is the average of a sample and its duplicate. If the target analyte is not detected in either the environmental sample or associated duplicate, the value used for the nondetection is one-half the reporting limit.

³ The mean of detected concentrations is the arithmetic mean of all environmental samples in which the analyte was detected; it includes a single value for an environmental sample and associated duplicate. The arithmetic mean does not include those environmental samples in which the analyte was not detected.

⁴ The background screening value for organics is the mean detected concentration and will not be used for screening purposes in the risk assessment. The background screening value for inorganics is two times the mean detected background concentration and will be used for screening purposes in the risk assessment.

⁵ USEPA Region III RBC Table (October 1, 1998).

Soil Cleanup Target Levels for Chapter 62-777, Florida Administrative Code (FDEP, 1999).

⁷ The values correspond to a human cancer risk level of 1 in 1,000,000.

⁸ The calculated values correspond to a noncancer hazard quotient of 0.1.

9 Office of Solid Waste and Emergency Response Directive No. 9355.4-12, Revised Interim Recommended Soil Cleanup for CERCLA and RCRA Sites (USEPA, 1994c).

¹⁰ Leachability values may be derived using the SPLP test to calculate site-specific soil cleanup target levels or may be determined using the toxicity characteristic leaching procedure in the event oily wastes are present.

11 FDEP-approved site-specific soil cleanup target level for arsenic at covered landfill sites (Appendix K).

Notes: USEPA = U.S. Environmental Protection Agency.

RBC = risk-based concentration.

mg/kg = milligrams per kilogram.

Bold = indicates analyte exceeded cleanup target level.

* = average of a sample and its duplicate.

-- = criteria not available.

The Florida residential SCTL for benzo(a)pyrene was exceeded in four samples: 16S00601, 16S00701, 16S00901, and 16S01201. Benzo(b)fluoranthene exceeded the residential SCTL for Florida (1,400 μ g/kg) in one sample: 16S00601. Dibenzo(a,h)anthracene exceeded the residential SCTL for Florida (100 μ g/ ℓ) in two samples: 16S00601 and 16S00701.

Benzo(a)pyrene was detected in sample 16S00601 at a concentration of 3,100 μ g/kg, exceeding the industrial cleanup target level for Florida of 500 μ g/kg.

The Region III residential RBC for benzo(a)pyrene was exceeded in three samples: 16S00601, 16S00701, and 16S00901.

Benzo(b)fluoranthene exceeded Region III residential RBC (870 $\mu g/kg$) in one sample 16S00601 (3,600 $\mu g/kg$). Dibenzo(a,h)anthracene exceeded the Region III residential RBC (87 $\mu g/kg$) in two samples, 16S00601 and 16S00701, which had concentrations of 700 and 110 $\mu g/kg$, respectively.

Benzo(a)pyrene exceeded the Region III industrial RBC (780 $\mu g/kg$) in sample 16S00601 with a concentration of 3,100 $\mu g/kg$.

<u>Pesticides and PCBs</u>. Six pesticides (dieldrin, alpha-chlordane, gamma-chlordane, 4,4'-dichlorodiphenyldichloroethene [4,4'-DDE], 4,4'dichlorodiphenyldichloroethane [4,4'-DDD], and 4,4'-dichlorodiphenyltrichloroethane [4,4'-DDT] and two PCBs [Aroclor-1254 and Aroclor-1260]) were detected in one or more surface soil samples collected at Site 16.

Dieldrin was detected in sample 16S00601 at a concentrations of 130 $\mu g/kg$, which exceeds the Florida residential SCTL (70 $\mu g/kg$) and leachability SCTL (4 $\mu g/kg$). Dieldrin was also detected in sample 16S00601 and the duplicate of 16S01001 at concentrations (130 and 60 $\mu g/kg$, respectively) that exceed the USEPA Region III residential RBC (40 $\mu g/kg$). No other pesticides or PCBs were detected at concentrations that exceeded either Florida or Federal SCTLs.

<u>Inorganics and Cyanide</u>. Twenty-three inorganic analytes and cyanide were detected in the surface soil samples collected at Site 16 (Table 5-8). Eighteen analytes (aluminum, arsenic, barium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, mercury, nickel, potassium, silver, vanadium, zinc, and cyanide) exceeded the background screening values in some samples (Table 5-11). Arsenic is the only inorganic analyte that exceeded the residential and industrial values for the SCTLs for Florida and USEPA Region III RBCs.

Arsenic exceeded the Florida residential SCTL (0.8 milligrams per kilogram [mg/kg]) in 19 samples and 2 duplicates (16-SL-01 through 16-SL-03 and 16S00101 through 16S01701) with concentrations ranging from 0.94 to 12.1 mg/kg. Arsenic also exceeded the site-specific cleanup target level (4.62 mg/kg) in two samples (16S01101 and 16S01201) with concentrations of 12.1 to 6.6 mg/kg, respectively.

Iron exceeded the Florida residential SCTL (23,000 mg/kg) in sample 16S01101 with a concentration of 48,900 mg/kg.

Lead exceeded the Florida residential SCTL (400 mg/kg) in sample 16S01101 with a concentration of 436 mg/kg and sample 16S00701 at 759 mg/kg.

Arsenic and lead also exceeded the residential values for USEPA Region III RBCs.

Arsenic exceeded the USEPA Region III residential RBC (0.43 mg/kg) in samples 16-SL-01 through 16-SL-03, 16S00101 and 16S01701, with concentrations ranging from 0.64 to 12.1 mg/kg. Beryllium exceeded the USEPA Region III residential RBC (0.2 mg/kg) in sample 16S01201 with a concentration of 0.23 mg/kg.

Arsenic also exceeded the USEPA Region III industrial RBC (3.8 mg/kg) in samples 16S01101 and 16S01201 with concentrations of 12.1 and 6.6 mg/kg, respectively.

Barium, copper, and vanadium were also detected at concentrations above Florida residential SCTLs. Antimony was detected in one sample (16S00701) above the Florida leachability SCTL.

5.6 SUBSURFACE SOIL RESULTS. Five subsurface soil samples and one duplicate sample were collected from within 10 excavated test pits (Figure 5-12). Samples 16SS0201, 16SS0302, 16SS0403 and its duplicate sample 16SS0403A, 16-SS-06-04, and 16-SS-10-05 were collected from depths ranging from 2 to 10.5 feet bls. Tables 5-12 and 5-13 summarize the analytical results for organic and inorganic analytes detected in these five subsurface soil samples respectively. Tables 5-14 and 5-15 summarize the frequency of detection of organic and inorganic analytes detected, as well as the range of detection limits, range of detection concentrations, and mean of detection concentrations, comparison to background screening values, USEPA Region III RBCs for industrial screening criteria (USEPA, 1998), and Florida SCTLs (FDEP, 1999). Figure 5-12 presents the analytical results which exceeded SCTLs.

Organic compounds detected in subsurface soil samples consist of 7 VOCs, 11 SVOCs, and 4 pesticides. The organic compounds detected in Site 16 subsurface soil samples did not exceed the SCTLs for Florida (with the exception of methylene chloride) or the USEPA Region III RBCs.

 $\underline{\text{VOCs}}$. 2-Butanone, acetone, carbon disulfide, ethylbenzene, methylene chloride, toluene, and xylenes were detected in one or more subsurface soil samples collected at Site 16. The detected concentrations of these VOCs (except methylene chloride) are below their respective industrial values of the soil SCTLs for Florida and USEPA Region III RBCs. Methylene chloride was detected in one sample (16SS0403) above the Florida leachability SCTL.

SVOCs. 2-Methylnaphthalene, acenaphthene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene, and bis(2-ethylhexyl)phthalate were detected in one or more subsurface soil samples collected at Site 16. The detected concentrations of these SVOCs are below their respective industrial values of the SCTLs for Florida and USEPA Region III RBCs.

<u>Pesticides and PCBs</u>. 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, and dieldrin were detected in one or more subsurface soil samples collected at Site 16. The detected concentrations of these pesticides are below their respective industrial values of the SCTLs for Florida and USEPA Region III RBCs. No PCBs were detected in the subsurface soil samples collected at Site 16.

Table 5-12 Organic Analytes Detected in Site 16 Subsurface Soil Samples

			ii, i lonaa			
Location Identifier:	TP-16-06	TP-16-10	TP-16-02	TP-16-03	TP-16-04	TP-16-04 DUP
Sample Identifier:	16-SS-06-04	16-SS-10-05	16\$\$0201	16SS0302	16\$\$0403	16SS0403A
Date Sampled:	05-OCT-92	06-OCT-92	04-OCT-92	04-OCT-92	05-OCT-92	05-OCT-92
Laboratory Sample No.:	22910001	22910004	22891006	22897001	22898001	22898001
Sample Depths (feet bls):	10.5	2	2 to 3.5	6 to 8	9 to 10	9 to 10
Volatile Organic Compounds (µg/	kg)			Ç. Ne		
2-Butanone	19			- · ·		
Acetone	87 J			<u>-</u> }	**	
Carbon disulfide	1 J	5 J	26	5 J	13	9 J
Ethylbenzene				<u></u>	2 J	
Methylene chloride				•	150 J	
Toluene			1 J			
Xylenes (total)	2 J	4 J	11 J	3 J	7 J	5 J
Semivolatile Organic Compounds	(µg/kg)					
2-Methylnaphthalene			39 J	•		
Acenaphthene	77 J			•		
Benzo(a)pyrene	44 J		***	••		
Benzo(b)fluoranthene	77 J		••	<u></u> * ·		**
Benzo(k)fluoranthene	48 J			·		
Fluoranthene	270 J		120 J			
Fluorene	110 J		-	-		
Naphthalene			39 J	<u></u>		
Phenanthrene	340 J		58 J			
Pyrene	190 J	**	· 77 J	-		
ois(2-Ethylhexyl)phthalate	150 J	39 J		•		
Pesticides and PCBs (µg/kg)						
1,4'-DDD	36 J	4.9 J	2.2 J	* - : * * * * * * * * * * * - *		~=
1,4'-DDE	30 J	83	1.8 J	<u>-</u>		
4,4'-DDT	5.7 J	52	<u></u> :	••		
Dieldrin ·	_		1.6 J	<u> </u>		
Notes: DUP = duplicate sample. bls = below land surface. µg/kg = micrograms per l	J = 6	not detected. estimated value. = polychlorinated b	DDE	 dichlorodiphenyldici dichlorodiphenyldici dichlorodiphenyltrici 	nioroethene.	

Table 5-13 Inorganic Analytes Detected in Site 16 Subsurface Soil Samples

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Location Identifier:	TP-16-06	TP-16-10	TP-16-02	TP-16-03	TP-16-04	TP-16-04 DUF
Sample Identifier:	16-SS-06-04	16-SS-10-05	16SS0201	16SS0302	16SS0403	16SS0403A
Date Sampled:	05-OCT-92	06-OCT-92	04-OCT-92	04-OCT-92	05-OCT-92	05-OCT-92
Laboratory Sample No.:	22910001	22910004	22891006	22897001	22898001	22898001
Sample Depth (feet bls):	10.5	2	2 to 3.5	6 to 8	9 to 10	9 to 10
Inorganic Analytes (mg/kg)						
Aluminum	11,000	17,300	17,000	15,400	29,000	19,500
Antimony	6.7 J	5.9 J	2.5 J		~-	
Arsenic	15.1	11	2.7	1.5 J	5.1 J	5.8 J
Barium	175	122	36 J	35 J	21 J	19 J
Beryllium	0.19 J	0.19 J	0.18 J	0.21 J	0.23 J	0.29 J
Cadmium	9	8.7	2.4 J			
Calcium	5,870	1,370	877 J	254 J		**
Chromium	24.7	36.9	16.6	10.5	32.5 J	27.3 J
Cobalt	4.5 J	9.6 J	1.1 J	1.2 J	2.4 J	1.4 J
Copper	143	3,620	16.2	4.8 J	13.7	7.9
Cyanide		0.14 J			NA	NA
Iron	37,500	74,800	8,440	6,670	21,700	17,600
Lead	766	567	74.6	6.8	17.3 J	14.6 J
Magnesium	586 J	400 J	243 J	293 J	211 J	185 J
Manganese	297	638	93.1	231	54	39.9
Mercury	0.25 J	0.17 J	0.29 J	0.43 J		***
Nickel	24.3	35.9	4.4 J	4.4 J	4.4 J	2.3 J
Potassium	412 J	166 J	258 J	-	270 J	356 J
Silver	4.3	3.4	0.79 J			
Sodium	514 J	332 J	243 J	207 J	· 	.
Vanadium	19	27.9	25	19.1	63.3	67.5
Zinc	518	895	122	10.6 J	43 J	28 J

Notes: DUP = duplicate sample.

bis = below land surface.
mg/kg = milligrams per kilogram.

J = estimated value.

-- = not detected.

NA = not analyzed.

Table 5-14 Summary of Organic Compounds Detected in Site 16 Subsurface Soil Samples

				Milton, Florida			
Analyte	Frequency of Detection ¹	Range of Detection Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Values ⁴	USEPA Region III RBCs Industrial ⁵	Soil Cleanup Target Levels for Florida Residential/Industrial/Leachability ^e
Volatile Organic Compound	is (µg/kg)						
2-Butanone	1/5	11 to 12	19	19	ND	⁷ 120,000,000	3,100,000/21,000,000/17,000
Acetone	1/5	11 to 145	87	87	ND	⁷ 20,000,000	780,000/5,500,000/2,800
Carbon disulfide	5/5	11 to 12	1 to 26	9.6	ND	⁷ 20,000,000	200,000/1,400,000/5,600
Ethylbenzene	1/5	11 to 12	1*	1	ND	⁷ 20,000,000	1,100,000/8,400,000/600
Methylene chloride	1/5	19 to 120	86.5*	86.5	ND	⁸ 760,000	16,000/23,000/20
Toluene	1/5	11 to 12	1	1	ND	⁷ 41,000,000	380,000/2,600,000/500
Xylenes (total)	5/5	11 to 12	2 to 11	5.2	ND	⁷ 410,000,000	5,900,000/40,000,000/200
Semivolatile Organic Comp	ounds (µg/kg						
2-Methylnaphthalene	1/5	370 to 415	39	39	ND	⁷ 4,100,000	80,000/560,000/6,100
Acenaphthene	1/5	370 to 415	77	77	ND	⁷ 12,000,000	1,900,000/18,000,000/2,100
Benzo(a)pyrene	1/5	370 to 415	44	44	ND	⁸ 780	100/500/8,000
Benzo(b)fluoranthene	1/5	370 to 415	77	77 :	ND	⁸ 7,800	1,400/4,800/10,000
Benzo(k)fluoranthene	1/5	370 to 415	48	48	ND	878,000	15,000/52,000/25,000
Fluoranthene	2/5	370 to 415	120 to 270	195	ND	⁷ 8,200,000	2,900,000/48,000,000/1,200,000
Fluorene	1/5	370 to 415	110	110	ND	⁷ 8,200,000	2,200,000/28,000,000/160,000
Naphthalene	1/5	370 to 415	39	39	ND	⁷ 4,100,000	40,000/270,000/1,700
Phenanthrene	2/5	370 to 415	58 to 340	199	ND		2,000,000/30,000,000/250,000
Pyrene	2/5	370 to 415	77 to 190	134	ND.	⁷ 6,100,000	2,200,000/37,000,000/880,000
bis(2-Ethylhexyl)phthalate	2/5	370 to 415	39 to 150	94.5	ND	⁸ 410,000	76,000/280,000/3,600,000
See notes at end of table.							

Table 5-14 (Continued) Summary of Organic Compounds Detected in Site 16 Subsurface Soil Samples

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

				Trinton, Tronau			
Analyte	Frequency of Detection ¹	Range of Detection Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Values ⁴	USEPA Region III RBCs Industrial ⁵	Soil Cleanup Target Levels for Florida Residential/Industrial/Leachability ⁶
Pesticides and	PCBs (µg/kg)						
4,4'-DDD	3/5	3.7 to 8	2.2 to 36	14.4	ND	⁸ 24,000	4,600/18,000/4,000
4,4'-DDE	3/5	3.7 to 8	1.8 to 83	38.8	ND	⁸ 17,000	3,300/13,000/18,000
4,4'-DDT	2/5	3.7 to 8	5.7 to 52	28.9	ND	⁸ 17,000	3,300/13,000/11,000
Dieldrin	1/5	3.7 to 7.6	1.6	1.6	ND	8360	70/300/4

¹ Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).

Notes: USEPA = U.S. Environmental Protection Agency.

RBC = risk-based concentration.

 μ g/kg = micrograms per kilogram.

* = average of a sample and its duplicate.

ND = not detected.

- = criteria not available.

PCB = polychlorinated biphenyl.

DDD = dichlorodiphenyldichloroethane.

DDE = dichlorodiphenyltrichloroethene.

DDT = dichlorodiphenyltrichloroethane.

² A value indicated by an asterisk is the average of a sample and its duplicate. If the target analyte is not detected in either the environmental sample or associated duplicate, the value used for the nondetection is one-half the reporting limit.

³ The mean of detected concentrations is the arithmetic mean of all environmental samples in which the analyte was detected; it includes a single value for an environmental sample and associated duplicate. The arithmetic mean does not include those environmental samples in which the analyte was not detected.

The background screening value for organics is the mean detected concentration and will not be used for screening purposes in the risk assessment. The background screening value for inorganics is two times the mean detected background concentration and will be used for screening purposes in the risk assessment.

⁵ Source: USEPA Region III RBC Table (October 1, 1998).

⁶ Source: Soil Cleanup Target Levels for Chapter 62-777, Florida Administrative Code (FDEP, 1999).

⁷ Values correspond to a noncancer hazard quotient of 0.1.

⁸ Values correspond to a human cancer risk level of 1 in 1,000,000.

Table 5-15 Summary of Inorganic Analytes Detected in Site 16 Subsurface Soil Samples

				Milton, Florida			
Analyte	Frequency of Detection ¹	Range of Detection Limits	Range of Detected Concentrations ²	Mean of Detected Concentrations ³	Background Screening Values ⁴	USEPA Region III RBCs Industrial ⁵	Soil Cleanup Target Levels for Florida Residential/Industrial/Leachability
Inorganic Anal	ytes (mg/kg)						
Aluminum	5/5	40	11,000 to 24,250*	16,990	27,834	⁸ 200,000	72,000//SPLP ¹¹
Antimony	3/5	2.4 to 12	2.5 to 6.7	5	4.4	⁸ 82	26/240/5
Arsenic	5/5	2	1.5 to 15.1	7.2	6.2	⁷ 3.8	0.8/124.62/29
Barium	5/5	40	20 to 175*	77.6	15.8°	⁸ 14,000	110/87,000/1,600
Beryllium	5/5	1	0.18 to 0.26*	0.21	0.26	⁷ 410	120/800/63
Cadmium	3/5	0.67 to 1	2.4 to 9	6.7	0.92	⁸ 100	75/1,300/8
Calcium	4/5	510 to 1,000	254 to 5,870	2,093	444	••	//
Chromium 10	5/5	2	10.5 to 36.9	23.7	22.8	⁸ 610	210/400/38
Cobalt	5/5	10	1.1 to 9.6	3.7	1.48	⁸ 12,000	4,700/110,000/SPLP ¹¹
Copper	5/5	5	4.8 to 3,620	759	8.8	88,200	110/76,000/SPLP ¹¹
iron	5/5	20	6,670 to 74,800	29,412	18,100	⁸ 61,000	23,000/480,000/SPLP ¹¹
Lead	5/5	1	6.8 to 766	286	8.4	°400	400/920/SPLP ¹¹
Magnesium	5/5	1,000	198* to 586	344	272		//
Manganese	5/5	3	46.95* to 638	261	42.6	⁸ 4,100	1,600/22,000/SPLP ¹¹
Mercury	4/5	0.1 to 0.12	0.17 to 0.43	0.28	ND	⁸ 61	3.4/26/2.1
Nickel	5/5	8	3.35* to 35.9	14.5	5.0	⁸ 4,100	110/28,000/130
Potassium	4/5	153 to 1,000	166 to 412	287	181		//
Silver	3/5	0.46 to 2	0.79 to 4.3	2.8	1.12	⁸ 1,000	390/9,100/17
Sodium	4/5	224 to 1,000	207 to 514	324	NA		//
Vanadium	5/5	10	19 to 65.4*	31.3	45	⁸ 1,400	15/7,400/980
Zinc	5/5	4	10.6 to 895	316	15.6	⁸ 61,000	23,000/560,000/6,000
Cyanide	1/4	0.09 to 1	0.14	0.14	ND	⁸ 4,100	30/28,000/40

Table 5-15 (Continued) Summary of Inorganic Analytes Detected in Site 16 Subsurface Soil Samples

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

- 1 Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed (excluding rejected values).
- ² If the target analyte is not detected in either the environmental sample or associated duplicate, the value used for the nondetection is one-half the reporting limit.
- ³ The mean of detected concentrations is the arithmetic mean of all environmental samples in which the analyte was detected; it includes a single value for an environmental sample and associated duplicate. The arithmetic mean does not include those environmental samples in which the analyte was not detected.
- ⁴ The background screening value for organics is the mean detected concentration and will not be used for screening purposes in the risk assessment. The background screening value for inorganics is two times the mean detected background concentration and will be used for screening purposes in the risk assessment.
- ⁵ Source: USEPA Region III RBC Table (October 1, 1998).
- Source: Soil Cleanup Target Levels for Chapter 62-777, Florida Administrative Code (Florida Department of Environmental Protection (FDEP), 1999).
- ⁷ The values correspond to a human cancer risk level of 1 in 1,000,000.
- ⁸ The calculated values correspond to a noncancer hazard quotient of 0.1.
- 9 Office of Solid Waste and Emergency Response Directive No. 9355.4-12, Revised Interim Recommended Soil Cleanup for CERCLA and RCRA sites (USEPA, 1994c).
- ¹⁰ Values based on hexavalent form of chromium.
- ¹¹Leachability values may be derived using the SPLP test to calculate site-specific soil cleanup target levels or may be determined using the toxicity characteristic leaching procedure in the event oily wastes are present.
- 12 FDEP-approved site-specific soil cleanup target level for arsenic at covered landfill sites (Appendix K).

Notes: USEPA = U.S. Environmental Protection Agency.

RBC = risk-based concentration.

mg/kg = milligrams per kilogram.

* = average of sample and duplicate.

Bold indicates analyte exceeded cleanup target level.

-- = criteria not available.

ND = not detected.

The state of the s

<u>Inorganics and Cyanide</u>. Twenty-one inorganic analytes and cyanide were detected in the five subsurface soil samples. Twenty analytes (antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, potassium, silver, sodium, vanadium, zinc, and cyanide) exceeded the background screening values in some samples (Table 5-15). Arsenic concentrations exceeded the industrial values of the SCTLs for Florida and the USEPA Region III RBCs. Lead concentrations exceeded the USEPA Region III residential RBC.

Arsenic was detected in all five subsurface soil samples at concentrations ranging from 1.5 to 15.1 mg/kg. Three of the five environmental samples and the duplicate sample exceeded the site-specific cleanup target level (4.62 mg/kg) and the USEPA Region III industrial RBC (3.8 mg/kg).

Lead was detected in all five samples at concentrations ranging from 6.8 to 766 mg/kg. Lead concentrations exceeded the USEPA Region III residential RBC (400 mg/kg) in two samples (16-SS-06-04 at 766 mg/kg and 16-SS-10-05 at 567 mg/kg).

Barium, copper, iron, and vanadium were also detected at concentrations above the Florida residential SCTL. Antimony and beryllium were detected at levels above the Florida leachability SCTL.

5.7 SURFACE WATER RESULTS. The surface water assessment at Site 16 consisted of collecting one surface water sample (16W00101) from the ephemeral pond located on the site (Figure 5-12). Table 5-16 presents the organic and inorganic analytical results for the surface water sample collected during Phase IIB and provides a comparison to the Florida Class III fresh surface water criteria (Chapter 62-302.530, FAC) and Florida Groundwater Cleanup Levels (GCTL) (per FDEP policy) (FDEP, 1999).

No VOCs, SVOCs, pesticides, or PCBs were detected in the surface water sample collected at Site 16.

<u>Inorganic Analytes</u>. Eleven inorganic analytes (aluminum, barium, beryllium, calcium, iron, lead, magnesium, manganese, potassium, sodium, and zinc) were detected in the surface water sample collected at Site 16 (Table 5-16). The inorganic analyte beryllium exceed the Florida surface water cleanup target level value. Aluminum was detected at a concentration (758 micrograms per liter $[\mu g/\ell]$) that exceeded the Florida GCTL of 200 $\mu g/\ell$.

- <u>5.8 GROUNDWATER RESULTS</u>. The groundwater assessment at Site 16 consisted of collecting groundwater screening samples using PCPT during Phases I and IIA and sampling all on-site monitoring wells installed at Sites 16.
- 5.8.1 Phase I Groundwater Samples The RI Phase I investigation at Site 16 consisted of an initial series of PCPT explorations to better define lithology in the interpreted hydrogeologically downgradient western perimeter (Figure 5-1) and collection of groundwater samples for screening purposes. VOCs (benzene, chlorobenzene, 1,2-dichloroethane, 1,2-dichloroethene, toluene, trichloroethene (TCE), and xylene) were detected in some or all of the groundwater screening samples, but were primarily detected at location 16Q001. TCE was detected in at least one sample from each location. TCE detections ranged from a low of 13 $\mu g/\ell$ to a high of 24 $\mu g/\ell$ at location 16Q001. 1,2-Dichloroethene was detected at

Table 5-16 Organic and Inorganic Analytes Detected in Site 16 Surface Water Sample

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Location Identifier: Sample Identifier: Collection Date: Laboratory Sample No.:	16-W-001 16W00101 05-JAN-96 RA903003	Florida Surface Water Cleanup Target Level	Florida Groundwater Cleanup Target Level
Volatile Organic Compounds			

None detected

Semivolatile Organic Compounds (µg/1)

None detected

Pesticides and PCBs (µg/1)

None detected

Inorganic Analytes (ug/I)

inorganic Analytes (µg/1)				
Aluminum	758	13	200	
Barium	28.6 J	NA	2,000	
Beryllium	0.21 J	0.13	4	
Calcium	8,890	NA	NA	
Iron	730	1,000	300	
Lead	5.2	¹5.6	15	
Magnesium	1,170 J	NA	NA	
Manganese	4.4 J	NA	50	
Potassium	2,780 J	NA	NA	
Sodium	1,120 J	NA	160,000	
Zinc	29.2	¹86	5,000	

¹ Marine surface water criteria used.

Notes: Chapter 62-302.530, Florida Administrative Code.

FSWQS = Florida Surface Water Quality Standards.

 $\mu g/l = micrograms per liter.$ PCB = polychlorinated biphenyl.

Bold indicates analyte exceeded cleanup target level.

NA = not applicable.

J = estimated value.

16Q007 to a high of 55 μ g/ ℓ at location 16Q002. 1,2-Dichloroethane was detected at locations 16Q002 and 16Q003 ranging from a low of 2 μ g/ ℓ at location 16Q004 to a high of 20 μ g/ ℓ at location 16Q002. Chlorobenzene, benzene, toluene, and xylenes were only detected at location 16Q002. Chlorobenzene was detected ranging from a low of 1 μ g/ ℓ to a high of 932 μ g/ ℓ . Toluene was detected ranging from a low of 1 μ g/ ℓ to a high of 2 μ g/ ℓ . Xylene was detected ranging from a low of 2 μ g/ ℓ to a high of 3 μ g/ ℓ .

Groundwater samples collected using the PCPT or BAT samplers are considered appropriate for preliminary screening but are not used to support risk assessment conclusions or decision making relative to response actions.

5.8.2 Phase II Groundwater Samples Groundwater samples were collected at Site 16 during the Phase IIA event (November to December 1993) and during two Phase IIB events in July to November 1996 and July 1997. The results of the Phase IIA and IIB sampling are presented separately in the following sections. The locations of the Site 16 monitoring wells are shown on Figure 3-2 or 5-1.

The concentrations of inorganic analytes detected in groundwater samples collected during the Phase IIB sampling event (1996 and 1997) are generally lower than the corresponding samples collected during the Phase IIA sampling event (1993) due to a change in the sampling method. Groundwater samples collected during Phase IIB were collected using the low-flow sampling process. This procedure resulted in less turbid groundwater samples for the Phase IIB sampling event as compared to the groundwater samples collected during Phase IIA. Because the low-flow sampling method produces less turbid samples that are more representative of the surficial aquifer than those obtained with a bailer, the preferred data set was from the Phase IIB sampling event. Therefore, Tables 20 through 23 and the summary tables found in Chapters 6.0 and 7.0, were produced exclusively from Phase IIB groundwater sample data.

Field Parameters. Groundwater field parameter results are presented in Table 5-17. The pH values for groundwater samples collected at Site 16 ranged from 4.15 to 6.8 SUs. The pH values were below the lower range for the Florida secondary drinking water requirements of 6.5 SUs but were within the range observed in background samples collected at NAS Whiting Field (HLA, 1998). The temperature measurements ranged from 22.0 to 29.8 degrees Celsius (°C), and the specific conductance ranged from 12 to 376 micromhos per centimeter (μ mhos/cm).

Turbidity measurements for Site 16 Phase IIB groundwater samples ranged from 0.11 to greater than 200 NTUs. The Phase IIB groundwater samples collected at Site 16 had turbidity measurements below 10 NTUs with the exception of six monitoring wells, WHF-16-2S, WHF-16-3II, WHF-16-3D, WHF-16-4D, WHF-16-5, and WHF-16-6S, which were measured as 13, 53, 67.5, (19, 18.04), 12, and (153, greater than 200) respectively. Excluding the measurement from these wells, the low-flow sampling method produced average turbidity measurements of 4.27 NTUs.

<u>Phase IIA Sampling Event</u>. Tables 5-18 and 5-19 present organic and inorganic analytical results for groundwater samples collected from 12 monitoring wells located at Site 16 during the Phase IIA (1993) sampling event, which are shown on Figure 3-4. Organic analytes detected consisted of seven VOCs, including methylene chloride, 1,2-dichloroethene, chloroform, 1,2-dichloroethane, TCE,

Table 5-17 Summary of Groundwater Field Parameters

Monitoring Well Designation	Date Sampled	pH (SU)	Temperature (°C)	Specific Conductance (µmhos/cm)	Turbidity (NTU)	Redox (mV)	DO (mg/ <i>t</i>)
Phase IIA							
WHF-16-1	16-NOV-93	4.50	21.6	29	1.58		
WHF-16-2S	06-DEC-93	4.73	19.8	29	1,381		
WHF-16-2	10-NOV-93	5.25	22.7	44	5.28		•
WHF-16-2D	06-DEC-93	5.38	22.0	38	0.98		
WHF-16-3S	15-NOV-93	6.51	23.0	429	479	••	
WHF-16-3I	12-NOV-93	4.93	21.2	44	42.3		
WHF-16-3II	12-NOV-93	5.42	21.1	40.5	2,528		
WHF-16-3D	11-NOV-93	6.66	22.0	112	114		••
WHF-16-4S	16-NOV-93	5.85	22.0	490	320		
WHF-16-4	16-NOV-93	5.01	22.0	28	10.7	÷=	
WHF-16-4D	15-NOV-93	5.70	22.7	42	46.6	-	
WHF-16-5	17-NOV-93	4.21	20.8	11	3.85		
Phase IIB							
WHF-16-1	19-AUG-96	4.74	24.7	18	4.0		0.01
WHF-16-1	24-JUL-97	4.15	24.0	25	0.74	354	3.6
WHF-16-2S	14-AUG-96	4.83	25.7	20	13		0.22
WHF-16-2	15-AUG-96	4.99	26.8	37	4		0.12
WHF-16-2	19-NOV-96	5.17	22.2	35	0.6	286.2	2.7
WHF-16-2	23-JUL-97	5.6 8	25.0	62	0.11	279.1	0.5
WHF-16-2D	15-AUG-96	4.78	25.6	20	4		0.03
WHF-16-2D	19-NOV-96	4.75	22.0	20	1.2	307.2	3.1
WHF-16-2D	23-JUL-97	5.35	25.0	22	4.84	354.3	2.3

Table 5-17 (Continued) Summary of Groundwater Field Parameters

Monitoring Well Designation	Date Sampled	pH (SU)	Temperature (°C)	Specific Conductance (µmhos/cm)	Turbidity (NTU)	Redox (mV)	DO (mg/ <i>t</i>)
Phase IIB (Continued	1)						
WHF-16-3S	20-AUG-96	5.86	22.8	172	. 2		0.02
WHF-16-3S	24-JUL-97	5.55	23.5	180	2.59	292	1.6
WHF-16-3I	20-AUG-96	4.87	27.1	22	3		0.33
WHF-16-3I	22-JUL-97	4.66	22.5	31	2.35	367	3.4
WHF-16-3II	21-AUG-96	5.24	23.1	32	53		1.36
WHF-16-3	22-JUL-97	4.95	22.5	39	9.95	251.4	1.0
WHF-16-3D	20-AUG-96	6.61	29.8	91	9.8		0.64
WHF-16-3D	24-JUL-97	6.21	23.5	102	67.5	185.6	0.8
WHF-16-4S	19-AUG-96	6.79	26.3	376	3		0.06
WHF-16-4S	22-JUL-97	6.01	22.0	295	9.07	255	2.4
WHF-16-411	19-AUG-96	5.15	28.1	29	3		0.03
WHF-16-4	22-JUL-97	4.63	23.0	25	9.67	324.9	1.1
WHF-16-4D	16-AUG-96	5.24	29.1	38	. 2		80.0
WHF-16-4D	22-NOV-96	5.31'	21.2	40	19	136.8	3.4
WHF-16-4D	22-JUL-97	5.41	23.0	70	18.04	169.8	1.2
WHF-16-5	21-AUG-96	5.08	21.1	12	12		1.22
WHF-16-6S	16-AUG-96	6.31	26.5	260	153		0.03
WHF-16-6S	23-JUL-97	6.80	26.0	300	>200	305.2	1.2
WHF-16-6D	15-AUG-96	4.78	28.6	28	1		0.03
WHF-16-6D	23-JUL-97	5.00	24.0	32	2.86	391.9	2.8
WHF-16-7S	25-JUL-96	6.45	24.7	241	1		1.45
WHF-16-7S	25-JUL-97	6.18	25.2	190	2.71	17.4	3.0
WHF-16-71	25-JUL-96	5.04	22.7	39	9		1.08
WHF-16-71	21-NOV-96	5.01	22.1	23	1.0	216.9	2.8
WHF-16-71	25-JUL-97	5.09	24.0	32	8.7	314	0.079

Table 5-17 (Continued) Summary of Groundwater Field Parameters

Monitoring Well Designation	Date Sampled	pH (SU)	Temperature (°C)	Specific Conductance (umhos/cm)	Turbidity (NTU)	Redox (mV)	DO (mg/ <i>t</i>)
Phase IIB (Continue	ed)						
WHF-16-7D	25-JUL-96	5.98	22.6	98	4		1.26
WHF-16-7D	21-NOV-96	5.48	21.6	33	1.2	230.2	2.0
WHF-16-7D	25-JUL-97	5.48	25.0	40	3.89	251.7	4.4
µmhos/cm NTU = ner	dard unit. ees Celsius. = micromhos per cer phelometric turbidity un xidation reduction pote	nit.		mV = millivolt. DO = dissolved oxy mg/l = milligrams % = percent = parameter not	per liter.		

Table 5-18 Summary of Organic Compounds Detected in Site 16 Groundwater Samples Phase IIA November 1993

		Shall	ow Monitoring	Wells			e Monitoring ells		
Location Identifier:	WHF-16-2	WHF-16-3S	WHF-16-4S	WHF-16-4S	WHF-16-5	WHF-16-1	WHF-16-2	Background	Federal/State
Sample Identifier:	WHF16-2B	WHF16-3B	WHF16-4B	WHF16-4BA	WHF16-5	WHF16-1	WHF16-2	Screening Criteria	Standards
Date Sampled:	06-DEC-93	15-NOV-93	16-NOV-93	16-NOV-93	17-NOV-93	16-NOV-93	24-NOV-93	Omona	
Laboratory Sample No.:	90272002	90225001	90226001	90226002	90236003	90226004	90214002		
Volatile Organic Compounds	(µg/£)								
Methylene chloride	•-		2 J					ND	¹ 5/ ¹ 5
1,2-Dichloroethene (total)							4 J	ND	1,470/ ^{1,4} 70
Chloroform				••			3 J	ND	¹ 100/ ³ 5.7
1,2-Dichloroethane							3 J	ND	¹ 5/ ¹ 3
Trichloroethene							6 J	ND	¹5/¹3
Benzene				***	,-	**	59 J	8	¹ 5/ ¹ 1
Ethylbenzene								ND	¹ 700/ ² 30
Semivolatile Organic Compou	inds (µg/1)								
bis(2-Ethylhexyl)phthalate		**			2 J	**		ND	¹ 6/ ¹ 6
Pesticides and PCBs (µg/t)									
None detected									
See notes at end of table.									

Table 5-18 (Continued) Summary of Organic Compounds Detected in Site 16 Groundwater Samples Phase IIA November 1993

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

		Intermediate M	onitoring Wells			eep Monitoring Wel	lls		
Location Identifier:	WHF-16-3I	WHF-16-3II	WHF-16-4II	WHF-16-2I	WHF-16-3D	WHF-16-3D DUP	WHF-16-4D	Background	
Sample Identifier:	WHF16-3C	WHF16-3CD	WHF16-4CD	WHF16-2C	WHF16-3D	WHF16-3DA	WHF16-4D	Screening	Federal/State Standards
Date Sampled:	12-NOV-93	12-NOV-93	16-NOV-93	06-DEC-93	11-NOV-93	11-NOV-93	15-NOV-93	Criteria	Claridards
Laboratory Sample No.:	90221002	90221001	90226003	90272001	90220001	90220002	90225002		
Volatile Organic Compounds	(μg/t)								
Methylene chloride	. -							ND	¹5/¹5
1,2-Dichloroethene (total)	2 J	34 J	·					ND	^{1,4} 70/ ^{1,4} 70
Chloroform	3 J							ND	¹ 100/ ³ 5.7
1,2-Dichloroethane				20				ND	¹ 5/ ¹ 3
Trichloroethene	4 J		4 J					ND	15/13
Benzene				560 J			. 	8	¹5/¹1
Ethylbenzene		22 J		••				ND	¹ 700/ ² 30
Semivolatile Organic Compo	unds (µg/l)								
bis(2-Ethylhexyl)phthalate		8 J	10				••	ND	¹ 6/ ¹ 6
Pesticides and PCBs $(\mu g/l)$									
None detected									

¹ Primary maximum contaminant level (MCL).

Notes: DUP = duplicate sample.

 $\mu g/\ell$ = micrograms per liter.

-- = compound was not detected above instrument detection limits.

ND = compound not detected in background sample.

J = estimated concentration.

PCB = polychlorinated biphenyl.

² Secondary MCL.

³ Cleanup Target Level, Chapter 62-777, FAC (FDEP, 1999).

⁴ cis 1,2-Dichloroethene was used for comparison.

Table 5-19 Summary of Inorganic Analytes Detected in Site 16 Groundwater Samples Phase IIA November 1993

		Sha	allow Monitoring	Wells		Interm Monitorir			
Location Identifier:	WHF-16-2S	WHF-16-3S	WHF-16-4S	WHF-16-4S	WHF-16-5	WHF-16-1	WHF-16-2	Background	Federal/State
Sample Identifier:	WHF16-2B	WHF16-3B	WHF16-4B	WHF16-4BA	WHF16-5	WHF16-1	WHF16-2	Screening Criteria	Standards
Date Sampled:	06-DEC-93	15-NOV-93	16-NOV-93	16-NOV-93	17-NOV-93	16-NOV-93	24-NOV-93	Cintona	
Laboratory Sample No.: 🕠	90272002	90225001	90226001	90226002	90236003	90226004	90214002		
Metals and Cyanide (µg/ℓ)									
Aluminum	12,400		6,280	5,170	64.8 J	27.2 J	178 J	53,360	² 200/ ² 200
Arsenic		4.5 J	3.1 J			1.7 J		ND	150/150
Barium	77.8 J	105 J	25.9 J	26.3 J	7.9 J	31.5 J	12.3 J	126.8	12,000/12,000
Beryllium	0.26 J	4.7 J						3.6	14/14
Cadmium		••			••		5	ND	¹5/¹5
Calcium	785 J	79,400	91,600	90,300	157 J	1,090 J	859 J	4,706	NA/NA
Chromium	35.5	219	7 J	7 J				872	¹ 100/ ¹ 100
Cobalt	5 J	21.3 J		•				20.7	NA/420
Copper	14 J	43.6 J	6.6 J	6.5 J		8.2 J		67.2	21,000/21,000
Iron	12,400	313,000	4,640	3,370	35 J	34.5 J	135	80,066	² 300/ ² 300
Lead	5.6	15.2	6.1	4.7		1.8 J	1.3 J	20.6	TT 15/ ¹ 15
Magnesium	1,270 J	6,780 J	7,840	7,720	270 J	1,020 J	534 J	2,922	NA/NA
Manganese	44.4	1,050	81.1	67.2	1.7 J	4.2 J	20.5	188	² 50/ ² 50
Mercury	0.3 J	0.23						0.32	12/12
Nickel		82.4 J				10.6 J	••	744	² 100/ ² 100
Potassium	1,830 J	7,000 J	3,360 J	3,540 J		852 J		17,270	NA/NA
Silver		24.3 J						ND	100/1100
Sodium	2,930 J	6,980 J	3,270 J	3,090 J	1,630 J	2,300 J	6,850	5,740	NA/1160,000
Vanadium	37.3 J	987	14.2 J	11.5 J				335	NA/49
Zinc	97.7	152	92.5	68	2.2 J	29	6.5 J	140	15,000/15,000
Cyanide	_	***	عبد				1.7 J	4.2	² 200/ ² 200

Table 5-19 (Continued) Summary of Inorganic Analytes Detected in Site 16 Groundwater Samples Phase IIA November 1993

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

		Intermediate M	onitoring Wells			eep Monitoring Wel	ls		-
Location Identifier:	WHF-16-3I	WHF-16-3II	WHF-16-4II	WHF-16-2I	WHF-16-3D	WHF-16-3D DUP	WHF-16-4D	Background	
Sample Identifier:	WHF16-3C	WHF16-3CD	WHF16-4CD	WHF16-2C	WHF16-3D	WHF16-3DA	WHF16-4D	Screening	Federal/State Standards
Date Sampled:	12-NOV-93	12-NOV-93	16-NOV-93	06-DEC-93	11-NOV-93	11-NOV-93	15-NOV-93	Criteria	01
Laboratory Sample No.:	90221002	90221001	90226003	90272001	90220001	90220002	90225002		
Metals and Cyanide (μg/ℓ)									
Aluminum	82,600	552	111 J	25.1 J	1,370	2,590 J		53,360	² 200/ ² 200
Arsenic	3.7 J		••		1.9 J	2 J		ND	¹50/¹50
Barium	297	18.2 J	15.7 J	34.4 J	19.1 J	20.4 J	20.3 J	126.8	12,000/12,000
Beryllium	3.6 J				0.32 J	0.45 J		3.6	14/14
Cadmium	56.5	3.5 J	3.9 J			5.6	••	ND	¹5/¹5
Calcium	23,000	1,370 J	1,970 J	2,120 J	2,410 J	2,420 J	6,350	4,706	NA/NA
Chromium	225			3.4 J	4.3 J	5.1 J	3.8 J	872	1100/1100
Cobalt	6.2 J							20.7	NA/420
Copper	87.1	2.5 J		2.8 J	2.6 J	2.4 J		67.2	² 1,000/ ² 1,000
ron	83,700	565	140	545	923 J	1,230 J	223	80,066	² 300/ ² 300
Lead	69.1	1.1 J		1.6 J	**		1.2 J	20.6	TT 15/ ¹ 15
Magnesium	8,660	514 J	459 J	1,400 J	903 J	955 J	528 J	2,922	NA/NA
Manganese	498	52.6	18.2	115	93.4	94.1	59.1	188	² 50/ ² 50
Mercury	0.48		••	0.16 J			••	0.32	12/12
Nickel	38.5 J							744	²100/²100
Potassium	4,780 J	708 J			1,890 J	1,770 J		17,270	NA/NA
Silver		++		3.9 J	•••			ND	1100/1100
Sodium	13,500	6,770	3,690 J	3,330 J	23,200	23,000	3,180 J	5,740	NA/1160,000

See notes at end of table.

Table 5-19 (Continued) Summary of Inorganic Analytes Detected in Site 16 Groundwater Samples Phase IIA November 1993

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

	Intermediate M	onitoring Wells			eep Monitoring Wel	ls		
WHF-16-3I	WHF-16-3II	WHF-16-411	WHF-16-2I	WHF-16-3D WHF-16-3D DUP		WHF-16-4D	Background	
WHF16-3C	WHF16-3CD	WHF16-4CD	WHF16-2C	WHF16-3D	WHF16-3DA	WHF16-4D	Screening	Federal/State Standards
12-NOV-93	12-NOV-93	16-NOV-93	06-DEC-93	11-NOV-93	11-NOV-93	15-NOV-93	Criteria	Olaridaras
90221002	90221001	90226003	90272001	90220001	90220002	90225002		
(Continued)								
120			*-	4.4 J	5 J	3.5 J	335	NA/49
451	22.3 J	25.7	8 J	14.7 J	17.8 J	3.3 J	140	15,000/15,000
1.9 J							4.2	²200/²200
	WHF16-3C 12-NOV-93 90221002 (Continued) 120 451	WHF-16-3I WHF-16-3II WHF16-3C WHF16-3CD 12-NOV-93 12-NOV-93 90221002 90221001 (Continued) 120 451 22.3 J	WHF16-3C WHF16-3CD WHF16-4CD 12-NOV-93 12-NOV-93 16-NOV-93 90221002 90221001 90226003 (Continued) 120 451 22.3 J 25.7	WHF-16-3I WHF-16-3II WHF-16-4II WHF-16-2I WHF16-3C WHF16-3CD WHF16-4CD WHF16-2C 12-NOV-93 12-NOV-93 16-NOV-93 06-DEC-93 90221002 90221001 90226003 90272001 (Continued) 120 451 22.3 J 25.7 8 J	WHF-16-3I WHF-16-3II WHF-16-4II WHF-16-2I WHF-16-3D WHF16-3C WHF16-3CD WHF16-4CD WHF16-2C WHF16-3D 12-NOV-93 12-NOV-93 06-DEC-93 11-NOV-93 90221002 90221001 90226003 90272001 90220001 (Continued) 120 4.4 J 451 22.3 J 25.7 8 J 14.7 J	WHF-16-3I WHF-16-3II WHF-16-4II WHF-16-2I WHF-16-3D WHF-16-3D DUP WHF16-3C WHF16-3CD WHF16-4CD WHF16-2C WHF16-3D WHF16-3DA 12-NOV-93 12-NOV-93 16-NOV-93 06-DEC-93 11-NOV-93 11-NOV-93 90221002 90221001 90226003 90272001 90220001 90220002 (Continued) 120 4.4 J 5 J 451 22.3 J 25.7 8 J 14.7 J 17.8 J	WHF-16-3I WHF-16-3II WHF-16-4II WHF-16-2I WHF-16-3D WHF-16-3D DUP WHF-16-4D WHF16-3C WHF16-3CD WHF16-4CD WHF16-2C WHF16-3D WHF16-3DA WHF16-4D 12-NOV-93 12-NOV-93 06-DEC-93 11-NOV-93 11-NOV-93 15-NOV-93 90221002 90221001 90226003 90272001 90220001 90220002 90225002 (Continued) 120 4.4 J 5 J 3.5 J 451 22.3 J 25.7 8 J 14.7 J 17.8 J 3.3 J	WHF-16-3I WHF-16-3II WHF-16-4II WHF-16-2I WHF-16-3D WHF-16-3D DUP WHF-16-4D WHF-16-4D Screening Background Screening 12-NOV-93 12-NOV-93 16-NOV-93 06-DEC-93 11-NOV-93 11-NOV-93 15-NOV-93 06-DEC-93 90220001 90220002 90225002

¹ Primary maximum contaminant level (MCL).

Notes: $\mu g/\ell$ = micrograms per liter.

-- = compound was not detected above instrument detection limits.

J = estimated concentration.

ND = compound not detected in background sample.

NA = no applicable standard currently exists.

TT = treatment technique.

DUP = duplicate sample.

² Secondary MCL.

³ Groundwater Guidance Concentration.

benzene, and ethylbenzene and one SVOC bis(2-ethylhexyl)phthalate. No pesticides or TRPH were detected.

Twenty-one inorganic analytes and cyanide were detected in groundwater samples from Site 16 monitoring wells. Seventeen inorganic analytes, including aluminum, arsenic, barium, beryllium, cadmium, calcium, cobalt, copper, iron, lead, magnesium, manganese, mercury, silver, sodium, vanadium, and zinc were detected in groundwater samples at concentrations that equaled or exceeded the background screening criteria. Seven of the analytes (aluminum, beryllium, chromium, iron, lead, manganese, and vanadium) was detected at concentrations exceeding either the Federal or State maximum containment levels (MCLs) (Table 5-19).

<u>Phase IIB Sampling Events</u>. Tables 5-20 and 5-21 present organic analytical results and Tables 5-22 and 5-23 present inorganic analytical results for groundwater samples collected at Site 16 during the Phase IIB sampling events conducted from July to August and November 1996 and in July 1997, respectively. Tables 5-24 and 5-25 summarize the frequency of detection, reporting range limits, detected concentration range, average detected concentrations, background screening concentrations, and Federal and State regulatory limits of the 1996 and 1997 sampling event.

Shallow Groundwater Samples. The following analytes were detected in groundwater samples collected from monitoring wells screened in the shallow surficial water table in one or both groundwater sampling events (1996 and 1997).

 $\underline{\text{VOCs}}$. No VOCs were detected in the groundwater samples collected from the shallow monitoring wells at Site 16 nor were VOCs detected in background groundwater samples

<u>SVOCs</u>. One SVOC, bis(2-ethylhexyl)phthalate, was detected in groundwater samples collected from the shallow monitoring wells WHF-16-5S at a concentration of 2 $\mu g/\ell$, but was not detected in the duplicate sample WHF-16-5SDUP, and was detected in WHF-16-6S at a concentration of 1 $\mu g/\ell$. These concentrations are below the Federal MCL and Florida groundwater guidance concentrations 6 $\mu g/\ell$ for bis(2-ethylhexyl)phthalate. Bis(2-ethylhexyl)phthalate was not detected in background groundwater samples.

<u>Pesticides</u>. One pesticide (4,4'-DDT) was detected in a sample from groundwater monitoring well WHF-16-6S at a concentration of 0.15 $\mu g/\ell$. This concentration exceeds the Florida GCTL of 0.1 $\mu g/\ell$. No PCBs were detected in any shallow Phase IIB groundwater samples.

<u>Inorganic Analytes</u>. Twenty inorganic analytes (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, vanadium, zinc and cyanide) were detected in shallow groundwater samples collected from Site 16. Thirteen inorganic analytes (aluminum, barium, cadmium, calcium, copper, iron, magnesium, manganese, potassium, sodium, vanadium, zinc, and cyanide) were detected at concentrations exceeding the background screening concentrations.

Six inorganic analytes (aluminum, antimony, beryllium, cadmium, iron, and manganese) were detected at concentrations exceeding either Federal or State regulatory limits, as listed below.

Table 5-20 Organic Compounds Detected in Site 16 Groundwater Samples, Phase IIB July to August 1996

			William	i, i ionua				
				Shallow Mor	nitoring Wells			
Location Identifier:	WHF-16-1S	WHF-16-2S	WHF-16-2S	WHF-16-3S	WHF-16-4S	WHF-16-5S	WHF-16-5S DUP	WHF-16-5S
Sample Identifier:	16G00101	16G00201	16G00201F	16G00301	16G00401	16G00501	16G00501D	16G00501F
Date Sampled:	19-AUG-96	14-AUG-96	14-AUG-96	20-AUG-96	19-AUG-96	21-AUG-96	21-AUG-96	21-AUG-96
Laboratory Sample No.: 4	RC016004	RB980006	RB980014	RC016005	RC016002	RC016009	RC016013	RC016001
Volatile Organic Compounds (/g/t)							
1,2-Dichloroethane			NA					NA
1,2-Dichloroethene (total)			NA					NA
Benzene			NA				**	NA
Chloroform			, NA				**	NA
Ethylbenzene			NA					NA
Toluene			NA			**		NA
Trichloroethene			NA					NA
Xylenes (total)			NA					NA
Semivolatile Organic Compoun	<u>ds</u> (μg/t)							
Naphthalene			NA					NA
Phenol			NA					NA
bis(2-Ethylhexyl)phthalate			NA			2 J	**	NA
Pesticides and PCBs (µg/ℓ)								
4,4'-DDT	••		NA				**	NA
See notes at end of table								

Table 5-20 (Continued) Organic Compounds Detected in Site 16 Groundwater Samples, Phase IIB July to August 1996

	Sha	llow Monitoring W	/ells		Interm	ediate Monitoring	Wells	
Location Identifier:	WHF-16-6S	WHF-16-6S	WHF-16-7S	WHF-16-2I	WHF-16-3I	WHF-16-3II	WHF-16-3II	WHF-16-4I
Sample Identifier:	16G00601	16G00601F	16G00701	16G00202	16G00302	16G00303	16G00303F	16G00402
Date Sampled:	16-AUG-96	16-AUG-96	25-JUL-96	15-AUG-96	20-AUG-96	21-AUG-96	21-AUG-96	19-AUG-96
Laboratory Sample No.:	RB980019	RB980022	RB887015	RB980016	RC016006	RC016008	RC016010	RC016003
Volatile Organic Compounds (rg/t)							
1,2-Dichloroethane		NA				2 J	NA	
1,2-Dichloroethene (total)		NA		41		3 J	NA ·	
Benzene		NA	**	¹750			NA	
Chloroform		NA		1 J			NA	
Ethylbenzene		NA		3 J			NA	
Toluene		NA	· 				NA	
Trichloroethene		NA		6 J		2 J	NA	2 J
Xylenes (total)		. NA					NA	**
Semivolatile Organic Compoun	ds (µg/l)							
Naphthalene	·	NA		1 J			NA	
Phenol		NA					NA	••
bis(2-Ethylhexyl)phthalate	1 J	NA	. 	1 J		~-	NA	1 J
Pesticides and PCBs (µg/ℓ)								
4,4'-DDT	0.15 J	NA					NA	
See notes at end of table.								

Table 5-20 (Continued) Organic Compounds Detected in Site 16 Groundwater Samples, Phase IIB July to August 1996

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

	Intermediate M	onitoring Wells		Deep Monit	toring Wells	
Location Identifier:	WHF-16-6I	WHF-16-7I	WHF-16-2D	WHF-16-3D	WHF-16-4D	WHF-16-7D
Sample Identifier:	16G00602	16G00702	16G00203	16G00304	16G00403	16G00703
Date Sampled:	15-AUG-96	25-JUL-96	15-AUG-96	20-AUG-96	16-AUG-96	25-JUL-96
Laboratory Sample No.:	RB980018	RB887016	RB980017	RC016007	RB980020	RB887017
Volatile Organic Compounds (ug/t)			•		
1,2-Dichloroethane	••					**
1,2-Dichloroethene (total)		39		••	1 J	10
Benzene			5 J			
Chloroform						
Ethylbenzene		5 J				
Toluene		1 J	1 J			
Trichloroethene		5 J				2 J
Xylenes (total)		1 J	**			
Semivolatile Organic Compoun	<u>ids</u> (μg/1)					
Naphthalene		1 J			1 J	
Phenol	**		5 J		8 J	4 J
bis(2-Ethylhexyl)phthalate	6 J		·	53	, 1 J	**
Pesticides and PCBs (µg/l)						
4,4'-DDT	0.14 J					••

¹ RB980016DL.

Notes: $\mu g/\ell = \text{micrograms per liter}$.

- = compound was not detected.

NA = not applicable.
J = estimated value.

PCB = polychlorinated biphenyl.

DDT = dichlorodiphenyltrichloroethane.

Table 5-21 Organic Compounds Detected in Site 16 Groundwater Samples, Phase IIB July 1997

				rioliua			· · · · · · · · · · · · · · · · · · ·	
				Shallow Mon	itoring Wells			
Location Identifier:	WHF-16-1S	WHF-16-1S	WHF-16-3S	WHF-16-4S	WHF-16-4S	WHF-16-6S	WHF-16-6S	WHF-16-7S
Sample Identifier:	16G00101	16G00101D	16G00301	16G00401	16G00401D	16G00601	16G00601F	16G00701
Date Sampled:	24-JUL-97	24-JUL-97	24-JUL-97	22-JUL-97	22-JUL-97	23-JUL-97	23-JUL-97	25-JUL-97
Laboratory Sample No.:	ME340009	ME340010	ME340008	RC016002	ME306004	ME340002	WSME340003	WTME348004
Volatile Organic Compounds (rg/t)							
1,2-Dichloroethane							***	
1,2-Dichloroethene (total)							**	••
Benzene					. 			
Chloroform	••		**			-		
Ethylbenzene							***	
Toluene				**		-		
Trichloroethene	••	un						
Xylenes (total)								
Semivolatile Organic Compoun	<u>ds</u> (μg/ !)							
Naphthalene							·	
Phenol			4.	••				
bis(2-Ethylhexyl)phthalate	•-					••	**	
Pesticides and PCBs (µg/l)								
4,4'-DDT	<u></u>		•-					
See notes at end of table.	-							

Table 5-21 (Continued) Organic Compounds Detected in Site 16 Groundwater Samples, Phase IIB July 1997

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

	, i.	li	ntermediate M	onitoring Wel	ls			Deep Monitor	ring Wells	
Location Identifier:	WHF-16-2I	WHF-16-31	WHF-16-311	WHF-16-4I	WHF-16-6I	WHF-16-7I	WHF-16-2D	WHF-16-3D	WHF-16-4D	WHF-16-7D
Sample Identifier:	16G00202	16G00302	16G00303	16G00402	16G00602	16G00701	16G00203	16G00304	16G00403	16G00703
Date Sampled:	23-JUL-97	22-JUL-97	22-JUL-97	22-JUL-97	23-JUL-97	25-JUL-97	23-JUL-97	24-JUL-97	22-JUL-97	25-JUL-97
Laboratory Sample No.:	ME322004	ME322002	ME322003	ME306005	ME340004	ME348004	ME322005	ME348006	ME306006	ME348003
Volatile Organic Compounds (μg/£)									
1,2-Dichloroethane	24 J		8 J	1 J					29 J	20
1,2-Dichloroethene (total)	50		12	1 J						10 J
Benzene	820		130	28			1 J		760	520*
Chloroform		1 J	1 J							••
Ethylbenzene	6 J									
Toluene										
Trichloroethene	7 J		2 J	3 J						
Xylenes (total)										
Semivolatile Organic Compour	nds (µg/£)									
Naphthalene									•••	
Phenol							~~			
bis(2-Ethylhexyl)phthalate		-				••		••		
Pesticides and PCBs (µg/1)										
4,4'-DDT										

Notes: F = filtered.

 $\mu g/t = micrograms per liter.$

-- = compound was not detected.

PCB = polychlorinated biphenyl.

DDT = dichlorodiphenyltrichloroethane.

J = estimated value.

* = dilution equals ME348003DL.

Table 5-22 Inorganic Analytes Detected in Phase IIB Groundwater Samples at Site 16 August 1996

A Company of the Comp				Shallow Monit	toring Wells			
Location Identifier:	WHF-16-1S	WHF-16-2S	WHF-16-2S	WHF-16-3S	WHF-16-4S	WHF-16-5S	WHF-16-5S	WHF-16-5S
Sample Identifier:	16G00101	16G00201	16G00201F	16G00301	16G00401	16G00501	16G00501D	16G00501F
Collection Date:	19-AUG-96	14-AUG-96	14-AUG-96	20-AUG-96	19-AUG-96	21-AUG-96	21-AUG-96	21-AUG-96
Laboratory Sample No.:	RC016004	RB980006	RB980014	RC016005	RC016002	RC016009	RC016016	RC016011
Inorganic Analytes (µg/ℓ)								
Aluminum		4 (*) 	 .					
Antimony		-						
Arsenic	·	<u>-</u>			0.6 J			
Barium	24.1 J	17.4 J	17.4 J	40.7 J	59.4 J	10 J	10 J	10 J
Beryllium	 .			••	0.42 J	·		
Cadmium		en e			12.5			
Calcium	623 J	#!		24,900	78,800			
Chromium	2.1 J			***			••	••
Cobalt	<u></u>	3 J				3.2 J		
Copper		-			1.7 J			
Cyanide		A-3-1-	••			**		
Iron	39.9 J	g Total		176	167	9.2 J	5.3 J	119
Lead				•••			••	
Magnesium	685 J	484 J	464 J	2,850 J	8,690	276 J	261 J	305 J
Manganese	3.8 J	2.1 J	2.5 J	3 J	65.4		2.1 J	3 J
Nickel	••	Albania -	· 					. ••
Potassium	375 J	476 J		3,730 J	4,790 J	**		471 J
Sodium	1,860 J	2,690 J	2,670 J	** .	3,490 J	1,550 J	1,450 J	1,510 J
Vanadium	·	• • • • • • • • • • • • • • • • • • •					·	**
Zinc	114			**		<u></u>		

Table 5-22 (Continued) Inorganic Analytes Detected in Phase IIB Groundwater Samples at Site 16 August 1996

	Sha	llow Monitoring W	/ells		Interm	ediate Monitoring	Wells	
Location Identifier:	WHF-16-6S	WHF-16-6S	WHF-16-7S	WHF-16-2I	WHF-16-3I	WHF-16-3II	WHF-16-3II	WHF-16-41
Sample Identifier:	16G00601	16G00601F	16G00701	16G00202	16G00302	16G00303	16G00303F	16G00402
Collection Date:	16-AUG-96	16-AUG-96	25-JUL-96	15-AUG-96	20-AUG-96	21-AUG-96	21-AUG-96	19-AUG-96
Laboratory Sample No.:	RB980019	RB980022	RB887015	RB980016	RC016006	RC016008	RC016008	RC0160103
Inorganic Analytes (µg/ℓ)								
Aluminum	3,040		137 J			395		
Antimony							. 	••
Arsenic	0.8 J						**	**
Barium	300	251	27.4 J	30.1 J	23.5 J	27.2 J	18.9 J	57.7 J
Beryllium		0:32 J						
Cadmium	2.2 J					·		
Calcium	61,900	61,900	36,000	1,990 J	1,060 J	1,070 J	962 J	8,460
Chromium	**			**	2.6 J	4.6 J	3.4 J	
Cobalt				to valo	••			•-
Copper	6.1 J	-		***	••	1.7 J		1.4 J
Cyanide	12		<u>.:</u>					••
Iron	45,200	1,660	328		113	1,410	396	57.5 J
Lead	5.7	**	••	2.3 J		••		
Magnesium	3,100 J	3,110 J	3,050 J	1,450 J	720 J	1,030 J	893 J	542 J
Manganese	516	425	10.5 J	12 J	47.3	60.3	53.3	7 J
Nickel	••	: 	8.7 J					
Potassium	2,010 J	2,110 J	3,470 J	331 J	401 J			**
Sodium	1,600 J	1,650 J	6,210	5,260		**		3,210 J
Vanadium	17.8 J	2.2 J						
Zinc	56.4		••	168				

Table 5-22 (Continued) Inorganic Analytes Detected in Phase IIB Groundwater Samples at Site 16 August 1996

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

	Intermediate M	onitoring Wells		Deep Monit	toring Wells	
Location Identifier:	WHF-16-6I	WHF-16-71	WHF-16-2D	WHF-16-3D	WHF-16-4D	WHF-16-7D
Sample Identifier:	16G00602	16G00702	16G00203	16G00304	16G00403	16G00703
Collection Date:	15-AUG-96	25-JUL-96	15-AUG-96	20-AUG-96	16-AUG-96	25-JUL-96
Laboratory Sample No.:	RB980018	RB887016	RB980017	RC16007	RB980020	RB887017
Inorganic Analytes (µg/1)						
Aluminum	244	72.3		90.7 J	278	196
Antimony						
Arsenic					1 J	2 J
Barium	17.4	15.6 J	21.5 J	13 J	28.6 J	10.8 J
Beryllium			-~	**		
Cadmium			**	**		
Calcium	1,740 J	1,960 J	1,000 J	2,500 J	3,110 J	2,510 J
Chromium					2.3 J	
Cobalt	~~					
Copper	2.6 J		==		 .	·
Cyanide			••			
Iron	232	201	••	111	1,370	151
Lead	0.5 J				4	
Magnesium	590 J	612 J	732 J	988 J	1,320 J	496 J
Manganese	70.8	85	36.9	73.7	41.3	102
Nickel	·	·		7.7 J		·
Potassium	458 J		322 J	1,640 J	540 J	930 J
Sodium	3,680 J	4,100 J		20,600	2,570 J	18,500
Vanadium	1.5 J				2.2 J	
Zinc	210	**		53.1	103	

Notes: $\mu g/\ell = micrograms per liter$.

^{-- =} compound was not detected.

J = estimated value.

Table 5-23 Inorganic Analytes Detected in Site 16 Groundwater Samples, Phase IIB July 1997

				Shallow Mor	nitoring Wells			
Location Identifier:	WHF-16-1S	WHF-16-1S	WHF-16-3S	WHF-16-4S	WHF-16-4S	WHF-16-6S	WHF-16-6S	WHF-16-7S
Sample Identifier:	16G00101	16G00101DUP	16G00301	16G00401	16G00401D	16G00601	16G00601F	16G00701
Date Sampled:	24-JUL-97	24-JUL-97	24-JUL-97	22-JUL-97	22-JUL-97	23-JUL-97	23-JUL-97	25-JUL-97
Laboratory Sample No.:	WTME340009	WTME340010	WTME340008	NA	NA	WTMW340002	WSME340003	WTME348004
Inorganic Analytes (µg/ℓ)		•						
Aluminum			749	NS	NS	3,930		161 J
Antimony			-	NS	NS		124	***
Arsenic			, 	NS	NS			
Barium	20.5 J	20.7 J	39.3 J	NS	NS	456	310	32.9 J
Beryllium				NS	NS		10.3	
Cadmium				NS	NS	••		
Calcium			35,700	NS	NS	74,300	72,800	30,500
Chromium				NS	NS			
Cobalt				NS	NS	***		
Copper	••		••	NS	NS			
Cyanide				NS	NS			
Iron		**	1,040	NS	NS	68,600	656	1,770
Lead		-		NS	NS			
Magnesium	617 J	623 J	3,450 J	NS	NS	3,680 J	3,680 J	2,850 J
Manganese			12.1 J	NS	NS	1,370	43.2	1,210
Nickel	••		**	NS	NS	·		
Potassium			3,510 J	NS	NS	3,030 J	3,110 J	2,850 J
Sodium	2,130 J	2,110 J		NS	NS	2,730 J	2,940 J	7,490
Vanadium				NS	NS	25.2 J		
Zinc				NS	NS	49.1		

Table 5-23 (Continued) Inorganic Analytes Detected in Site 16 Groundwater Samples, Phase IIB July 1997

			Intermediate Mo	nitoring Wells		
Location Identifier:	WHF-16-2I	WHF-16-3I	WHF-16-3	WHF-16-4I	WHF-16-6I	WHF-16-7I
Sample Identifier:	16G00202	16G00302	16G00303	16G00402	16G00602	16G00702
Date Sampled:	22-JUL-97	22-JUL-97	22-JUL-97	22-JUL-97	23-JUL-97	25-JUL-97
Laboratory Sample No.:	WTME322004	WTME3322004	WTME322003	NA	WTME340004	WTME34800
Inorganic Analytes (µg/ℓ)						
Aluminum		**	222	NS	200 J	202
Antimony			17.4 J	NS		
Arsenic		***	 .	NS		
Barium	45.2 J	25.3 J	26.6 J	NS	30.9 J	17.1 J
Beryllium				NS		
Cadmium				NS	••	
Calcium	3,660 J	997 J	1,380 J	NS	1,070 J	1,210 J
Chromium		••		NS		
Cobalt				NS		. ••
Copper				NS		•
Cyanide		**	••	NS		
ron			1,370	NS	**	526
ead			***	NS		
Magnesium	3,020 J	790 J	1,220 J	NS	985 J	673 J
Vanganese	21.8	18	89.6	NS	10.9 J	34.3
Nickel				NS		
Potassium		1,180 J		NS	••	
Sodium	4,300 J	3,470 J	3,940 J	NS	2,720 J	3,880 J
Vanadium			. ==	NS		
Zinc	. · · · · · ·	••		NS		

Table 5-23 (Continued) Inorganic Analytes Detected in Site 16 Groundwater Samples, Phase IIB July 1997

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

		De	ep Monitoring Wells	S	
Location Identifier:	WHF-16-2D	WHF-16-3D	WHF-16-3D	WHF-16-4D	WHF-16-7D
Sample Identifier:	16G00203	16G00304	16G00304F	16G00403	16G00703
Date Sampled:	23-JUL-97	24-JUL-97	24-JUL-97	22-JUL-97	25-JUL-97
Laboratory Sample No.:	WTME322005	WTME340006	WSME340007	NA	WEME348003
Inorganic Analytes (µg/ℓ)					
Aluminum	121 J	1,900	98.4 J	NS	
Antimony	 ,	- :-[164		NS	
Arsenic		<u>-</u> -	1.4 J	NS	3.6 J
Barium	17.4 J	16 J	11 J	NS	16.6 J
Beryllium	. 	·		NS ·	
Cadmium		-		NS	
Calcium	1,080 J	2,960 J	2,540 J	NS	3,080 J
Chromium			••	NS	
Cobalt		• ji		NS	
Copper		11.9 J		NS	
Cyanide		•• W. A.	***	NS	
Iron		1,040		NS	1,200
Lead		- <u>-</u> 4		NS	••
Magnesium	659 J	1,220 J	1,030 J	NS	818 J
Manganese	41.4	105	80.4	NS	170
Nicket	••	-		NS	8.2 J
Potassium	**	2,010 J	1,720 J	NS	
Sodium	2,080 J	20,400	20,700	NS	2,680 J
Vanadium				NS	
Zinc	••	26.7		NS	

Notes: Dup = duplicate sample.

F = filtered sample.

NA = not applicable.

 $\mu g/\ell$ = micrograms per liter.

-- = compound not detected.

NS = Not resampled for inorganic analysis.

J = estimated value.

Table 5-24 Summary of Organic Compounds Detected in Site 16 Groundwater Samples

Analyte	Frequency of	Range of Detected Analyte	Mean Analyte	Background Screening	Federal	Florida Ground Cleanup Targe	
	Detection ¹	Concentration ²	Concentration	Values ³	MCLs ⁴	Concentration ⁵	Basis ⁶
Volatile Organic Compounds	(μg/t)						
1,2-Dichloroethane	6/17	1 to 32	19		5	3	P
1,2-Dichloroethene (total)	6/17	1 to 50	16.5		70	70	P
Benzene	7/17	1 to 820	428	-	5	1	P
Chloroform	3/17	1	1		0.1	5.7	
Ethylbenzene	2/17	5 to 6	5.5		700	30	s
Toluene	2/17	1	1		1,000	40	s
Trichloroethene	5/17	2 to 7	3.8		5	3	Р
Xylenes (total)	1/17	1	1	••	10,000	20	s
Semivolatile Organic Compo	unds (µg/t)						
Naphthalene	3/17	1	1		NA	20	
Phenol	3/17	4 to 8	5.7	•	NA	10	
bis(2-Ethylhexyl)phthalate	7/17	1 to 53	9.5		6	6	P
Pesticides and PCBs (µg/1)							
4,4'-DDT	2/17	0.14 to 0.15	0.15	. 	NA	0.1	
See notes at end of table.							

Table 5-24 (Continued) Summary of Organic Compounds Detected in Site 16 Groundwater Samples

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

¹ Frequency of detection is the fraction of total samples analyzed in which the analyte was detected.

⁵ Source: Cleanup Target Levels, Chapter 62-777, FAC (FDEP, 1999).

⁶ The concentrations are based on a number of enforceable and nonenforceable State of Florida regulations:

P = primary drinking water standards based on Florida Administrative Code (FAC) Rule 17-550.310, .320

S = secondary drinking water standards based on FAC Rule 17-550.310, .320

Notes: MCL = maximum contaminant level.

 $\mu g/\ell$ = micrograms per liter.

Bold indicates analyte exceeded cleanup target level.

-- = compound not detected.

NA = criteria not available.

PCB = polychlorinated biphenyl.

DDT = dichlorodiphenyltrichloroethane.

² Value indicated by an asterisk is the average of the sample and its duplicate. If the target analyte was not detected in either the environmental sample or associated duplicate, the value used for the nondetection is one-half the reporting limit.

³ Background screening values for organic compounds are the arithmetic mean concentrations; for inorganic analyte, it is two times the arithmetic mean concentration. The latter values are used for analyte screening in risk assessment.

⁴ Federal MCLs are maximum permissible concentrations of contaminants in water delivered to a user by a public water system.

Table 5-25 Summary of Inorganic Analytes Detected in Site 16 Groundwater Samples

Analyte	Frequency of	Range of Detected Analyte	Mean Analyte	Background Screening	Federal MCLs ⁴	Florida Ground Cleanup Targe	
·	Detection ¹	Concentration ²	Concentration	Values ³		Concentration ⁵	Basis ⁶
Inorganic Analytes (µg/ℓ)							
Aluminum	10/17	121 to 3,930	796	654	⁸ 200	200	s
Antimony	1/17	17.4	17.4	20.4	6	6	P
Arsenic	4/17	0.6 to 3.6	1.5		50	50	P
Barium	17/17	10* to 456	53.9	72.6	2,000	2,000	Р
Beryllium	1/1.7	0.42	0.42	0.58	4	4	₽
Cadmium	2/17	2.2 to 12.5	7.4	4.4	5	5	Р
Calcium	15/17	623 to 78,800	16,462	3,316	NA	NA	
Chromium	4/17	2.1 to 4.6	2.9	30	100	100	P
Cobalt	2/17	2.175* to 3	2.6		NA	420	
Copper	6/17	1.4 to 11.9	4.2	10.8	⁸ 1,000	1,000	s
Iron	14/17	7.25* to 68,600	5,538	964	8300	300	s
Lead	4/17	0.5 to 5.7	3.1		⁷ 15	15	P
Magnesium	17/17	268.5* to 8,690	1,841	2,426	NA	NA	
Manganese	17/17	1.3* to 1,370	188	42.8	*50	50	s
Nickel	3/17	7.7 to 8.7	8.2	42.8	100	100	Р
Potassium	13/17	322 to 4,790	1,600	1,530	NA	NA	
Sodium	17/17	1,500* to 20,400	4,466	4,770	⁹ NA	160,000	P
Vanadium	4/17	1.3 to 25.2	7.6	3.8	NA	49	T
Zinc	8/17	26.7 to 381	138	200	⁸ 5,000	5,000	S
Cyanide	1/17	12	12	7	200	200	Р

5-74

Table 5-25 (Continued)
Summary of Inorganic Analytes Detected in Site 16 Groundwater Samples

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

¹ Frequency of detection is the fraction of total samples analyzed in which the analyte was detected.

² Value indicated by an asterisk is the average of the sample and its duplicate. If the target analyte was not detected in either the environmental sample or associated duplicate, the value used for the nondetection is one-half the reporting limit.

³ Background screening values for organic compounds are the arithmetic mean concentrations; for inorganic analytes it is two times the arithmetic mean concentration. The latter values are used for analyte screening in risk assessment.

⁴ Federal MCLs are maximum permissible concentrations of contaminants in water delivered to a user by a public water system.

⁵ Source: Cleanup Target Levels, Chapter 62-777, FAC (FDEP, 1999).

⁶ The concentrations are based on a number of enforceable and nonenforceable State of Florida regulations:

P = primary drinking water standards based on Florida Administrative Code (FAC) Rule 17-550.310, .320

S = secondary drinking water standards based on FAC Rule 17-550.310, .320

T = systemic toxicants based on FAC Rule 17-520.400 (1) (d)

⁷ Treatment technique requirement for drinking water distribution system.

⁸ Secondary MCL.

⁹ No MCL has been determined for sodium but a reporting limit of 20,000 μg/ℓ has been established.

Notes: MCL = maximum contaminant level.

 $\mu g/t = micrograms per liter.$

Bold indicates analyte exceeded cleanup target level.

NA = no applicable standard currently exists.

* = average of a sample and its duplicate.

-- = criteria not available.

Aluminum exceeded the Federal and State secondary MCL (200 μ g/ ℓ) in two monitoring wells ranging in concentration from 749 to 3,930 μ g/ ℓ (16G00301 [749 μ g/ ℓ], and 16G00601 [3,040 to 3,930 μ g/ ℓ]) 1996 and 1997, respectively.

Antimony exceeded the Federal and State MCL (6 $\mu g/\ell$) in sample 16G00601F, which had a concentration of 124 $\mu g/\ell$. The corresponding unfiltered sample and the 1996 samples of the source monitoring wells did not have any antimony present.

Beryllium exceeded the Federal and State MCL (4 $\mu g/\ell$) in sample 16G00601F, which had a concentration of 10.3 $\mu g/\ell$ but was not detected in the unfiltered sample 16G00601.

Cadmium exceeded the Federal and State MCL (5 $\mu g/\ell$) in sample 16G00401, which had a concentration of 12.5 $\mu g/\ell$.

Iron exceeded the Federal and State MCL (300 μ g/ ℓ) in samples from four monitoring wells ranging in concentration from 1,040 to 68,600 μ g/ ℓ (16G00301 [176 to 1,040 μ g/ ℓ], 16G00601 [45,200 to 68,600 μ g/ ℓ] and 16G00701 [328 to 1,770 μ g/ ℓ]).

Manganese exceeded the Federal and State MCLs (50 $\mu g/\ell$) in samples from three monitoring wells ranging in concentration from 65.4 to 1,370 $\mu g/\ell$ (16G00401 [65.4 $\mu g/\ell$], 16G00601 [516 to 1,370 $\mu g/\ell$] and 16G00701 [1,210 $\mu g/\ell$]).

Intermediate Groundwater Samples. The following analytes were detected in groundwater samples in one or both sampling events (1996 and 1997) collected from monitoring wells screened at the intermediate level of the surficial water table.

<u>VOCs</u>. Eight VOCs (1,2-dichloroethane, 1,2-dichloroethene [total], benzene, chloroform, ethylbenzene, toluene, TCE, and xylenes [total]) were detected in the groundwater samples collected from the intermediate monitoring wells at Site 16.

- 1,2-Dichloroethane was detected in groundwater samples from three monitoring wells ranging in concentration from 1 to 24 $\mu g/\ell$ (16G00202 [0 to 24 $\mu g/\ell$], 16G00303 [2 to 8 $\mu g/\ell$], and 16G00402 [0 to 1 $\mu g/\ell$]). Groundwater samples from 16G00202 and 16G00303 exceeded the Federal MCL of 5 $\mu g/\ell$. Groundwater samples from 16G00202 and 16G00303 exceeded the Florida GCTL of 3 $\mu g/\ell$ for 1,2-dichloroethane.
- 1,2-Dichloroethene was detected in groundwater samples from three monitoring wells ranging in concentration from 1 to 50 $\mu g/\ell$ which is below the Florida GCTL and Federal MCL.

Benzene was detected in groundwater samples from four monitoring wells ranging in concentration from 0 to 820 $\mu g/\ell$ (16G00202 [750 to 820 $\mu g/\ell$], 16G00303 [0 to 130 $\mu g/\ell$], 16G00402 [0 to 28 $\mu g/\ell$], and 16G00702 [39 $\mu g/\ell$]). Groundwater samples from 16G00202, 16G00303, 16G00402, and 16G00702 exceeded both the Federal MCLs and the Florida GCTL for benzene of 5.0 and 1.0 $\mu g/\ell$, respectively.

Chloroform was detected in groundwater samples from three monitoring wells (16G00202, 16G00302, and 16G00303) at a concentration of 1 μ g/ ℓ . These concentrations exceed the Federal MCL for chloroform of 0.1 μ g/ ℓ . Chloroform was not detected in groundwater samples from the same wells during other sampling events.

TCE was detected in groundwater samples from four monitoring wells ranging in concentration from 2 to 7 $\mu g/l$ (16G00202 [6 to 7 $\mu g/l$], 16G00303 [2 $\mu g/l$], 16G00402 [2 to 3 $\mu g/l$] and 16G00702 [at 5 $\mu g/l$]. TCE was detected at a concentration of 6 and 7 $\mu g/l$ in groundwater samples from 16G00202, which exceeded the Federal MCL of 5 $\mu g/l$. TCE equaled the Florida GCTL for TCE of 3.0 $\mu g/l$ in groundwater sample 16G00402.

SVOCs. Three SVOCs (naphthalene, phenol, and bis(2-ethylhexyl)phthalate) were detected in the groundwater samples collected from the intermediate monitoring wells at Site 16. None of the detected SVOCs were detected in background groundwater samples. Bis(2-ethylhexyl)phthalate was detected in groundwater samples 16G00202 and 16G00602 at concentrations of 1 and 6 μ g/ ℓ , respectively. This concentration equals the Federal MCL and the Florida GCTL of 6 μ g/ ℓ .

<u>Pesticides</u>. One pesticide (4,4'-DDT) was detected in a sample from 16G00602 at a concentration of 0.14 $\mu g/\ell$ which exceeds the Florida GCTL of 0.1 $\mu g/\ell$. No PCB compounds were detected in any Phase IIB intermediate depth groundwater samples.

<u>Inorganic Analytes</u>. Fourteen of the twenty inorganic analytes (aluminum, antimony, barium, calcium, chromium, copper, iron, lead, magnesium, manganese, potassium, sodium, vanadium, and zinc) were detected in intermediate groundwater samples collected from Site 16. Seven inorganic analytes (barium, calcium, iron, magnesium, manganese, sodium, and zinc) were detected at concentrations exceeding the background screening concentrations.

Four inorganic analytes (aluminum, antimony, iron, and manganese) were detected at concentrations exceeding either Federal or State regulatory limits as listed below.

Aluminum exceeded the Federal and State secondary MCLs (200 $\mu g/l$) in three monitoring wells ranging in concentration from 200 to 395 $\mu g/l$ (16G00303 [222 to 395 $\mu g/l$], 16G00602 [200 to 244 $\mu g/l$], and 16G00702 [202 $\mu g/l$]).

Antimony exceeds the Federal and State MCL (6 $\mu g/\ell$) in sample 16G00303, which had a concentration of 17.4 $\mu g/\ell$.

Iron exceeded the Federal and State MCL (300 $\mu g/\ell$) in two monitoring wells ranging in concentration from 396 to 1,410 $\mu g/\ell$ (16G00303 [1,370 to 1,410 $\mu g/\ell$] and 16G00702 [201 to 526 $\mu g/\ell$]).

Manganese exceeded the Federal and State MCL (50 μ g/ ℓ) in three monitoring wells ranging in concentration from 60.3 to 896 μ g/ ℓ (16G00303 [60.3 to 89.6 μ g/ ℓ], 16G00602 [10.9 to 70.8 μ g/ ℓ] and 16G00702 [34.3 to 85 μ g/ ℓ]).

Deep Groundwater Samples. The following analytes were detected in groundwater samples in one or both sampling events (1996 and 1997) collected from monitoring wells screened in the deeper level of the surficial water table.

<u>VOCs</u>. Five VOCs (1,2-dichloroethane, 1,2-dichloroethene [total], benzene, toluene, and TCE) were detected in the groundwater samples collected from monitoring wells screened in the deeper level at Site 16.

1,2-Dichloroethane was detected in groundwater samples from two monitoring wells ranging in concentration from 20 to 29 $\mu g/l$ (16G00403 [0 to 29 $\mu g/l$] and 16G00703

[0 to 20 $\mu g/\ell$]). Groundwater samples from 16G00403 and 16G00703 exceeded the Federal MCLs and Florida GCTL of 5 and 3 $\mu g/\ell$, respectively.

1,2-Dichloroethene was detected in groundwater samples from two monitoring wells ranging in concentration from 1 to 10 $\mu g/\ell$ (16G00403 [0 to 1 $\mu g/\ell$] and 16G00703 [10 $\mu g/\ell$]) which is below State and Federal regulatory limits of 70 $\mu g/\ell$.

Benzene was detected in groundwater samples from three monitoring wells ranging in concentration from 0 to 760 $\mu g/\ell$ (16G00203 [1 to 5 $\mu g/\ell$], 16G00403 [0 to 760 $\mu g/\ell$], and 16G00703 [0 to 520 $\mu g/\ell$]). Groundwater samples from 16G00403 and 16G00703 exceeded the Federal MCLs and Florida GCTL for benzene, which are 5 and 1.0 $\mu g/\ell$, respectively.

Toluene was detected in one groundwater sample from monitoring wells 16G00203 at a concentration of 1 $\mu g/\ell$. This concentration dose not exceed State and Federal regulatory limits.

TCE was detected in one groundwater sample, 16G00703, at a concentration of 2 $\mu g/\ell$ which is below State and Federal regulatory limits.

None of the remaining VOCs were detected at concentrations exceeding the Federal or State regulatory limits.

SVOCs. Three SVOCs (naphthalene, phenol, and bis(2-ethylhexyl)phthalate) were detected in groundwater samples collected from monitoring wells screened in the deep surficial aquifer at Site 16. None of the detected SVOCs were found in background groundwater samples. Naphthalene and phenol were not detected at concentrations that exceeded either Federal MCLs or the Florida GCTLs.

Bis(2-ethylhexyl)phthalate was detected in two groundwater samples, 16G00304 and 16G00403, at concentrations of 53 and 1 $\mu g/\ell$, respectively. The groundwater sample from 16G00304 exceeds both the Federal MCL and the Florida groundwater guidance concentration 6 $\mu g/\ell$.

<u>Pesticides</u>. No pesticides or PCB compounds were detected in any groundwater samples collected from monitoring wells screened in the deeper level of the surficial aquifer.

<u>Inorganic Analytes</u>. Fifteen of the twenty inorganic analytes (aluminum, arsenic, barium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, vanadium, and zinc) were detected in deep groundwater samples collected from Site 16. Seven inorganic analytes (aluminum, copper, iron, lead, manganese, potassium, and sodium) were detected at concentrations exceeding the background screening concentrations.

Three inorganic analytes (aluminum, iron, and manganese) were detected at concentrations exceeding either Federal or State regulatory limits as listed below.

Aluminum exceeded the Federal and State secondary MCLs (200 $\mu g/l$) in two monitoring wells ranging in concentration from 278 to 1,900 $\mu g/l$ (16G00304 [90.7 to 1,900 $\mu g/l$] and 16G00403 [278 $\mu g/l$]).

Iron exceeded the Federal and State secondary MCLs (300 μ g/ ℓ) in three monitoring wells ranging in concentration from 1,040 to 1,370 μ g/ ℓ (16G00304 [111 to 1,040 μ g/ ℓ] 16G00403 [1,370 μ g/ ℓ], and 16G00703 [170 μ g/ ℓ]).

Manganese exceeded the Federal and State secondary MCLs (50 $\mu g/\ell$) in two monitoring wells ranging in concentration from 73.7 to 170 $\mu g/\ell$ (16G00304 [73.7 to 105 $\mu g/\ell$] and 16G00703 [102 to 170 $\mu g/\ell$]).

Filtered Groundwater Samples. Filtered samples for inorganics (metals only) were collected from monitoring wells 16G00201F, 16G00501F, 16G00601F, 16G00303F, and 16G00304F for comparison purposes only during the Phase IIB RI (denoted with F suffix, Tables 5-22, 5-23). Comparison of the analytical results between the filtered sample and the corresponding unfiltered sample indicates that in general, fewer analytes are detected in the filtered samples. In addition, analyte concentrations in the filtered sample are typically lower than the corresponding concentrations in the unfiltered sample. Filtered groundwater data was not used to make decisions as part of the Baseline Risk Assessment in Chapters 6.0 and 7.0 of this report.

6.0 HUMAN HEALTH RISK ASSESSMENT

A human health risk assessment (HHRA) has been conducted as part of the RI/FS for Site 16 at NAS Whiting Field. The purpose of the HHRA is to characterize the risks associated with the hypothetical exposures to site-related chemicals. This HHRA is conducted in accordance with the following guidance documents:

- Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A) (USEPA, 1989a),
- Guidance for Data Useability in Risk Assessment (Part A), Final (USEPA, 1992a), and
- Supplemental Guidance to RAGs: Region IV Bulletins, Human Health Risk Assessment (USEPA, 1995a).

Additionally, the HHRA will consider FDEP guidance:

Cleanup Target Levels for Chapter 62-777, FAC (FDEP, 1999),

The methodology for the HHRA is described in Chapter 2.0 of the GIR (HLA, 1998). The HHRA methodology presented in the GIR (HLA, 1998) consists of the following steps:

- data evaluation,
- · selection of chemicals of potential concern,
- exposure assessment,
- toxicity assessment, and
- risk characterization.

Site 16 is located southeast of Clear Creek at NAS Whiting Field. The location, physical description, and history associated with Site 16 are described in Chapter 1 of the this report. During the RI, surface soil, subsurface soil, groundwater, and surface water were collected from Site 16. Sampling locations and the sampling rationale are presented in Chapter 3 of this report.

<u>6.1 DATA EVALUATION</u>. The data evaluation involves numerous activities, including sorting data by medium, evaluating sample quantitation limits, and evaluating quality of data with respect to qualifiers.

The data for Sites 16 were divided into the following categories: surface soil, subsurface soil, groundwater, and surface water and background for each media.

Sample quantitation limits (SQLs) are compared to USEPA Region III RBCs, and Florida screening values. Surface and subsurface soil SQLs were compared to Region III RBCs and Florida SCTLs for residential and industrial scenarios, respectively. Groundwater SQLs were compared to Florida GCTLs and Region III Tap Water RBCs. Surface water SQLs were compared to Florida Cleanup Target Levels and Region IV Water Quality standards. Analyte-specific SQLs that are above RBCs and Florida screening values are identified and discussed in the uncertainty analysis.

The quality of the data was evaluated with respect to the data qualifiers. Only data of sufficient quality were retained for evaluation in this HHRA. The HHRA considers data with "J", "U", and "UJ" qualifiers as well as data with no qualifier.

6.2 SELECTION OF HUMAN HEALTH CHEMICALS OF POTENTIAL CONCERN. The human health chemicals of potential concern (HHCPCs) were selected per the methodology described in Section 2.5 of the GIR (HLA, 1998). This HHCPC methodology considers (1) frequency of detection, (2) consistency with background conditions, (3) a comparison to regulatory and risk-based screening values, and (4) a comparison to essential nutrient levels.

In selecting HHCPCs, USEPA Region IV criteria were used (USEPA, 1995a). For each medium, the following criteria were employed to exclude detected analytes from the list of HHCPCs. Each criterion by itself is justification for excluding the analyte.

Less than 5 Percent Frequency of Detection. If an analyte has a frequency of detection (number of samples in which the analyte is detected divided by the number of samples analyzed for that analyte) less than 5 percent (USEPA, 1995a) and is not selected as an HHCPC in another medium, it is not selected as an HHCPC. This criterion is not used if there are less than 20 environmental samples for a specific medium.

<u>Less than Background Screening Concentrations</u>. If the maximum detected concentration of an analyte is less than twice the arithmetic mean of the background concentration (inorganics only), the analyte is not selected as an HHCPC (USEPA, 1995a). The background screening values for surface soil, subsurface soil, groundwater, and surface water are identified in below.

- A representative surface soil background data set consisting of Troup Loamy Sand and Lakeland Sand is used for background screening of Site 16 surface soil samples. Sample locations are identified on Figure 3-10 and are discussed in Subsection 3.3.1 of the GIR (HLA, 1998). The background surface soil data used for screening surface soils at Site 16 are presented in Tables 3-8 and 3-10 of the GIR (HLA, 1998).
- Background subsurface soil sample locations are identified on Figure 3-11 and discussed in Subsection 3.3.2 of the GIR (HLA, 1998). Tables 3-15 through 3-17 of the GIR (HLA, 1998) present the background screening data and Table 3-18 presents summary statistics for screening subsurface soil at Site 16.
- Background groundwater sample locations are identified on Figure 3-12 and discussed in Subsection 3.3.3 of the GIR (HLA, 1998). Tables 3-21 through 3-23 of the GIR (HLA, 1998) present background screening data for groundwater. Table 3-24 of the GIR (HLA, 1998) presents the summary statistics used for screening the groundwater at Site 16.
- Surface water locations are identified on Figure 3-13 and are discussed in Paragraph 3.3.2.1 of the GIR (HLA, 1998). Table 3-19 of the GIR (HLA, 1998) presents summary statistics and the background screening data value used in the Site 16 HHRA surface water evaluation.

Less than Risk-Based Screening Concentrations, Standards, and Guidelines. If the maximum detected concentration of the analyte in a medium is less than its corresponding USEPA Region III RBC values (USEPA, 1996a), and less than Federal and Florida standards, the analyte is not selected as an HHCPC (USEPA, 1995a). The target hazard quotient in the USEPA Region III RBC table is 1 and the target cancer risk is 1×10^{-6} . All RBCs based on noncarcinogenic effects are adjusted for a target hazard quotient of 0.1 per Region IV guidance (USEPA, 1995a).

The residential soil RBCs are used for surface soil and the industrial soil RBCs are used for subsurface soil. No RBC is available for lead in soil due to a lack of toxicity data. Based on a USEPA recommendation, a screening level of 400 milligrams per kilogram (mg/kg) for lead under residential land use is used as the RBC for lead in soil (USEPA, 1994c). The maximum detected concentrations of analytes in surface soil are also compared to residential Florida SCTLs (FDEP, 1999). The maximum detected concentration of any organic analyte in surface soil that was also detected in groundwater (above a standard or guideline) is compared to the Florida leaching value (FDEP, 1999) for that analyte.

Tap water RBCs (USEPA, 1997a), Federal MCLs (USEPA, 1996b) and Florida Groundwater GCTLs (FDEP, 1999) are used for groundwater.

Florida Surface Water Cleanup Target Levels (freshwater) (FDEP, 1996b), and Region IV Water Quality Standards for human health consumption of water and organisms (USEPA, 1996b) are used to screen surface water. Tap water RBCs (USEPA, 1997a) are used when a Florida or Federal water quality standard is not available.

Less than Essential Nutrient Screening Values. If the maximum detected concentration of an essential nutrient in a medium is below a toxic level and consistent with or only slightly above its background concentration, the essential nutrient is not selected as an HHCPC. The derivation of essential nutrient screening values is presented in Appendix C-1 of the GIR (HLA, 1998).

HHCPCs were not screened using the iron essential nutrient value; the RBC was used instead. However, if iron is determined to be a risk driver, a comparison of the risk concentrations against the essential nutrient level for iron will be presented in the uncertainty section for that medium.

If the analyte meets any of the above criteria, is not a member of the same chemical class as other HHCPCs in the medium, and is not a breakdown product of other HHCPCs in the medium, then the analyte is not selected as an HHCPC. In situations where multiple screening values are available, a chemical is excluded only if its maximum screening concentration is less than all of the corresponding screening values. Appendix G (Tables G-1 through G-4) presents the RBCs, regulatory guidance values, and applicable or relevant and appropriate requirement (ARARs) that are used in HHCPC selection. After applying these criteria with professional judgment, HHCPCs are identified for each medium. HHCPC selection for each media is presented below in Subsections 6.2.1 through 6.2.4.

 $\underline{6.2.1}$ Surface Soil Twenty samples and two duplicates were collected from Site 16 (specific samples that are included in the HHRA are listed in the footnotes

of Table 6-1). The samples locations are presented on Figures 3-1 and 5-11. VOCs, SVOCs, pesticides, PCBs, and inorganic data from all of these samples are evaluated in this HHRA. Table 6-1 identifies eight PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, carbazole, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene), one pesticide (dieldrin) and six inorganic analytes (aluminum, arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, and vanadium) as HHCPCs for surface soil at Site 16.

Barium, chromium, copper, and vanadium were recently added as HHCPCs due to changes in the USEPA Region III RBCs and Florida Cleanup Target Levels. Barium was detected in one sample above the Florida SCTL of 110 mg/kg, but was below the RBC of 550 mg/kg. Chromium was detected above the RBC of 23 mg/kg in two samples, but was below the SCTL of 210 mg/kg. Copper was detected in two soil samples above the SCTL of 110 mg/kg but was below the RBC of 310 mg/kg. Vanadium was detected above the SCTL in nine samples but all detections were below the RBC of 55 mg/kg. Barium, chromium, copper, and vanadium were not carried through the remainder of the HHRA, but will be addressed in the feasibility study as HHCPCs.

- 6.2.2 Subsurface Soil Five subsurface soil samples (16-SS-06-04, 16-SS-10-05, 16SS0201, 16SS0302, and 16SS0403) and a duplicate sample (16SS0403A) were collected from Site 16 (Figure 3-4). The analytical data are presented in Tables 5-12 and 5-13. VOCs, SVOCs, pesticides, PCBs, and inorganic data from these sample are evaluated in this HHRA. Table 6-2 identifies three inorganic analytes (arsenic, iron, and lead) as HHCPCs for subsurface soil at Site 16.
- $\underline{6.2.3}$ Surface Water One surface water sample (16W00101) was collected from Site 16 (Figure 3-4). The analytical data are presented in Table 5-16. VOCs, SVOCs, pesticides, PCBs, and inorganic data from this sample are evaluated in this HHRA. As shown in Table 6-3, only aluminum and beryllium were identified as HHCPCs in surface water.

Aluminum was recently added as an HHCPC due to changes in the Florida Cleanup Target Levels. Aluminum was not carried through the remainder of the HHRA, but will be addressed in the feasibility study as needed.

<u>6.2.4 Groundwater</u> Seventeen groundwater samples and three duplicates were collected from Site 16 (samples that are evaluated in the HHRA are identified in the notes of Table 6-4). The sample locations are presented on Figure 3-2. The analytical data are presented in Tables 5-20 through 5-23. VOCs, SVOCs, pesticides, PCBs, and inorganic data from these samples are evaluated in this HHRA.

The groundwater data were managed in a tiered manner. The data for each analyte from the most recent sampling event at each sampling location were used in the HHRA unless the analyte was not detected in the most recent data set but was detected previously. If the analyte was detected in a previous sampling event then those data were evaluated in the HHRA.

Table 6-4 identifies five VOCs (1,2-dichloroethane, 1,2-dichloroethene [total], benzene, chloroform, TCE; one SVOC (bis(2-ethylhexyl)phthalate), one pesticide (4,4'-DDT), and six inorganics (aluminum, arsenic, barium, cadmium, iron, and manganese) as HHCPCs for groundwater in Site 16.

Table 6-1 Selection of Human Health Chemicals of Potential Concern for Surface Soil

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

			Milton,	Honua				
Analyte	Frequency of Detection ¹	Reporting Limit Range	Detected Concentrations Range ²	Mean of Detected Concentrations ³	Background Screening Concentration ⁴	Selected Screening Concentration ⁵	Analyte HHCPC? (Yes/No)	Reason ⁶
Volatile Organic Compounds	(µg/kg)							
Toluene	1/20	6 to 13	1	1	NA	380,000	No	F, S
Xylenes (total)	3/20	6 to 13	1 to 5	2.7	NA	5,900,000	No	S
Semivolatile Organic Compo	unds (µg/kg)							
Anthracene	1/20	350 to 420	95	95	NA	2,300,000	No	F, S
Benzo(a)anthracene	4/20	350 to 420	56 to 2,300	670	NA	870	Yes	
Benzo(a)pyrene	5/20	350 to 840	71 to 3,100	750	NA	87	Yes	
Benzo(b)fluoranthene	4/20	350 to 840	86 to 3,600	1,100	NA	870	Yes	
Benzo(g,h,i)perylene	3/20	350 to 420	120 to 1,200	600	NA	2,300	No	S
Benzo(k)fluoranthene	3/20	350 to 420	73 to 3,200	1,200	NA	8,700	Yes	С
bis(2-Ethylhexyl)phthalate	7/20	350 to 420	43 to 120*	70	NA	46,000	No	s
Carbazole	1/17	350 to 420	97	97	NA	32,000	Yes	С
Chrysene	5/20	350 to 420	54 to 3,200	740	NA	87,000	Yes	С
Dibenz(a,h)anthracene	2/20	350 to 420	110 to 700	410	NA	87	Yes	
Fluoranthene	4/20	350 to 420	59 to 2,300	680	NA	310,000	No	S
indeno(1,2,3-cd)pyrene	4/20	350 to 420	62 to 1,900	570	NA	870	Yes	
Phenanthrene	2/20	350 to 420	52 to 440	250	NA	230,000	No	s
Pyrene	4/20	350 to 420	44 to 1,700	520	NA	230,000	No	S
See notes at end of table.								-

The state of the s

Table 6-1 (Continued) Selection of Human Health Chemicals of Potential Concern for Surface Soil

Analyte	Frequency of Detection ¹	Reporting Limit Range	Detected Concentrations Range ²	Mean of Detected Concentrations ³	Background Screening Concentration ⁴	Selected Screening Concentration⁵	Analyte HHCPC? (Yes/No)	Reason ⁶
Pesticides and PCBs (µg/kg)								
4,4'-DDD	2/20	3.6 to 21	2.1 to 18	10	NA	2,700	No	S
4,4'-DDE	9/20	3.6 to 21	2.6* to 100	30	NA	1,900	No	S
4,4'-DDT	9/20	3.6 to 21	3.3* to 89	21	NA	1,900	No	S
Aroclor-1254	2/20	36 to 210	36 to 130	83	NA	. 320	No	S
Aroclor-1260	1/20	36 to 210	79*	79	NA	320	No	F, S
Dieldrin	8/20	3.6 to 21	2.5 to 130	31	NA	40	Yes	
alpha-Chlordane	3/20	1.8 to 99	1.6 to 9.4*	4.5	NA	1,800	No	S
gamma-Chlordane	3/20	1.8 to 99	1 to 6.0*	3.1	NA	1,800	No	S
Inorganic Analytes (mg/kg)								
Aluminum	20/20	NA	1,890* to 18,600	8,720	13,500	7,800	Yes	
Antimony	1/20	2.7 to 12	5.9	5.9	8	3.1	No	F, B
Arsenic	20/20	NA	0.7* to 12.1	2.8	⁷ 4.6	0.43	Yes	
Barium	20/20	NA	4.5* to 257	36.8	18.8	110	Yes	S
Beryllium	15/20	1	0.06 to 0.3*	0.12	0.36	16	No	В
Cadmium	17/20	0.61 to 1	0.21 to 7.6	1.3	0.98	3.9	Yes	
Calcium	20/20	NA	70.8 to 2,350	584	446	1,000,000	No	S
Chromium	20/20	NA	3.2 to 29.2	10.6	10	23	Yes	S
Cobalt	11/20	10	0.69 to 4.1	1.7	2.8	470	No	S
Copper	19/20	5 .	2.9 to 202	34.1	8	110	Yes	S
See notes at end of table.		-		Add a second				<u>-</u>

Table 6-1 (Continued) Selection of Human Health Chemicals of Potential Concern for Surface Soil

Analyte	Frequency of Detection ¹	Reporting Limit Range	Detected Concentrations Range ³	Mean of Detected Concentrations⁴	Background Screening Concentration ⁴	Selected Screening Concentration⁵	Analyte HHCPC? (Yes/No)	Reason ⁶
Inorganic Analytes (mg/kg) (Continued)							
Cyanide	8/20	0.24 to 0.5	0.12* to 0.51	0.2	0.28	30	No	S
Iron	20/20	NA	1,390* to 48,900	9,240	7,744	2,300	Yes	
Lead	20/20	NA	4.4 to 759	110	10.2	400	Yes	
Magnesium	20/20	NA	34.2* to 443	157	244	460,468	No	S
Manganese	20/20	NA	5.3* to 372	129	324	160	Yes	
Mercury	9/20	0.08 to 0.1	0.05 to 0.65	0.17	0.12	2.3	No	S
Nickel	11/20	2.4 to 8	2.3 to 26	7.2	6.8	110	No	S
Potassium	6/20	133 to 1,000	69.7 to 289*	159	177	1,000,000	No	S
Selenium	7/20	0.41 to 1	0.15 to 0.35*	0.21	0.46	39	No	S
Silver	6/20	0.33 to 2	0.87 to 7.1	2.8	0.7	39	No	S
Sodium	18/20	1,000	114 to 361	178	382	1,000,000	No	B, S
Thallium	2/20	0.46 to 2	0.13 to 0.18	0.16	1.16	5.5	No	B, S
Vanadium	20/20	NA	3.3* to 28.9	15.8	19	15	Yes	S
Zinc	20/20	NA	3.8* to 773	104	15.8	2,300	No	s

Table 6-1 (Continued) Selection of Human Health Chemicals of Potential Concern for Surface Soil

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

1 Frequency of detection is the number of samples in which the analyte was detected over the total number of samples analyzed (excluding rejected values).

² A value indicated by an asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetect, one-half of the contract-required quantification limit/contract-required detection limit is used as a surrogate concentration for the nondetect.

³ The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected. It does not include those samples with "R", "U", or "UJ" validation qualifiers.

⁴ The background screening value is twice the average of detected concentrations for inorganic analytes in background samples.

For all chemicals except the essential nutrients (calcium, magnesium, potassium, and sodium), the lesser of the U.S. Environmental Protection Agency (USEPA) Region III Risk-Based Concentration (RBC) table for residential soil exposure per January 1993 guidance (*Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening*, EPA/903/R-93-001 [USEPA, 1993a]) or the Florida Soil Cleanup Target Levels residential scenario (FDEP, 1999) was used for screening. For analytes that are HHCPCs in groundwater, the Florida Soil Cleanup Target Levels based on leachability are used for screening. Values from the USEPA Region III RBC Tables are based on an excess lifetime cancer risk of 1 x 10⁻⁶ or an adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances. Lead value is from the Revised Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites (Office of Solid Waste and Emergency Response Directive 9355.4-12 [USEPA, 1994c]). Values are presented in Appendix D of this RI report.

⁶ Analyte was included or excluded from the risk assessment for the following reasons:

B = the maximum detected concentration did not exceed the background screening concentration; therefore, the analyte will not be considered further.

C = the analyte is a carcinogenic PAH and was selected as an HHCPC because one or more other carcinogenic PAHs were selected.

F = the frequency of detection was less than 5 percent; therefore, the analyte will not be considered further.

S = the maximum detected concentration did not exceed the screening concentration; therefore, the analyte will not be considered further.

⁷ Arsenic background number is presented in Appendix I of the GIR.

Notes: Samples: 16-SL-01, 16-SL-02, 16-SL-03, 16S00101, 16S00201, 16S00301, 16S00401, 16S00501, 16S00601, 16S00601DL (all but benzo(a)pyrene and benzo(b)fluoranthene), 16S00701, 16S00801, 16S00801RE, 16S00901 (all but semivolatiles), 16S00901R (semivolatiles only), 16S01001, 16S01101, 16S01201, 16S01301, 16S01401, 16S01501, 16S01601, and 16S01701.

Duplicate samples: 16S00101D and 16S01001D.

Background samples: BKG-SL-01, BKG-SL-02, BKG-SL-06, BKG-SL-07, BKG-SL-08, BKG-SL-09, BKG-SL-10, BKS00101, BKS00201, BKS00401, and BKS00501. Background duplicate sample: BKG-SL-09A, BKS00201D.

HHCPC = human health chemical of potential concern.

 $\mu q/kq = micrograms per kilogram.$

NA = not applicable.

* = average of sample and its duplicate.

PCB = polychlorinated biphenyl.

DDD = dichlorodiphenyldichloroethane.

DDE = dichlorodiphenyldichloroethene.

DDT = dichlorodiphenyltrichloroethane.

mg/kg = milligrams per kilogram.

Table 6-2 Selection of Human Health Chemicals of Potential Concern for Subsurface Soil at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

			WILLOT	i, Fiorida				
Analyte	Frequency of Detection ¹	Reporting Limit Range	Detected Concentrations Range ²	Mean of Detected Concentrations ³	Background Screening Concentration⁴	Selected Screening Concentration ⁵	Analyte HHCPC? (Yes/No)	Reason
Volatile Organic Compound	<u>ls</u> (µg/kg)							
Acetone	1/5	11 to 145	87	87	NA	5,500,000	No	s
2-Butanone	1/5	11 to 12	19	19	NA	21,000,000	No	S
Carbon disulfide	5/5	NA	1 to 26	9.6	NA	1,400,000	No	S
Ethylbenzene	1/5	11 to 12	4*	4	NA	8,400,000	No	s
Methylene chloride	1/5	19 to 120	87*	87	NA	23,000	No	s
Toluene	1/5	11 to 12	1	1	NA	2,600,000	No	S
Xylenes (total)	5/5	NA	2 to 11	5.2	NA	40,000,000	No	S
Semivolatile Organic Comp	ounds (µg/kg)							
2-Methylnaphthalene	1/5	370 to 415	39	39	NA	560,000	No	S
Acenaphthene	1/5	370 to 415	77	77	NA	12,000,000	No	S
Benzo(a)pyrene	1/5	370 to 415	44	44	NA	500	No	S
Benzo(b)fluoranthene	1/5	370 to 415	77	77	NA	4,800	No	S
Benzo(k)fluoranthene	1/5	370 to 415	48	48	NA	52,000	No	S
Fluoranthene	2/5	370 to 415	120 to 270	200	NA .	8,200,000	No	s
Fluorene	1/5	370 to 415	110	110	NA	8,200,000	No	S
Naphthalene	1/5	370 to 415	39	39	NA	270,000	No	S
Phenanthrene	2/5	370 to 415	58 to 340	200	NA	6,100,000	No	S
Pyrene	2/5	370 to 415	77 to 190	130	NA	6,100,000	No	s
bis(2-Ethylhexyl)phthalate	2/5	370 to 415	39 to 150	95	NA	280,000	No	s

200

Table 6-2 (Continued) Selection of Human Health Chemicals of Potential Concern for Subsurface Soil at Site 16

			·					
Analyte	Frequency of Detection ¹	Reporting Limit Range	Detected Concentrations Range ²	Mean of Detected Concentrations ³	Background Screening Concentration ⁴	Selected Screening Concentration ⁵	Analyte HHCPC? (Yes/No)	Reason
Pesticides (µg/kg)			•					
4,4'-DDD	3/5	3.7 to 8	2.2 to 36	14	, NA	18,000	No	s
4,4'-DDE	3/5	3.7 to 8	1.8 to 83	38	NA	13,000	No	S
4,4'-DDT	2/5	3.7 to 8	5.7 to 52	29	NA	11,000	No	S
Dieldrin	1/5	3.7 to 7.6	1.6	1.6	NA	300	No	S
Inorganic Analytes (mg/kg)								
Aluminum	5/5	NA	11,000 to 24,300*	17,000	27,834	200,000	No	B, S
Antimony	3/5	2.4 to 12	2.5 to 6.7	5	4.4	82	No	S
Arsenic	5/5	NA	1.5 to 15.1	7.2	6.2	3.7	Yes	
Barium	5/5	NA	20* to 175	77.6	15.8	14,000	No	S
Beryllium	5/5	NA	0.18 to 0.26*	0.21	0.26	410	No	B, S
Cadmium	3/5	0.67 to 1	2.4 to 9	6.7	0.92	100	No	B, S
Calcium	4/5	510 to 1,000	254 to 5,870	2,090	444	1,000,000	No	s
Chromium	5/5	NA	10.5 to 36.9	23.7	22.8	400	No	S
Cobalt	5/5	NA	1.1 to 9.6	3.7	1.48	12,000	No	S
Copper	5/5	NA	4.8 to 3,620	759	8.8	8,200	No	S
Cyanide	1/4	0.09 to 1	0.14	0.14	ND	4,100	No	S
Iron	5/5	NA	6,670 to 74,800	29,400	18,110	61,000	Yes	
Lead	5/5	NA	6.8 to 766	286	8.4	400	Yes	

Table 6-2 (Continued) Selection of Human Health Chemicals of Potential Concern for Subsurface Soil at Site 16

Analyte	Frequency of Detection ¹	Reporting Limit Range	Detected Concentrations Range ²	Mean of Detected Concentrations ³	Background Screening Concentration ⁴	Selected Screening Concentration⁵	Analyte HHCPC? (Yes/No)	Reason ⁶
Inorganic Analytes (mg	/kg) (Continued)							
Magnesium	5/5	NA	198* to 586	344	272	460,468	No	S
Manganese	5/5	NA	47* to 638	261	42.6	4,100	No	S
Mercury	4/5	0.1 to 0.12	0.17 to 0.43	0.28	ND	26	No	S
Nickel	5/5	NA	3.4* to 35.9	14.5	5	4,100	No	S
Potassium	4/5	153 to 1,000	166 to 412	287	181	1,000,000	No	s
Silver	3/5	0.46 to 2	0.79 to 4.3	2.8	1.12	1,000	No	S
Sodium	4/5	224 to 1,000	207 to 514	324	ND	1,000,000	No	S
Vanadium	5/5	NA	19 to 65.4*	31.3	45	1,400	No	S
Zinc	5/5	NA	10.6 to 895	316	15.6	61,000	No	S

Table 6-2 (Continued) Selection of Human Health Chemicals of Potential Concern for Subsurface Soil at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

1 Frequency of detection is the number of samples in which the analyte was detected over the total number of samples analyzed (excluding rejected values).

² A value indicated by an asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetect, one-half of the contract-required quantification limit/contract-required detection limit is used as a surrogate concentration for the nondetect.

³ The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected. It does not include those samples with "R", "U", or "UJ" validation qualifiers.

⁴ The background screening value is twice the average of detected concentrations for inorganic analytes in background samples.

⁵ For all chemicals except the essential nutrients (calcium, magnesium, potassium, and sodium), lesser of the U.S. Environmental Protection Agency (USEPA) Region III Risk-Based Concentration (RBC) table for industrial soil exposure per January 1993 guidance (*Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening*, EPA/903/R-93-001) or Florida Soil Cleanup Target Level industrial scenario (Florida Department of Environmental Protection, 1999) were used for screening. For analytes that are HHCPCs in groundwater, the Florida Soil Cleanup Target Levels based on leachability are used for screening. Actual values are taken from the USEPA Region III RBC Tables, and are based on an excess lifetime cancer risk of 1 × 10⁻⁶ or an adjusted hazard quotient of 0.1. For the essential nutrients, screening values were derived based on recommended daily allowances. Lead value is from the Revised Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites (Office of Solid Waste and Emergency Response Directive 9355.4-12 [USEPA, 1994c]). Values are presented in Appendix D of this RI report.

⁶ Analyte was included or excluded from the risk assessment for the following reasons:

B = the maximum detected concentration did not exceed the background; therefore, the analyte will not be considered further.

S = the maximum detected concentration did not exceed the screening concentration; therefore, the analyte will not be considered further.

Notes: The average of a sample and its duplicate is used for all table calculations.

Samples: 16-SS-06-04, 16-SS-10-05, 16SS0201, 16SS0302, and 16SS0403.

Duplicate sample: 16SS0403A.

Background samples: BKB00101, BKB00102, BKB00201, BKB00202, BKB00301, BKB00302, BKB00401, BKB00402, BKB00501, BKB00502, BKB00601, BKB00602, BKB00701, and BKB00702.

Background duplicate samples: BKB00401D, and BKB00602D.

HHCPC = human health chemical of potential concern.

 $\mu g/kg = micrograms per kilogram.$

* = average of sample and its duplicate.

NA = not applicable.

DDD = dichlorodiphenyldichloroethane.

DDE = dichlorodiphenyldichloroethene.

DDT = dichlorodiphenyltrichloroethane.

mg/kg = milligrams per kilogram.

ND = not detected in any background sample.

Table 6-3 Selection of Human Health Chemicals of Potential Concern for Surface Water

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Analyte	Frequency of Detection ¹	Reporting Limit Range	Detected Concentrations Range (*) ²	Mean of Detected Concentrations ³	Background Screening Concentration ⁴	Selected Screening Concentration⁵	Analyte HHCPC? (Yes/No)	Reason ⁶
norganic Analytes (μ	/g/ £)							
Aluminum	1/1	NA	758	758	ND	13	Yes	
3arium *	1/1	NA	28.6	28.6	48.8	2,000	No	B, S
Beryllium	1/1	NA	0.21	0.21	ND	0.13	Yes	
Calcium	1/1	NA	8,890	8,890	1,957	1,055,398	No	S
ron	1/1	NA	730	730	828	300	No	В
_ead	1/1	NA	5.2	5.2	ND	15	No	S
Magnesium	1/1	NA	1,170	1,170	1,767	118,807	No	B, S
Manganese	1/1	NA	4.4	4.4	32.4	50	No	B, S
Potassium	1/1	NA	2,780	2,780	ND	297,016	No	s
Sodium	1/1	NA	1,120	1,120	4,060	396,022	No	B, S
Zinc	1/1	NA	29.2	29.2	ND	1,100	No	S

海湾

Table 6-3 (Continued) Selection of Human Health Chemicals of Potential Concern for Surface Water

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

¹ Frequency of detection is the number of samples in which the analyte was detected over the total number of samples analyzed (excluding rejected values).

² A value indicated by an asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetect, one-half of the contract-required quantification limit/contract-required detection limit is used as a surrogate concentration for the nondetect.

³ The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected. It does not include those samples with "R", "U", or "UJ" validation qualifiers.

⁴ The background screening value is twice the average of detected concentrations for inorganic analytes in background samples.

For all chemicals except the essential nutrients (calcium, magnesium, potassium, and sodium), the lesser of the U.S. Environmental Protection Agency (USEPA), Region IV Water Quality Standards or the Florida Surface Water Cleanup Target Levels (FDEP, 1999) is used for the screening concentration. If no water quality standard is available, then the USEPA Risk-Based Concentration (RBC) Table for tap water exposure per January 1993 guidance (*Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening*, EPA/903/R-93-001 [USEPA, 1993a]) was used for screening. Actual values are taken from the USEPA Region III RBC Tables dated October 1998, and are based on a excess lifetime cancer risk of 1 × 10⁻⁶ or an adjusted hazard quotient of 0.1 (USEPA, 1997c). For the essential nutrients, screening values were derived based on recommended daily allowances. Values are presented in Appendices B-1 and B-2 of the General Information Report.

⁶ Analyte was included or excluded from the risk assessment for the following reasons:

B = the maximum detected concentration did not exceed the background screening concentration; therefore, the analyte will not be considered further.

S = the maximum detected concentration did not exceed the screening concentration; therefore, the analyte will not be considered further.

Notes: The average of a sample and its duplicate is used for all table calculations.

Sample: 16W00101. Duplicate sample: None.

Background samples: STA3SW01 and STA10SW01.

* indicates the average of a sample and its duplicate. HHCPC = human health chemical of potential concern.

 $\mu g/\ell$ = micrograms per liter.

NA = not applicable.

ND = not detected in any background samples.

Table 6-4 Selection of Human Health Chemicals of Potential Concern for Unfiltered Groundwater at Site 16

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

			M	ilton, Florida				
Analyte	Frequency of Detection ¹	Reporting Limit Range	Detected Concentrations Range ²	Mean of Detected Concentrations ³	Background Screening Concentration⁴	Selected Screening Concentration ⁵	Analyte HHCPC? (Yes/No)	Reason
Volatile Organic Compound	<u>s</u> (μg/ℓ)							
1,2-Dichloroethane	6/17	10 to 50	1 to 32	19	NA	0.21	Yes	
1,2-Dichloroethene (total)	6/17	10 to 50	1 to 50	17	NA	5.5	Yes	
Benzene	7/17	10 to 50	1 to 820	430	NA	0.36	Yes	
Chloroform	3/17	10 to 40	1	1	NA	80.0	Yes	
Ethylbenzene	2/17	10 to 50	5 to 6	5.5	NA	130	No	S
Toluene	2/17	10 to 50	1	1	NA	75	No	S
Trichloroethene	5/17	10 to 50	2 to 7	3.8	NA	1.6	Yes	
Xylenes (total)	1/17	10 to 50	1	1	NA	1,200	No	s
Semivolatile Organic Comp	ounds (µg/£)							
Naphthalene	3/17	10	1	1	NA	20	No	s
Phenol	3/17	10	4 to 8	5.7	NA	10	No	S
bis(2-Ethylhexyl)phthalate	7/17	10	1 to 53	9.5	NA	4.8	Yes	
Pesticides (µg/1)								
4,4'-DDT	2/17	0.1	0.14 to 0.15	0.15	NA	0.1	Yes	
Inorganic Analytes (µg/ℓ)								
Aluminum	10/17	14.65 to 200	121 to 3,930	796	654	50	Yes	
Antimony	1/17	8.6 to 60	17.4	17.4	20.4	1.5	No	В
Arsenic	4/17	0.5 to 10	0.6 to 3.6	1.5	ND	0.045	Yes	
Barium	17/17	NA	10* to 456	53.9	72.6	260	Yes	
Beryllium	1/17	0.3 to 5	0.42	0.42	0.94	0.016	No	В
Cadmium	2/17	1.2 to 5	2.2 to 12.5	7.4	4.4	1.8	Yes	

-

Table 6-4 (Continued) Selection of Human Health Chemicals of Potential Concern for Unfiltered Groundwater at Site 16

Analyte	Frequency of Detection ¹	Reporting Limit Range	Detected Concentrations Range ²	Mean of Detected Concentrations ³	Background Screening Concentration ⁴	Selected Screening Concentration ⁵	Analyte HHCPC? (Yes/No)	Reason
Inorganic Analytes (µg/ℓ) (C	ontinued)							
Calcium	15/17	236.5 to 308	623 to 78,800	16,500	3,316	1,055,398	No	S
Chromium	4/17	2 to 10	2.1 to 4.6	2.9	30	18	No	B, S
Cobalt	2/17	1.15 to 50	2.2* to 3	2.6	ND	220	No	S
Copper	6/17	1.1 to 25	1.4 to 11.9	4.2	10.8	1,000	No	s
Cyanide	1/17	1.5 to 5.2	12	12	7	73	No	S
Iron	14/17	41.2 to 100	7.3* to 68,600	5,540	964	300	Yes	
Lead	4/17	0.5 to 3	0.5 to 5.7	3.1	ND	15	No	S
Magnesium	17/17	NA	269* to 8,690	1,840	2,426	118,807	No	S
Manganese	17/17	NA	1.3* to 1,370	188	42.8	50	Yes	
Nickel	3/17	7.3 to 40	7.7 to 8.7	8.2	42.8	. 73	No	B, S
Potassium	13/17	316 to 5,000	322 to 4,790	1,600	1,528	297,016	No	S
Sodium	17/17	NA	1,500* to 20,400	4,470	4,772	160,000	No	S
Vanadium	4/17	1.2 to 50	1.3 to 25.2	7.6	3.8	26	No	S
Zinc 4	8/17	1.5 to 20	26.7 to 381	138	200	1,100	No	S

Table 6-4 (Continued) Selection of Human Health Chemicals of Potential Concern for Unfiltered Groundwater at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

1 Frequency of detection is the number of samples in which the analyte was detected over the total number of samples analyzed (excluding rejected values).

² A value indicated by an asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetect, one-half of the contract-required quantification limit/contract-required detection limit is used as a surrogate concentration for the nondetect.

³ The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected. It does not include those samples with "R", "U", or "UJ" validation qualifiers.

⁴ The background screening value is twice the average of detected concentrations for inorganic analytes in background samples.

For all chemicals except the essential nutrients (calcium, magnesium, potassium, and sodium), the lesser of the U.S. Environmental Protection Agency (USEPA), Region III Risk-Based Concentration (RBC) table for tap water exposure per January 1993 guidance (Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening, EPA/903/R-93-001 [USEPA, 1993a]) or the Florida Groundwater Cleanup Target Levels (FDEP, 1999) was used for screening. Actual values are taken from the USEPA Region III RBC Tables dated October 1998, and are based on an excess lifetime cancer risk of 1 × 10⁻⁶ or an adjusted hazard quotient of 0.1 (USEPA, 1997c). For the essential nutrients, screening values were derived based on recommended daily allowances. Values are presented in Appendix F.

⁶ Analyte was included or excluded from the risk assessment for the following reasons:

- B = the maximum detected concentration did not exceed the background screening concentration; therefore, the analyte will not be considered further.
- S = the maximum detected concentration did not exceed the screening concentration; therefore, the analyte will not be considered further.

Notes: Samples: 16G00101, 16G00201, 16G00202 (except benzene), 16G00202DL (benzene only), 16G00203, 16G00301, 16G00302, 16G00303, 16G00304, 16G00304, 16G00401, 16G00402, 16G00403, 16G00501, 16G00601, 16G00602, 16G00701, 16G00702 (except benzene), 16G00703 (except benzene), 16G00702DL, 16G00703DL (benzene only)

Duplicate sample: 16G00501D, 16G00101D, 16G00401D.

Background samples: BKG00101 through BKG00103, BKG00201 through BKG00203, and BKG00301.

Background duplicate sample: BKG00101D.

HHCPC = human health chemical of potential concern.

 $\mu g/\ell = micrograms per liter.$

NA = not applicable.

DDT = dichlorodiphenyltrichloroethane.

ND = not detected in any background samples.

* = average of sample and its duplicate.

- <u>6.3 EXPOSURE ASSESSMENT</u>. The exposure assessment methodology is described in Subsection 2.5.3 of the GIR (HLA, 1998). This process involves the following several steps:
 - characterization of the exposure setting in terms of physical characteristics and the populations that may hypothetically be exposed to site-related chemicals;
 - · identification of potential exposure pathways and receptors; and
 - quantification of exposure for each population in terms of the amount of chemical either ingested, inhaled, or absorbed through the skin from all complete or hypothetically complete (potential future) exposure pathways.

Summaries of hypothetical exposure pathways to chemicals detected at Site 16 are presented on Figure 6-1.

The hypothetical pathways including medium and route of exposure, the hypothetical exposed population, and the rationale for pathway selection or exclusion are provided in Table 6-5, and are described in more detail in Subsections 6.3.1 through 6.3.3. Receptor-specific exposure parameters for each exposure scenario are presented in Appendix G of the GIR (HLA, 1998). Risk calculation spreadsheets in Appendix G to this RI report also contain the assumptions for exposure parameters and quantitation of exposures.

6.3.1 Surface Soil No humans currently reside or work at Site 16. There is however, a current exposure potential for a trespasser (adult or adolescent) and a site maintenance worker. Therefore, these two receptors will be evaluated as a current exposure scenario.

Site 16 could be developed eventually for residential land use; therefore, the residential receptor will be evaluated as part of the hypothetical future land use scenario. Also, because there are no buildings at the site, exposure of occupational workers will be considered only as part of the future land use scenario. Other possible future exposure scenarios include excavation activities, such as installation of utility lines, and site maintenance, such as mowing the grass.

Exposures of hypothetical future residents (adult and child), hypothetical future occupational workers, current and hypothetical future site maintenance workers, hypothetical future excavation workers, and hypothetical current and future trespassers (adult and child) to surface soil contaminants through ingestion, dermal contact, and inhalation of particulates are evaluated in this HHRA.

6.3.2 Subsurface Soil There are no current exposures to subsurface soil because no excavation or construction activities are ongoing at Site 16. However, if Site 16 is developed for residential or industrial use or if hypothetical excavation activities occur in the future, an excavation worker could be exposed to contaminants in subsurface soil. Therefore, exposure of excavation workers or construction workers to contaminants in subsurface soil (incidental ingestion, dermal contact, and inhalation of fugitive dust) are evaluated in this HHRA.

Table 6-5 Summary of Potential Exposure Pathways at Site 16

		Minton, i	IOIIGA	
Medium of Exposure	Route of Exposure	Potentially Exposed Population	Selected for Evaluation ?	Reason for Selection or Evaluation
Current Land Use				
Surface Soil	Dermal contact with soil, ingestion of soil, and inha- lation of fugitive dust.	Resident (adult and child) Trespasser (adult and adolescent) Occupational worker (adult) Site maintenance worker (adult) Excavation worker (adult)	No Yes No Yes No	No humans currently reside at Site 16. Adolescents and adults may be exposed to contaminants in the surface soil while trespassing. The site maintenance workers may be exposed to contaminants in surface soil while performing routine site activities.
Subsurface Soil	Dermal contact with soil, ingestion of soil, and inhalation of fugitive dust.	Excavation worker (adult)	No	There are no excavation activities currently at Site 16.
Surface water	Ingestion and dermal contact with surface water.	Trespasser (adult and adolescent)	Yes	Adolescent and adult may be exposed to contaminants in surface water while trespassing.
Groundwater	Ingestion of groundwater as drinking water.	Resident (adult)	No	There are no current exposures to groundwater.

Table 6-5 (Continued) Summary of Potential Exposure Pathways at Site 16

		Milton, I	Tonua	
Medium of Exposure	Route of Exposure	Potentially Exposed Population	Selected for Evaluation ?	Reason for Selection or Evaluation
Future Land Use				
Surface soil	Dermal contact with soil, ingestion of soil, and inhalation of fugitive dust.	Resident (child and adult) Trespasser (adolescent and adult) Occupational worker (adult) Site maintenance worker (adult) Excavation worker (adult)	Yes Yes Yes Yes Yes	If Site 16 is developed for residential use, resident, trespassers, occupational worker, site maintenance worker and excavation worker could be exposed to chemicals in surface soil.
Subsurface soil	Dermal contact with soil, ingestion of soil, and inhalation of fugitive dust.	Excavation worker (adult)	Yes	It is possible that an excavation worker could be exposed to subsurface soil in the future if the site is developed.
Surface Water	Ingestion and dermal contact with surface water	Resident (adult and child) Trespasser (adult and adolescent)	Yes Yes	If Site 16 is developed for residential use, residents could be exposed to contaminants in surface water. Trespassers could be exposed to chemicals in surface water while wading.
Groundwater	Ingestion of groundwater as drinking water and inhalation of volatiles while showering	Resident (adult and child)	Yes	If Site 16 is developed for residential use, drinking water wells in the surficial aquifer could be influenced by contaminants in the groundwater associated with Site 16. Therefore, future residents could be exposed to contaminants in the surficial aquifer.

- 6.3.3 Surface Water Currently, Site 16 is not used for any residential, occupational, or recreational purpose. Therefore, the only potentially complete exposure pathways are for trespassers (adult or adolescent). If in the future the site is developed, there would also be the potential for residents (adult or child) to be exposed. Additionally, site maintenance workers could be infrequently exposed if the site is developed. Therefore, hypothetical current and potential future trespasser and hypothetical potential future residents are evaluated in this HHRA as a worst case exposure scenario.
- <u>6.3.4 Groundwater</u> Currently, groundwater at Site 16 is not used for any potable or nonpotable purpose, nor are there plans to use the water resource in the foreseeable future. However, in the event that Site 16 or areas hydraulically downgradient of Site 16 are developed, the exposure pathway to analytes in groundwater could become complete. Therefore, hypothetical future residential use of groundwater ingestion and inhalation of volatiles while showering (the showering scenario considers adult residents only) is evaluated in this HHRA as a worst-case estimate of hypothetical future receptors.
- 6.3.5 Exposure Point Concentrations (EPC) EPCs for all HHCPCs in surface soil, subsurface soil, surface water, and groundwater are calculated according to Paragraph 2.5.3.3 of the GIR (HLA, 1998). The EPC of each HHCPC is the lesser of the maximum detected concentration or the 95 percent upper confidence limit of the arithmetic mean concentration for soils and surface water. The EPC of each HHCPC in groundwater is the lesser of the maximum detected concentration and the arithmetic mean of the samples collected within the groundwater plume. This quantification process involves developing assumptions regarding exposure conditions and exposure scenarios for each receptor to estimate the total amount of contaminants that a hypothetical receptor may ingest, dermally absorb, or inhale from each exposure pathway. The ultimate goal of this step, as defined in USEPA guidance, is to identify the combination of these exposure variables or parameters that results in the most intense level of exposure that may "reasonably" be expected to occur under current and future site conditions (USEPA, 1989a).

The EPCs for HHCPCs in surface soil, subsurface soil, surface water, and groundwater for Site 16 are presented in Tables 6-6 through 6-9, respectively. The EPCs were used with receptor-specific exposure parameters to quantify exposures to the HHCPCs, as shown in the risk calculation spreadsheets in Appendix G to this report.

- 6.4 TOXICITY ASSESSMENT. The toxicity assessment methodology is described in Subsection 2.5.4 of the GIR (HLA, 1998). The toxicity assessment evaluates the available evidence on the hypothetical adverse effects associated with exposure to each HHCPC. This information is used to developed a relationship between the extent of exposure and the likelihood or severity of adverse human health effects. Two steps are typically associated with toxicity assessment: hazard identification and dose-response assessment.
 - Hazard identification is the process of determining if exposure to an agent can cause a particular adverse health effect and, more importantly, if that effect will occur in humans. The objectives of the hazard identification in the HHRA are to (1) identify which of the contami-

Table 6-6 Exposure Point Concentrations for Human Health Chemicals of Potential Concern for Surface Soil at Site 16

्रे के एक्ट्रानिक सङ्ग्रीमान्य देशका है।

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Analyte	Frequency of Detection ¹	Maximum Detected Concentration	95% UCL ²	Exposure Point Concentration ³	
Semivolatile Organic Compounds (µg/kg)					
Benzo(a)anthracene	4/20	2,300	350	350	
Benzo(a)pyrene	5/20	3,100	370	370	
Benzo(b)fluoranthene	4/20	3,600	410	410	
Benzo(k)fluoranthene	3/20	3,200	390	390	
Carbazole	1/17	97	200	97	
Chrysene	5/20	3,200	390	390	
Dibenz(a,h)anthracene	2/20	700	240	240	
Indeno(1,2,3-cd)pyrene	4/20	1,900	320	320	
Pesticides and PCBs (µg/kg)					
Dieldrin	8/20	130	32	32	
Inorganic Analytes (mg/kg)					
Aluminum	20/20	18,600	11,300	11,300	
Arsenic	20/20	12.1	3.8	3.8	
Cadmium	17/20	7.6	2.1	2.1	
Iron	20/20	48,900	13,900	13,900	
Lead	20/20	759	473	473	
Manganese	20/20	372	296	296	

¹ Frequency of detection is the number of samples in which the analyte was detected over the total number of samples analyzed (excluding rejected values).

Notes: % = percent.

UCL = upper confidence limit (see footnote 2).

μg/kg = micrograms per kilogram.
PCB = polychlorinated biphenyl.
mg/kg = milligrams per kilogram.

² 95% UCL of the arithmetic mean is calculated using all samples. One-half the contract-required quantitation limit/contract-required detection limit is used as a surrogate for nondetects. The UCL is not calculated when there are less than 10 total samples.

³ Exposure point concentration is the lower of either the 95% UCL concentration or maximum detected concentration.

Table 6-7 Exposure Point Concentrations for Human Health Chemicals of Potential Concern for Subsurface Soil

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Analyte	Frequency of Detection ¹	Maximum Detected Concentration	95% UCL ²	Exposure Point Concentration ³
Inorganic Analytes (mg/kg)				
Arsenic	5/5	15.1	NC	15.1
Iron	5/5	74,800	NC	74,800
Lead	5/5	766	NC	766

¹ Frequency of detection is the number of samples in which the analyte was detected over the total number of samples analyzed (excluding rejected values).

Notes: % = percent.

UCL = upper confidence limit (see footnote 2).

mg/kg = milligrams per kilogram.

NC = not calculated.

² 95% UCL of the arithmetic mean is calculated using all samples. One-half the contract-required quantitation limit/contract-required detection limit is used as a surrogate for nondetects. The UCL is not calculated when there are less than 10 total samples.

³ Exposure point concentration is the lower of either the 95% UCL concentration or maximum detected concentration.

Table 6-8 Exposure Point Concentrations for Human Health Chemicals of Potential Concern for Surface Water at Site 16

AND SECTION OF STREET

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

11111011, 1 11110							
Analyte	Frequency of Detection ¹	Maximum Detected Concentration	95% UCL²	Exposure Point Concentration ³			
Inorganic Analγtes (μg/1)							
Beryllium	1/1	0.21	NC	0.21			

¹ Frequency of detection is the number of samples in which the analyte was detected over the total number of samples analyzed (excluding rejected values).

Notes: % = percent.

UCL = upper confidence limit (see footnote 2).

 $\mu g/\ell = micrograms per liter.$

NC = not calculated.

² 95% UCL of the arithmetic mean is calculated using all samples. One-half the contract-required quantitation limit/contract-required detection limit is used as a surrogate for nondetects. The UCL is not calculated when there are less than 10 total samples.

³ Exposure point concentration is the lower of either the 95% UCL concentration or maximum detected concentration.

Table 6-9 Exposure Point Concentrations for Human Health Chemicals of Potential Concern for Unfiltered Groundwater at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

		.,		
Analyte	Frequency of Detection ¹	Maximum Detected Concentration	Arthimetic Mean ²	Exposure Point Concentration ³
Volatile Organic Compounds (µg/£)				
1,2-Dichloroethane	6/17	32	9.9	9.9
1,2-Dichloroethene (total)	6/17	50	9.1	9.1
Benzene	7/17	820	180	180
Chloroform	3/17	1	6.4	, e 1
Trichloroethene	5/17	7	5.5	5.5
Semivolatile Organic Compounds (µg/ℓ)				
bis(2-Ethylhexyl)phthalate	7/17	53	6.9	6.9
Pesticides and PCBs (µg/ℓ)				
4,4'-DDT	2/17	0.15	0.06	0.06
Inorganic Analγtes (μg/t)				
Aluminum	10/17	3,930	491	491
Arsenic	4/17	3.6	3.3	3.3
Barium	17/17	456	53.9	53.9
Cadmium	2/17	12.5	2.6	2.6
Iron	14/17	68,600	4,570	4,570
Manganese	17/17	1,370	188	188

¹ Frequency of detection is the number of samples in which the analyte was detected over the total number of samples analyzed (excluding rejected values).

Notes: $\mu g/\ell$ = micrograms per liter.

PCB = polychlorinated biphenyl.

DDT = dichlorodiphenyltrichloroethane.

² Arithmetic mean of all samples calculated using one-half the contract-required quantitation limit/contract-required detection limit for nondetects.

³ Exposure point concentration is the lower of either the arithmetic mean concentration or maximum detected concentration.

nants detected at the site are hypothetical hazards, and (2) summarize their potential toxicity in brief nontechnical language.

A dose-response assessment is conducted to characterize and quantify the relationship between intake, or dose, of a HHCPC and the likelihood of a toxic effect or response. There are categories of toxic effects evaluated in this HHRA: carcinogenic and noncarcinogenic. Following USEPA guidance for HHRAs (USEPA, 1989a), these two endpoints (cancer and noncancer) are evaluated separately. As a result of the dose-response assessment, identified dose-response values are used to estimate the incidence of adverse effects as a function of human exposure to a chemical.

Appendix G to this report contains brief toxicity summaries for HHCPCs identified in surface soil, subsurface soil, surface water, and groundwater at Site 16. Appendix G to this report also contains dose-response information for the HHCPCs (Tables G-5 through G-10). Dose-response values used in this HHRA were current as of February 1998 for Integrated Risk Information System (IRIS) (USEPA, 1998) and October 1997 for Health Effects Assessment Summary Tables (HEAST) (USEPA, 1997d).

6.5 RISK CHARACTERIZATION. Risk characterization is the final step in the risk assessment process. This step involves the integration of the exposure and toxicity assessments into a qualitative or quantitative expression of potential human health risks associated with contaminant exposure. Quantitative estimates of both carcinogenic and noncarcinogenic risks are made for each HHCPC and each complete exposure pathway identified in the exposure assessment. The risk characterization methodology is described in Subsection 2.5.5 of the GIR (HLA, 1998).

Risk estimates for hypothetical exposures to surface soil, subsurface soil, surface water, and groundwater under current and hypothetical future land-use scenarios are discussed below in Subsections 6.5.1 through 6.5.4. These risk estimates are then compared to USEPA and FDEP carcinogenic and noncarcinogenic target levels.

The USEPA guidelines, established in the National Oil and Hazardous Substances Contingency Plan (NCP), indicate that the total lifetime cancer risk due to exposure to the HHCPCs at a site, by each complete exposure pathway, should not exceed a range of 1 in 1,000,000 (1×10^{-6}) to 1 in 10,000 (1×10^{-4}) (USEPA, 1990). FDEP has indicated that chemical-specific risks greater than one in one million (1×10^{-6}) warrant further consideration.

A hazard quotient (HQ) less than 1 indicates that noncarcinogenic toxic effects are not expected to occur due to HHCPC exposure. Hazard indices (HIs) greater than 1 may be indicative of a possible noncarcinogenic toxic effects, but the circumstances must be evaluated on a case-by-case basis (USEPA, 1989a). As the HI increases, so does the likelihood that adverse effects might be associated with exposure. Both USEPA and FDEP consider that chemicals with HIs greater than 1 warrant further evaluation and require an evaluation of the noncarcinogenic effects.

Table 6-10 summarizes the cancer and noncancer risk under a current land-use scenario for Site 16. Table 6-11 summarizes the cancer and noncancer risk under a hypothetical future land-use scenario for Site 16.

<u>6.5.1 Surface Soil</u> The risk calculations for surface soil exposure are shown in Tables G-11 through G-24 in Appendix G to this report. For the current land-use scenario, the cancer risks associated with exposure to surface soil (ingestion, dermal contact, and fugitive dust inhalation) are 2×10^{-6} for an aggregate (combined adult and adolescent) trespasser, and 4×10^{-7} for a site maintenance worker. Both receptor's cancer risk values are at or below the USEPA acceptable cancer risk range of 1 in 10,000 to 1 in 1,000,000, although the hypothetical trespasser exceeds the FDEP target level of concern (1×10^{-6}). The noncancer risks associated with surface soil ingestion, dermal contact, and fugitive dust inhalation under hypothetical current land use (adolescent trespasser, adult trespasser, and site worker) are below USEPA's target HI of 1. Figures 6-2 and 6-3 present summaries of cancer risks and HIs, respectively, associated with exposure scenarios under current land use.

The cancer risks associated with exposure to surface soil ingestion, dermal contact, and fugitive dust inhalation under hypothetical future land use are 2×10^{-5} for an aggregate resident (combined adult and child), 2×10^{-6} for an aggregate trespasser (combined adult and adolescent), 3×10^{-6} for an occupational worker, 4×10^{-7} for a site maintenance worker, and 1×10^{-7} for an excavation worker under hypothetical future land use. All of these hypothetical future receptor risks are within or below the USEPA acceptable cancer risk range; however, the hypothetical future residential, trespasser, and occupational worker receptor risk exceeds the Florida level of concern of 1×10^{-6} (due to carcinogenic PAHs and arsenic). Figure 6-4 presents a summary of cancer risk associated with exposure scenarios under future land use.

The noncancer risks associated with surface soil ingestion, dermal contact, and fugitive dust inhalation under future land use for all hypothetical future receptors are at or below USEPA's and FDEP's target HI of 1. Figure 6-5 presents a summary of HIs associated with exposure scenarios under future land use.

<u>6.5.2 Subsurface Soil</u> The risk calculations for subsurface soil exposure are shown in Tables G-25 through G-26 in Appendix G to this report. The cancer risks associated with exposure to subsurface soil ingestion, dermal contact, and fugitive dust inhalation under hypothetical future land use is 2×10^{-7} for an excavation worker under hypothetical future land use. Figure 6-6 presents a summary of cancer risk associated with exposure scenarios under future land use. Hypothetical future receptor risk is below the USEPA and FDEP acceptable cancer risk levels.

The noncancer risks associated with subsurface soil ingestion, dermal contact, and fugitive dust inhalation under future land use for a hypothetical excavation worker are below USEPA's and FDEP's target HI of 1. Figure 6-7 presents a summary of HIs associated with exposure scenarios under future land use.

<u>6.5.3 Site 16 Surface Water</u> The risk calculations for surface water exposure are shown in Tables G-31 and G-34 in Appendix G to this report. Risk was evaluated for the current and future land-use scenario. The cancer risks associated with exposure to surface water (ingestion and dermal contact) are 1×10^{-6} for an aggregate (combined adult and adolescent) trespasser. Receptors

Table 6-10 Risk Summary, Current Land Use at Site 16

Commence of the second second

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Land Use		Exposure Route	HI*	ELCR*
Current Land Use				2
Surface Soil				
	Adult Trespasser:	Incidental ingestion	0.01	6×10^{-7}
		Dermal contact	0.03	3×10^{-7}
		Inhalation of particulates	0.0001	8 × 10 ⁻¹⁰
		Total Adult Trespasser:	0.04	9×10^{-7}
	Adolescent Trespasser:	Incidental ingestion	0.02	4×10^{-7}
		Dermal contact	0.03	1×10^{-7}
		Inhalation of particulates	0.0001	5 × 10 ⁻¹⁰
		Total Adolescent Trespasser:	0.05	6 × 10 ⁻⁷
		Total Risk to Trespasser (Adult and Adolescent) Exposed to Surface Soil:	NC	2 × 10 ⁻⁶
	Site Maintenance Worker:	Incidental ingestion	0.005	2×10^{-7}
		Dermal contact	0.02	2×10^{-7}
		Inhalation of particulates	0.0004	4 × 10 ⁻⁹
		Total Site Maintenance Worker:	0.02	4×10^{-7}
Surface Water				
	Adult Trespasser:	Incidental ingestion	0.000002	1 × 10 ⁻⁸
		Direct contact	0.0001	7×10^{-7}
		Total Adult Trespasser	0.0001	7×10^{-7}
	Adolescent Trespasser:	Incidental ingestion	0.000003	9×10 ⁻⁹
		Direct contact	0.0001	4 × 10 ⁻⁷
		Total Adolescent Trespasser:	0.0001	4×10^{-7}
		Total Risk to Trespasser (Adult and Adolescent) Exposed to Surface Water:		2
		Total Dick to Transpages (Adult and	NC	1 × 10 ^{-€}
		Total Risk to Trespasser (Adult and Adolescent) Exposed to Surface Soil and Surface Water:	NC	3 × 10 ⁻⁶

Notes: HI = hazard index.

* = receptor totals may vary from spreadsheets due to rounding algorithm.

ELCR = excess lifetime cancer risk.

NC = not calculated because child and adult HIs are not additive.

Table 6-11 Risk Summary, Future Land Use at Site 16

Land Use		Exposure Route	HI*	ELCR*
Future Land Us	se .		-	
Surface Soil				
Ad	dult Trespasser:	Incidental ingestion	0.01	6×10^{-7}
		Dermal contact	0.03	3×10^{-7}
		Inhalation of particulates	0.0001	8 × 10 ⁻¹⁰
		Total Adult Trespasser:	0.04	9×10^{-7}
Ad	dolescent Trespasser:	Incidental ingestion	0.02	4×10^{-7}
		Dermal contact	0.03	1×10^{-7}
		Inhalation of particulates	0.0001	5×10^{-10}
		Total Adolescent Trespasser:	0.05	6×10^{-7}
		Total Risk to Trespasser (Adult and Adolescent) Exposed to Surface Soil:	NC	2 × 10 ⁻⁶
Ad	dult Resident:	Incidental ingestion	0.1	5 × 10 ⁻⁶
		Dermal contact	0.2	2 × 10 ⁻⁶
		Inhalation of particulates	0.003	3×10 ⁻⁹
		Total Adult Resident:	0.3	7 × 10 ⁻⁶
C	hild Resident:	Incidental ingestion	1	1 × 10 ⁻⁵
		Dermal contact	0.3	8 × 10 ⁻⁷
		Inhalation of particulates	0.02	4 × 10 ⁻⁸
	Total Child Resident:	. 1	1 × 10 ⁻⁵	
		Total Risk to Resident (Adult and Child) Exposed to Surface Soil:	NC	2 × 10 ⁻⁵
0	ccupational Worker:	Incidental ingestion	0.04	2×10 ⁻⁶
	,	Dermal contact	0.06	6 × 10 ⁻⁷
		Inhalation of particulates	0.001	1 × 10 ⁻⁸
	•	Total Occupational Worker:	0.1	3 × 10 ⁻⁶
Site Maintenance Worker:	ite Maintenance Worker:	Incidental ingestion	0.005	2×10 ⁻⁷
		Dermal contact	0.02	2 × 10 ⁻⁷
		Inhalation of particulates	0.0004	4 × 10 ⁻⁹
		Total Site Maintenance Worker:	0.02	4 × 10 ⁻⁷
Excavation Worker:	xcavation Worker:	Incidental ingestion	0.04	9 × 10 ⁻⁸
		Dermal contact	0.02	7 × 10 ⁻⁹
		Inhalation of particulates	0.0004	2×10 ⁻¹⁰
		Total Excavation Worker:	0.06	1×10^{-7}
Subsurface Soi	il			
E	xcavation Worker:	Incidental ingestion		0.2
		Dermal contact		0.08
		Inhalation of particulates		ND
		Total Excavation Worker:		0.3

Table 6-11 (Continued) Risk Summary, Future Land Use at Site 16

Things the second secon

THE ENGLISHED

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Land Use		Exposure Route	HI*	ELCR*
Future Land Us	i <u>e</u>			
Surface Water				
	Adult Trespasser:	Incidental ingestion	0.000002	1 × 10 ⁻⁸
		Direct contact	0.0001	7×10^{-7}
		Total Adult Trespasser	0.0001	7×10^{-7}
	Adolescent Trespasser:	Incidental ingestion	0.000003	9 × 10 ⁻⁹
		Direct contact	0.0001	4×10^{-7}
		Total Adolescent Trespasser:	0.0001	4×10^{-7}
		Total Risk to Trespasser (Adult and Adolescent) to Surface Water:	NC	1 × 10 ⁻⁶
		Total Risk to Trespasser (Adult and Adolescent) Exposed to Surface Soil and Surface Water:	NC	3 × 10⁻⁵
	Adult Resident:	Incidental ingestion	0.000002	1 × 10 ⁻⁸
		Direct contact	0.0001	8×10^{-7}
		Total Adult Resident:	0.0001	8×10^{-7}
	Child Resident:	Incidental ingestion	0.0001	2×10^{-7}
		Direct contact	0.0004	7×10^{-7}
		Total Child Resident:	0.0005	9×10^{-7}
		Total Risk to Resident (Adult and Child) Exposed to Surface Water:	NC	2×10 ⁻⁶
		Total Risk to Resident (Adult and Child) Exposed to Surface Water, Groundwater and Surface Soil:	NC	1 × 10 ⁻⁴
Groundwater				
	Adult Resident:	Ingestion of groundwater as drinking water	18	5×10^{-5}
		Inhalation of volatiles while showering	ND	2×10^{-5}
		Total Adult Resident:	18	7×10^{-5}
	Child Resident:	Ingestion of groundwater as drinking water	41	6×10^{-5}
		Total Child Resident:	41	6×10^{-5}
		Total Risk to Resident (Adult and Child) Exposed to Groundwater:	NC	1 × 10 ⁻⁴

Notes: HI = hazard index.

ELCR = excess lifetime cancer risk.

^{* =} receptor totals may vary from spreadsheets due to rounding algorithm.

NC = not calculated because child and adult HIs are not additive.

ND = no dose-response data for this exposure route were available for human health chemical of potential concerns in this medium.

cancer risk values are less than the USEPA acceptable cancer risk range of 1×10^{-4} to 1×10^{-6} and at FDEP's target risk of 1×10^{-6} . The noncancer risks associated with surface water ingestion and dermal contact under a hypothetical current land use (adolescent trespasser and adult trespasser) are below USEPA's and FDEP's target HI of 1. Figures 6-8 and 6-9 present summaries of the carcinogenic and noncarcinogenic risks from surface water to hypothetical current receptors.

The cancer risks associated with exposure to surface water ingestion and dermal contact under hypothetical future land use are 1×10^{-6} for an aggregate trespasser (combined adult and child) and 2×10^{-6} resident (combined adult and child). All of these hypothetical future receptors risk are below or at the USEPA acceptable cancer risk range but the future resident exceeds the Florida target carcinogenic level of concern of 1×10^{-6} . Figure 6-10 presents a summary of cancer risk associated with exposure scenarios under future land use.

Under hypothetical future land use, the noncancer risks associated with surface water ingestion for all hypothetical future receptors do not exceed the FDEP's and USEPA's target HI of 1. Figure 6-11 presents a summary of the noncancer risk from surface water to potential future receptors.

6.5.4 Site 16 Groundwater The risk calculations for groundwater exposure are shown in Tables G-27 and G-30 in Appendix G to this report. Currently, there are no potable supply wells at the site; therefore, there is no human exposure to groundwater. Therefore, risk was not evaluated for the current land-use scenario.

The cancer risks associated with exposure to groundwater ingestion under hypothetical future land use are 1×10^{-4} for an aggregate resident (combined adult and child). The hypothetical future residential receptor risk is within the USEPA acceptable cancer risk range; however, it exceeds the Florida level of concern of 1×10^{-6} (mainly due to 1,2-dichloroethane and arsenic). Figure 6-12 presents a summary of cancer risk associated with exposure scenarios under this hypothetical future land use.

Under a hypothetical future land use, the noncancer risks associated with groundwater ingestion for the adult and child resident exceed the USEPA's and FDEP's target HI of 1. Figure 6-13 presents a summary of noncancer risk associated with exposure scenarios under a hypothetical future residential land use.

<u>6.5.5 Cumulative Risk Summary</u>. Site 16 Cumulative USEPA Region IV guidance requires an assessment of a cumulative receptor risk.

In this HHRA, the hypothetical future residential receptor could potentially be exposed to surface soils, groundwater, and surface water. The cumulative risk of 1×10^{-4} is within the USEPA acceptable cancer risk range; however, it exceeds the FDEP target level of concern. This risk is primarily due to groundwater.

The current and hypothetical trespasser receptor could potentially be exposed to both surface soil and surface water. The cumulative risk of 3×10^{-6} is within the USEPA acceptable risk range but exceeds FDEP target level of concern.

- 6.6 UNCERTAINTY ANALYSIS. General uncertainties associated with the collection, analysis, and evaluation of data; exposure assessment; toxicity assessment; and the risk estimation process are discussed in Paragraph 2.5.5.1 of the GIR (HLA, 1998). Site-specific uncertainties that are important for the interpretation of the calculated risk estimates for surface soil, subsurface soil, groundwater, and surface water at Site 16 are discussed below.
 - The surface soil carcinogenic risks at Site 16 are driven by carcinogenic PAHs and arsenic. The PAHs may be due to other anthropogenic sources and the arsenic is likely to be at naturally occurring levels or due to other sources such as pesticides application. Therefore, it is uncertain whether or not this risk to hypothetical current and future receptors is actually due to past site operations.
 - The lack of inhalation RfDs for the HHCPCs in surface soil may have resulted in underestimates of the HIs associated with exposure to surface soil at Site 16; however, these noncancer risks are not likely to be significant when compared to oral risks that are fully characterized.
 - The sample quantitation limits (SQLs) were compared to the risk-based screening criteria and Florida regulatory guidelines for all analytes not selected as HHCPCs to assess whether or not the detection limits were adequate to detect analytes at levels of concern (SQLs of analytes with 100 percent frequency of detection were not evaluated). The analytes with an SQL that exceeds its screening criterion are thallium in surface soil; and naphthalene and beryllium in groundwater. However, because the laboratory equipment was able to detect below the SQL for beryllium, naphthalene, and thallium, the SQLs were considered adequate for this HHRA.
 - Groundwater samples at Site 16 were collected at different depth intervals (shallow, intermediate, and deep) to determine if contamination is confined/limited to one interval. The maximum contaminant concentrations were evaluated to determine if the HHRA should evaluate the groundwater intervals separately. The maximum detected concentrations of the inorganic HHCPCs (excluding arsenic) were identified from the shallow interval. Concentrations of volatile analytes were identified in the intermediate and deep intervals, which would result in HHCPC selection. Therefore, it does not appear that the risks can be isolated to one groundwater depth interval and the combined groundwater risk is characteristic of the potential risks from the semiconfined aquifer.
 - Some uncertainty was associated with the representativeness of the groundwater data used to complete the risk evaluation at Site 16. Generally, because the low-flow purging and sampling method was used, turbidity in the unfiltered groundwater samples was minimal. However, the analytical results for some of the unfiltered samples may be biased high for inorganic constituents as a result of suspended solids.
 - Groundwater samples at Site 16 were collected at different intervals (shallow, intermediate, and deep) to determine if contamination is concentrated at one interval. Inorganic and 4,4'-DDT HHCPCs were

identified from the shallow intervals. Volatile HHCPCs were identified from the intermediate intervals. It does not appear that the risks can be isolated at one interval; therefore, the groundwater risks from each aquifer were characterized together.

• According to the methodology described in the GIR (HLA, 1998) (Paragraph 2.5.3.3), central tendency carcinogenic risk to hypothetical future receptors that have risks exceeding Florida levels of concern was evaluated. The central tendency evaluation involved using the upper confidence limit (UCL) of the mean concentration and reasonable but less conservative exposure parameters are designed to provide a probable risk level (USEPA, 1995a).

The carcinogenic risk to hypothetical current and future trespassers, occupational workers, and future residents exceeded the FDEP target of 1×10^{-6} . The central tendency carcinogenic risk results for these receptors and the central tendency exposure parameters are presented in Table G-35 through G-44 in Appendix G of this report. Only central tendency ingestion and dermal exposures were characterized because the contribution from inhalation was insignificant compared to the total risk.

The central tendency carcinogenic risk exposed to surface soil is 3×10^{-6} for an aggregate residential receptor, 2×10^{-7} for an aggregate trespasser, and 8×10^{-7} for an occupational worker.

The central tendency aggregate residential risk exposed to groundwater is 3×10^{-5} for carcinogenic risk. The noncarcinogenic risk remains in excess of the USEPA and FDEP target HI of 1.

The central tendency aggregate residential risk to surface water is 1×10^{-6} .

The risk range presented by the reasonable maximum exposure (RME) and central tendency exposure scenarios for hypothetical current and future receptors are useful as information to provide perspective for the risk manager and compliance with USEPA guidance (USEPA, 1995a).

<u>6.7 REMEDIAL GOAL OPTIONS</u>. Remedial goal option (RGO) tables are presented for each medium with a total excess lifetime cancer risk (ELCR) greater than 1×10^{-4} or an HI greater than 1 per USEPA guidance, and for media with chemicals whose estimated risk exceeds Florida target risk level. The RGO concentrations are calculated using the scenario representing the highest estimated risk for a given medium. Based on the above criteria, RGOs are developed for each chemical with a total ELCR greater than 1×10^{-6} or an HQ greater than 0.1. Analytes whose EPCs exceed Florida standards are also presented in the RGO tables.

RGOs and available Federal regulatory and FDEP risk-based criteria are intended to provide the basis for the development of remedial alternatives in the FS. The RGO values are not actual or proposed cleanup levels, but are provided to assist risk-management decision making in the FS.

Table 6-12 presents the RGOs for surface soil for Site 16. RGOs are presented for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, and arsenic based on cancer risks for the adult and child resident at Site 16. Manganese is presented based on noncancer risk. Dieldrin, beryllium, and lead are presented because the maximum detected concentration exceeded the Florida SCTL for a residential scenario.

Table 6-13 presents the RGOs for subsurface soil. Arsenic and lead are presented because the maximum detected value exceeded the Florida SCTL for an industrial scenario.

Table 6-14 presents the RGOs for groundwater. RGOs for 1,2-dichloroethane, 1,2-dichloroethene (total), benzene, TCE, bis(2-ethylhexyl)phthalate, and arsenic are based on cancer risks for the adult and child resident at Site 16.

Benzene, arsenic, cadmium, iron, and manganese RGOs are based on noncancer risks to the adult resident. 4,4'-DDT, aluminum, antimony, and chloroform are presented because the maximum detected value exceeded the Florida groundwater guidance concentration. It should be noted that the EPC for arsenic is an order of magnitude less than the Federal drinking water standard and Florida groundwater guidance concentration.

Table 6-15 presents the RGO for beryllium in surface water. This RGO is based on the ECLR to hypothetical future residents.

- 6.8 SUMMARY OF HUMAN HEALTH RISK ASSESSMENT FOR SITE 16. HHCPCs were identified and risks were estimated for surface soil, subsurface soil, groundwater, and surface water associated with Site 16. The following conclusions were drawn based on this HHRA:
 - The HHCPCs detected in surface soil, subsurface soil, groundwater, and surface water do not pose unacceptable carcinogenic risks to the receptors evaluated based on evaluation of the samples using USEPA guidelines and target risk range.
 - The subsurface soil risk levels are below the USEPA and FDEP target levels of concern.
 - The total ELCR for groundwater associated with residential ingestion and inhalation of VOCs while showering exceeded the Florida target level of concern due primarily to VOCs (primarily benzene) and arsenic. However, the groundwater at NAS Whiting Field is being addressed under a facilitywide investigation of Site 40.
 - The groundwater noncancer risk exceeds both the USEPA and FDEP target HI due primarily to benzene. However, as noted above, groundwater will be addressed in a facilitywide assessment of Site 40.
 - The surface water ELCR for hypothetical future residents exceeds Florida's target level of concern due to beryllium. It should be noted, however, that this ELCR is based only on one sample.

Table 6-12 Summary of Remedial Goal Options for Surface Soil at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

				WIITOIT	, Floriua						
Analyte	Range of Detected	Exposure Point	Risk (E	ess Lifetime lased on R [adult and	isk to	(E	ital Haza Based on Child Res	Risk to	Florida Soil Cleanup Target Level	Florida Soil Cleanup Target Level	Background Screening
	Concentrations	Concentration	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶	3	1	0.1	(Residential) ¹	(Leaching) ¹	Concentration
Semivolatile Organic Co	mpounds (µg/kg)										
Benzo(a)anthracene	56 to 2,300	351	NR	NR	NR	NA	NA	NA	1,400	3,200	NB
Benzo(a)pyrene	71 to 3,100	370	NR	NR	70	NA	NA	NA	100	8,000	NB
Benzo(b)fluoranthene	86 to 3,600	412	NR	NR	NR	NA	NA	NA	1,400	10,000	NB
Dibenz(a,h)anthracene	110 to 700	340	NR	700	70	NA	NA	NA	100	30,000	NB
indeno(1,2,3-cd)pyrene	62 to 1,900	324	NR	NR	NR	NA	NA	NA	1,500	28,000	NB
Pesticides (µg/kg)											
Dieldrin	2.5 to 130	32	NR	NR	NR	NA	NA	NA	70	4	NA
Inorganic Analytes (mg/l	kg)										
Arsenic	0.7 to 12.1	166	NR	NR	23	NA	NA	NA	0.8	29	4.62
Beryllium	0.06 to 0.3	0.3	NA	NA	NA	NA	NA	NA	120	63	0.36
Lead	4.4 to 759	473	NA	NA	NA	NA	NA	NA	400	NC	10.2
Manganese	5.3 to 372	296	NA	NA	NA	NR	NR	247	1,600	NC	180

¹ Values are for residential soil, from Florida Department of Environmental Protection (FDEP) Chapter 62-777, Florida Administrative Code (FDEP, 1999).

Notes: $\mu g/kg = micrograms per kilogram$.

NR = not reported because the calculated remedial goal option exceeds the exposure point concentration.

NA = not applicable.

NB = not detected in background sample.

mg/kg = milligrams per kilogram.

NC = not calculated.

049

Table 6-13 Summary of Remedial Goal Options for Subsurface Soil at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Analyte	Range of Detected	Exposure Point	Total Excess Lifetime Cancer Risk (Based on Risk to Resident (adult and child)			Total Hazard Index (Based on Risk to Child Resident)			Florida Soil Cleanup Target Level	Florida Soil Cleanup Target Level	Background Screening
	Concentrations	Concentration	10 ⁻⁴	10 ⁻⁵	10 ^{.6}	3	1	0.1	(Residential) ¹	(Leaching) ¹	Concentration
Inorganic An	alytes (mg/kg)										
Arsenic	1.5 to 15.1	15.1	NR	NR	NR	NR	NR	NR	3.7	29	4.62
Lead	6.8 to 766	766	NA	NA	NA	NA	NA	NA	400	NC	8.4

¹ Values are for industrial soil, from Florida Department of Environmental Protection (FDEP) Soil Cleanup Target Levels, Chapter 62-777, Florida Administrative Code (FDEP, 1999).

Notes: mg/kg = milligrams per kilograms.

NR = not reported because the calculated remedial goal option exceeds the exposure point concentration.

NC = not calculated.

NA = not applicable because the risk from this analyte is below the USEPA and FDEP target levels.

Table 6-14 Summary of Remedial Goal Options for Groundwater at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

				WillCorr, Tik					·		
Analyte	Range of Detected	Exposure Point	Cancer F	Excess Life Risk (Based ent (adult ar	on Risk	(B	tal Hazar ased on Child Res	Risk to	Florida Groundwater Cleanup	Federal MCL ²	Background Screening
	Concentrations	Concentration	10⁻⁴	10 ⁻⁵	10 ⁻⁶	3	1	0.1	Target Level ¹	MCL	Concentration
Volatile Organic Compound	s (µg/l)			<u> </u>							
1,2-Dichloroethane	1 to 32	9.9	NR	16	1.6	NR	NR	NR	3	5	NB
1,2-Dichloroethene	1 to 50	9.1	NR	1.0	0.1	NR	NR	NR	70	70	NB
Benzene	1 to 820	180	180	18	1.8	116	39	3.9	1	5	NB
Chloroform	1	6.4	NR	NR	NR	NR	NR	NR	5.7	0.1	NB
Trichloroethene	2 to 7	5.5	NR	NR	5.5	NR	NR	NR	3	5	NB
Semivolatile Organic Compo	ounds (µg/£)										
bis(2-Ethylhexyl)phthalate	1 to 53	6.9	NR	NR	4.8	NR	NR	NR	6	6	NA
Pesticides (µg/l)											
4'4'-DDT	0.14 to 0.15	0.06	NR	NR	NR	NR	NR	NR	0.1	NC	NA
Inorganic Analytes (µg/ℓ)											
Aluminum	14.65 to 200	491	NA	NA	NA	NR	NR	NR	200	50 to 200	654
Antimony	8.6 to 60	21.8	NA	NA	NA	NR	NR	NR	6	6	20.4
Arsenic	0.6 to 3.6	3.3	4.5	0.45	0.05	NR	3.3	0.33	50	50	ND
Cadmium	2.2 to 12.5	2.6	NA	NA	NA	NR	NR	0.6	5	5	4.4
Iron	7.3 to 68,600	4,570	NA	NA	NA	NR	3,300	330	300	300	964
Manganese	1.3 to 1,370	188	NA	NA	NA	NR	NR	50.8	50	50	42.8

¹ Florida Department of Environmental Protection Cleanup Target Levels, Chapter 62-777, Florida Administrative Code (FDEP, 1999).

Notes: MCL = maximum contaminant level.

 $\mu g/\ell$ = micrograms per liter.

NR = not reported because the calculated remedial goal option exceeds the exposure point concentration.

NB = not detected in background sample.

NA = not applicable because there is no carcinogenic or noncarcinogenic (as appropriate) risk from this analyte.

NC = not calculated.

² Federal MCLs are taken from USEPA Drinking Water Regulations and Health Advisories from October 1996.

Table 6-15 Summary of Remedial Goal Options for Surface Water at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

L					,					
	Analyte	Exposure Point	Total E Cancer Ris to Residen	on Risk	(Ba	al Hazard sed on Ri hild Resid	isk to	Florida Surface Water Cleanup Target	Background Screening	
		Concentration	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶	3	1	0.1	Level ¹	Concentration
ſ	Inorganic Analytes (µg/ℓ)									
L	Beryllium	0.21	7.0	0.7	0.07	NR	NR	NR	0.13	NB

¹ Florida Department of Environmental Protection Cleanup Target Levels, Chapter 62-777, Florida Administrative Code (FDEP, 1999).

Notes: $\mu g/\ell$ = micrograms per liter.

NR = not reported because the calculated remedial goal option exceeds the exposure point concentration.

NB = not detected in background sample.

- The total ELCR at Site 16 associated with ingestion of soil by a hypothetical future resident, current and hypothetical future trespasser, and hypothetical future occupational worker exceeds Florida's target risk level of concern (1×10^{-6}) due primarily to carcinogenic PAHs and arsenic.
- Noncancer risk levels for soil, subsurface soil, and surface water meet the USEPA and FDEP target HI of one.
- The central tendency risks from surface soil and surface water to a hypothetical current and future trespasser, and a hypothetical future occupational worker (soil only) met the Florida level of concern(1×10⁻⁶) for Site 16. Central tendency residential risks remain slightly above the FDEP target levels. The hypothetical future residential groundwater risks (carcinogenic and noncarcinogenic) remain above the FDEP target risk levels, but provide the risk managers and decision makers with a perspective of the hypothetical risk range to future residents.

7.0 ECOLOGICAL RISK ASSESSMENT

de la companya de la

The Ecological Risk Assessment (ERA) evaluates actual and potential adverse effects to ecological receptors associated with exposure to chemicals from Site 16, the Open Disposal and Burning Area, at NAS Whiting Field. The ERA for Site 16 follows the methodologies described in the NAS Whiting Field GIR (HLA, 1998), and current guidance materials for ERAs at Superfund sites including the following:

- Risk Assessment Guidance for Superfund Environmental Evaluation Manual (USEPA, 1989b)
- Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference (USEPA, 1989c)
- Framework for Ecological Risk Assessment (USEPA, 1992b)
- Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments (USEPA, 1997b)
- Supplemental Guidance to RAGS: Region 4 Bulletins on Ecological Risk Assessment (USEPA, 1995c)
- Proposed Guidelines for Ecological Risk Assessment (USEPA, 1996c)

Risk assessment guidance included in the USEPA "Eco Update" bulletins (1991d, 1992e, and 1992f) and recent publications (e.g., Maughan, 1993; Suter, 1993) were also consulted.

This ERA was conducted to determine if ecological receptors are potentially exposed to contaminants from Site 16 at concentrations that could cause adverse ecological effects. The Site 16 ERA consists of the following eight subsections:

- Site Characterization (Section 7.1) describes current ecological conditions at the site,
- Problem Formulation (Section 7.2) establishes the goals and focus of the assessment and identifies major factors to be considered,
- Hazard Assessment and Selection of Ecological Chemicals of Potential Concern (ECPCs) (Section 7.3) reviews the analytical data and identifies chemicals present at the site that may pose ecological risks,
- Exposure Assessment (Section 7.4) identifies complete exposure pathways and quantifies the magnitude and frequency of exposure,
- Ecological Effects Assessment (Section 7.5) identifies potential adverse effects to ecological receptors associated with the chemicals of concern identified in Section 7.3,
- Risk Characterization (Section 7.6) integrates exposure and concentration-toxicity response information to derive a likely estimate of adverse effects,

WHF-S16.RI FGW.01.00

- Uncertainties (Section 7.7) identifies assumptions of the ERA process that may influence the risk assessment conclusions, and
- Summary of Ecological Risk (Section 7.8).

7.1 SITE CHARACTERIZATION. NAS Whiting Field Site 16 is approximately 12 acres in size. The site is located in the southwest portion of NAS Whiting Field, approximately 350 feet west of the Wastewater Treatment Plant (see Figure 1-2). Site 16 was used as the facility's primary waste disposal area from 1943 to 1965. The disposed waste consisted of general municipal refuse and waste generated from aircraft operation and maintenance (including paints, paint-stripping wastewater, solvents, waste oil, and hydraulic fluids). PCB-contaminated transformer oil may also have been disposed of at the site. An estimated volume of 3,000 to 4,000 tons of waste was reportedly disposed of at the site annually (Geraghty and Miller, 1986). To reduce waste volume, the wastes were burned, using spent diesel fuel as an accelerant.

The topography of Site 16 slopes toward Clear Creek, which is located 450 feet west of the site. Although overland transport of surface water runoff toward Clear Creek is possible, most of the on-site rainfall infiltrates directly into the ground due to the silty sand soil at Site 16.

A less than 0.1 acre ephemeral wetland is located along the site's eastern boundary. Because much of the site was disturbed by the trench and fill operations, it is very likely that this wetland is the result of subsidence within an old trench. The ephemeral wetland area is shallow (less than 2 feet deep) and is recharged by storm water runoff, thus it remains dry for most of the year. The ephemeral wetland is not likely to provide suitable habitat for aquatic receptors. However, any standing water present may provide an occasional source of drinking water for small terrestrial animals (amphibians, reptiles, mammals, and birds).

As shown in the Site 16 vegetative cover map (Figure 7-1), the landfill area of Site 16 is characterized as planted pine forest. In addition to slash pine (Pinus elliotti) and long-leaf pine (P. palustris), other saplings, shrubs and herbaceous plants commonly found in the planted pine area and herbaceous layer of Site 16 include: Red maple (Acer rubrum), ragweed (Ambrosia sp.), broomsedge (Andropogon sp.), yellow buttons (Balduina angustifolia), Spanish needles (Bidens bipinnata), beauty berry (Callicarpa americana), Goldenaster (Chrysopsis sp.), rattle box (Crotalaria sp.), Florida beggarweed (Desmodium tortusosum), buttonweed (diodia virginiana), yellow hessamine (Gelsemium sempervirens), moss verbena (Glandularia pulchella), Bladder-pod (Glottidium vesicarium), cudweed (Gnaphalium sp.), buttermint (Hyptis mutabilis), morning glory (Ipomoea cordatotriboba), cypress-vine (Ipomoea quamoclit), red cedar (Juniperus silicicola), Chinese privet (Ligustrum sinense), Japanese honeysuckle (lonicera japonica), False loosestrife (ludwigia sp.), wireweed (Polygonella gracilis), Mexican clover (Richardia brasiliensis), willow tree (Salix nigra), yellow wood sorrel (Oxalis stricta), rustweed (Polypremum procumbens), oaks (Quercus spp.), blackberry vine (Rubus spp.), poison ivy (Toxicodendron radicans), yaupon holly (Ilex vomitoria), goldenaster (Pityopis graminifolia), common nightshade (solanum americanum), goldenrod (solidago sp.), verbena (Verbena brasiliensis), skunk

daisy (verbesian enceliodies), grape vine (vitis sp.) and greenbriar (Smilax spp.). A complete list of vegetative species occurring at Site 16 is provided in Appendix G of the GIR (HLA, 1998).

NAS Whiting Field maintains a program for planting and harvesting of pine trees, primarily long-leaf and slash pines. The planted pine area of Site 16 is subject to controlled burns and timber harvesting activities. As part of the ecosystem management plan, planted pine forests undergo periodic burning, usually once every four years, and selective thinning of long-leaf and slash pines every eight to ten years. These forestry management activities provide a variety of habitats and food sources for wildlife and other ecological receptors. Many of the pine trees were severely damaged or upturned during the 1995 hurricanes (Erin and Opal). Many of these trees were removed by base personal leaving large openings in the canopy. Site 16 is typical of uplands pine forests of the southeastern United States. The forested area at Site 16 is contiguous with a mature planted pine forest that surrounds the northern and southern boundaries of the site. A mowed grasses open area (area around the wastewater treatment plant) is located east of the site. NAS Whiting Field Site 39, Clear Creek Floodplain, is west of The vegetative cover at Site 39 is characterized as a hardwood the site. forested wetland.

Southeastern pine forests provide habitat for a diverse array of birds, including insectivorous gleaners of pine needles and bark, flycatchers, seed-eaters, and nocturnal and diurnal aerial predators (Wolfe et al., 1988). The pine flatwoods at and surrounding Site 16 are likely to host such an assemblage of species. Birds of prey, such as owls and hawks, may also nest in these wooded areas.

It is likely that the terrestrial invertebrate biomass at Site 16 serves as a forage base for a variety of wildlife species, including adult amphibians, reptiles, small birds, and small mammals. Small reptiles, mammals, and birds may use the forested pine area for protection. Predatory birds and mammals inhabiting the pine flatwood areas may also be attracted to the site.

Mammals and birds that may occur in the planted pine area of Site 16 include the hispid cotton rat (Sigmodon hispidus), cotton mouse (Peromyscus gossypinus), short-tailed shrew (Blarina brevicauda), American robin (Turdus migratorius), and eastern meadowlark (Sturnella magna). Predatory mammals and birds such as the red fox (Vulpes vulpes), gray fox (Urocyon cinereoargenteus), great-horned owl (Bubo virginianus), and the red-tailed hawk (Buteo jamaicensis) may also forage in the area of Site 16.

Site 16 groundwater may discharge to the surface water of Clear Creek, which is located approximately 450 feet downgradient and west of the site. Clear Creek, which is classified by the FDEP as Class III surface water, is a tributary to Blackwater River, located to the south. Florida Class III surface water are suitable for the propagation of fish and aquatic life. Blackwater River is classified as an Outstanding Florida River, which is considered to be of exceptional ecological significance. Groundwater discharge to the surface water of Clear Creek is qualitatively evaluated as part of the ERA for Site 16. However, the section of Clear Creek that receives groundwater from Site 16 is included as part of NAS Whiting Field Site 39, Clear Creek Floodplain. The ERA for Site 39 will present the results of surface water and sediment sampling in Clear Creek and provide further information on whether or not Site 16 is a potential source of contamination to Clear Creek.

- 7.2 PROBLEM FORMULATION. The problem formulation is the initial step of the ERA process. Problem formulation is composed of identification of receptors, identification of exposure pathways for those receptors, and selection of assessment and measurement endpoints based on information gathered from the site characterization.

Certain species that potentially reside at NAS Whiting Field are protected by Federal and/or State laws. A list of state and federally protected species is provided in the GIR (HLA, 1998). Observations made during an ecological survey of NAS Whiting Field indicate that no state or federally listed rare, threatened, or endangered species or species of concern are known or likely to inhabit Site 16 (Nature Conservancy, 1997).

7.2.2 Identification of Exposure Pathways Exposure pathways are identified for four groups of receptors (terrestrial wildlife, terrestrial plants, soil invertebrates, and aquatic receptors). A complete exposure pathway includes a source of contamination, an exposure route, and a receptor. A conceptual model of the exposure pathways from source to ecological receptors is depicted in the contaminant pathway model on Figure 7-2.

All potential routes of exposure are considered in the ERA and are presented in the contaminant pathway model. The model differentiates between those exposure routes that are quantitatively evaluated and those that are qualitatively discussed. This limitation is necessary to focus the risk evaluation on those pathways for which contaminant exposures are the highest and most likely to occur. Those pathways that cannot be quantitatively evaluated, due to a lack of toxicological information, are qualitatively discussed and addressed as uncertainties. The general approach used to identify exposure pathways for the four groups of receptors is explained below.

<u>Terrestrial Wildlife</u>. Terrestrial wildlife may be exposed to contaminants in surface soil, surface water, and food items contaminated as a result of ingestion, dermal adsorption, and inhalation of fugitive dust and volatile emissions.

The drinking water exposure pathway is expected to occur only occasionally, following periods of heavy rain. However, the ERA assumes that the surface water at Site 16 is used as the primary drinking water source for terrestrial wildlife throughout the year. Since the ephemeral wetland remains dry for most of the year, aquatic organisms are not expected to be present. Therefore, ingestion of aquatic food items (i.e., fish and aquatic invertebrates) by terrestrial organisms is not evaluated in the ERA. The Site 16 ERA will evaluate only exposures to surface soil, surface water, and food items potentially containing constituents that have bioaccumulated from the surface soil.

Dermal adsorption is considered to be a negligible exposure pathway relative to the ingestion pathway because the presence of fur, feathers, or a chitinous exoskeleton is likely to prevent contamination from coming in direct contact with the skin (personal communication with Ted Simon, USEPA Region IV, September 1997). In addition, soil trapped in the fur or feathers is likely to be ingested during grooming or preening activities, which are evaluated as part of the indirect ingestion exposure pathway.

Exposure via inhalation of fugitive dust is not likely to be a significant exposure pathway because the vegetation at Site 16 would limit the release of fugitive dust. Although volatile constituents were detected in the surface soil of Site 16, exposures associated with VOCs are not evaluated in the ERA because of the low detection frequency and concentration of VOCs in the surface soil. Neither toluene nor xylene, the only VOCs detected in surface soil, were retained as ECPCs. In addition, no evidence of burrowing animals and/or burrows was noted at Site 16 during the October 1995 biological field investigation conducted by HLA ecologists, although this habitat may be suitable to these receptors.

Potential contaminant exposures for reptiles and amphibians exist at NAS Whiting Field; however, ingestion toxicity data and bioaccumulation factors are generally not available for these receptors. Therefore, potential risks to reptiles and amphibians from ingestion of affected surface soil and food items will be qualitatively addressed in the Uncertainties Section (Section 7.7) of the ERA.

Terrestrial Plants and Invertebrates. Terrestrial plants and soil invertebrates may be exposed to contamination in surface soil by direct contact with and root uptake (plants) or ingestion (invertebrates) of soil. The ingestion exposure routes include the ingestion of soil and food items containing chemicals accumulated from Site 16 surface soil. The inhalation exposure route is not evaluated for terrestrial plants and invertebrates due to the reasons discussed above for terrestrial wildlife. Because the depth to groundwater is approximately 10 to 15 feet bls, which is below the root zone of most Site 16 plants, it is unlikely that terrestrial plants will be exposed to potential groundwater contamination. Terrestrial plants and soil invertebrates may also be exposed to contamination in subsurface soil by direct contact or ingestion of subsurface soil. However, this exposure pathway is only qualitatively evaluated as sitespecific toxicity data are lacking (i.e., soil toxicity tests were not conducted using subsurface soil). In addition, there is uncertainty associated with comparing the surface soil screening benchmarks to concentrations detected in The surface soil benchmarks employed in this assessment are based on laboratory toxicity tests, using sensitive species and species in their early life stages. It is unlikely that the most sensitive plant species and life stages would be exposed to subsurface soil.

Aquatic Receptors. Exposure pathways evaluated for aquatic receptors in Clear Creek downgradient of Site 16 (including invertebrates, plants, amphibians, and fish) include direct contact with groundwater (as it discharges to the surface water of Clear Creek). Although direct contact with the surface water and sediment and ingestion of sediment and food items is possible, these pathways will be evaluated as part of the ERA for Site 39, Clear Creek Floodplain.

A qualitative screening evaluation of Site 16 groundwater migration to surface water and potential adverse effects to aquatic receptors in Clear Creek will be completed as part of this ERA. It should be noted that the purpose of this

evaluation is not to predict actual surface water and sediment conditions in Clear Creek. Surface water and sediment data from Clear Creek downgradient of Site 16 will be evaluated as part of the ERA for the Site 39, Clear Creek Floodplain.

7.2.3 Identification of Endpoints The assessment and measurement endpoints selected for the Site 16 ERA are listed in Table 7-1. Assessment endpoints represent the ecological component to be protected, whereas the measurement endpoints approximate or provide a measure of the achievement of the assessment endpoint. One of the assessment endpoints selected for the Site 16 ERA is the survival and maintenance of receptor populations and communities at Site 16. The measurement endpoints used to gauge the likelihood of population- and community-level effects are chemical-specific toxicological benchmark values derived from the literature that are based on laboratory-measured survival, growth, and reproductive effects. Table 7-1 presents the assessment endpoint, endpoint species, measurement endpoint, and decision point (i.e., the outcome at which additional evaluation may be warranted).

Three questions were developed to gauge potential risks associated with exposure to Site 16 surface soil and surface water. These questions are designed for multiple species and trophic levels and represent both individual and community dynamics. Questions for the Site 16 ERA are listed below.

- 1. ECPCs in the surface soil are not present at concentrations sufficiently high enough to reduce the survival and growth of terrestrial plant and invertebrate communities at Site 16.
- 2. ECPC concentrations in plants and invertebrates are not sufficiently high enough to adversely affect foraging small mammal or bird populations following consumption of contaminated prey.
- 3. Bioaccumulating chemical are not present at concentrations sufficiently high enough to reduce survivability, growth, or reproduction in top predators (e.g., foxes and owls).
- 7.3 HAZARD ASSESSMENT AND SELECTION OF ECPCS. The hazard assessment includes a review of analytical data and selection of ECPCs. ECPCs represent analytes detected in environmental media (i.e., surface soil, surface water, and groundwater) that are considered in the ERA and could present a potential risk for ecological receptors. The process for selecting ECPCs is depicted on Figure 7-3. Additional details regarding the ECPC selection process are provided in Subsection 2.4.2 of the GIR (HLA, 1998). Analytical data for Site 16 were evaluated and validated for use in risk assessment pursuant to national guidance, Guidance for Data Useability in Risk Assessment (Parts A and B) (USEPA, 1992a).

Following the data validation step, analytes in surface soil, surface water, and groundwater were not selected as ECPCs if the analyte was detected in 5 percent or fewer of the samples analyzed and not present in any other media. Calcium, magnesium, potassium, and sodium are excluded as ECPCs for surface water and groundwater. In addition to these analytes, iron is also excluded as an ECPC for surface soil. These analytes are considered to be essential nutrients and not toxic. The rationale for eliminating essential nutrients as ECPCs is provided in the GIR (HLA, 1998).

9

Table 7-1 Ecological Risk Assessment Endpoints Selected for Site 16

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

		William Tionau	
Assessment Endpoint	Receptor	Measurement Endpoint	Decision Point
Survival and growth of plant communities.	Terrestrial Plants	Germination of lettuce seeds exposed to surface soil samples from Site 16 in laboratory toxicity tests.	Significant differences (P≤0.05) in germination of lettuce seeds exposed to Site 16 surface soil samples as compared to control samples.
Survival and growth of terrestrial invertebrate communities.	Terrestrial Invertebrates	Survival and growth of earthworms exposed to surface soil samples from Site 16 in laboratory toxicity tests.	Significant differences (P≤0.05) in survival and/or growth of earthworms exposed to Site 16 surface soil samples as compared to control samples.
Survival and maintenance of wildlife populations.	Terrestrial Wildlife Species	Oral chemical doses (mg/kg BW/day) based on measured adverse effects on growth, reproduction, or survival (i.e., NOAEL, LOAEL, and LD $_{\rm 50}$ studies) of mammalian or avian laboratory test populations.	Comparison of potential dietary exposures in mammalian and avian wildlife with literature-derived RTVs. (HQ >1 indicate potential risks.)
Notes: P = probability ≤ = less than or equal mg/kg = milligrams pe BW/day = body weigh NOAEL = no observed LOAEL = lowest obser LD ₅₀ = lethal dose to 5 RTV = reference toxici HQ = hazard quotient. > = greater than.	er kilogram. t per day. adverse effect level. ved adverse effect leve 0 percent of a test pop		:

NOTES:

NAS = Naval Air Station

ECPC = ecological chemical of potential concern

- > = greater than
- < = less than
- x = times

¹ Media-specific ecological screening values include the Dutch Soil Criteria for surface soil ECPCs and the U.S. Environmental Protection Agency - Region 4 Surface Water Chronic Screening Values for groundwater. FIGURE 7-3
ECOLOGICAL CHEMICAL OF POTENTIAL
CONCERN SELECTION PROCESS

REMEDIAL INVESTIGATION REPORT SITE 16, OPEN DISPOSAL AND BURNING AREA

NAS WHITING FIELD MILTON, FLORIDA

2534-09 FIG 7-3 SITE 16 040898HAS

Inorganic chemicals representative of background conditions are not selected as ECPCs. In accordance with USEPA Region IV guidance (USEPA, 1991a), an inorganic analyte is not selected as an ECPC if the maximum detected concentration is less than 2 times the average detected inorganic concentration in background samples.

A CONTROL OF THE PROPERTY OF T

The maximum detected concentrations are compared against representative site-specific background surface soil and groundwater concentrations to eliminate chemicals that are unlikely to be site related. Surface water data were not compared to background values because no comparable surface water background samples were available. The surface water at Site 16 is an isolated water body that was created as a result of excavation activities. Neither Big Coldwater Creek, Clear Creek, nor ponds in the area are similar to the ephemeral wetland at Site 16.

Site-specific background investigations of surface soil and groundwater were conducted at NAS Whiting Field, and the findings are presented in Subsections 3.3.1 and 3.3.3 of the GIR, respectively (HLA, 1998). The site-specific background study used to establish background screening values for Site 16 surface soil consists of nine surface soil samples (BKG-SL-02, BKG-SL-06, BKG-SL-07, BKG-SL-08, BKS00101, BKS00201, BKS00301, BKS00401, and BKS00501) and one duplicate sample (BKS00201D). These samples were collected from Troup, Dothan, Lucy, and Bonifay soil types, which are considered the most geologically similar to the soil from Site 16. The site-specific background study used to establish background screening values for groundwater consists of seven groundwater samples (BKG00101, BKG00102, BKG00103, BKG00201, BKG00202, BKG00203, and BKG00301) and one duplicate sample (BKG00101D) collected from monitoring wells upgradient of any potential site-related contamination.

Analytes that exceed the background screening concentration and are not essential nutrients are also screened against ecological screening values for surface soil and groundwater. The surface soil ecological screening values are the Dutch Soil Criteria "A", which refer to background concentrations in surface soil issued by the U.S. Fish and Wildlife Service (Beyer, 1990). The groundwater ecological screening values are the fresh surface water chronic screening values for hazardous waste sites issued by USEPA Region IV (USEPA, 1995b). If the maximum detected concentration of an analyte for surface soil exceeds the respective ecological screening value, the analyte is retained as an ECPC for terrestrial wildlife, terrestrial plants, and soil invertebrates. Because ecological screening values are unavailable for surface water exposures to terrestrial wildlife, all analytes detected in surface water (with the exception of essential nutrients) are retained as ECPCs. If the maximum detected concentration of an analyte exceeds the groundwater ecological screening value, the analyte is retained as an ECPC for aquatic receptors.

Twenty surface soil samples (16-SL-01 through 16-SL-03 and 16S00101 through 16S01701 with duplicates at 16S00101D and 16S01001D) were collected at Site 16 (see Figure 3-3 or 5-11). Samples 16-SL-01 through 16-SL-03 were collected as part of the Phase IIA investigation in August 1992, and samples 16S00101 through 16S01701 were collected as part of the Phase IIB investigation in December 1995. Surface soil samples were analyzed for VOCs, SVOCs, pesticides and PCBs, and inorganics. A single unfiltered surface water sample, 16W00101, was collected from the ephemeral wetlands. Unfiltered groundwater results were used to evaluate potential ecological risks to Clear Creek. A discussion of which groundwater samples were used to evaluate both human health and ecological risks is provided in Subsection 6.3.

Tables 7-2 and 7-4 present a summary of the respective surface soil, and groundwater analytical data and the following information: frequency of detection, range of reporting limits, range of detected concentrations, average of detected concentrations, background screening concentrations, ecological screening values, 95 percent UCLs, and selected ECPCs. A summary of the surface water data including the frequency of detection, range of reporting limits, range of detected concentrations, and selected ECPCs is presented in Table 7-3.

As shown in Table 7-2, ECPCs selected for the surface soil samples collected at Site 16 include 13 SVOCs (carbazole, bis(2-ethylhexyl)phthalate, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno (1,2,3-cd) pyrene, phenanthrene, and pyrene), 1 PCB (Aroclor-1254), 5 pesticides (4,4'-DDD, 4,4'-DDE, 4,4'-DDT, Aroclor-1254, and dieldrin), and 12 inorganic constituents (aluminum, arsenic, barium, cadmium, chromium, copper, lead, manganese, mercury, silver, vanadium, and zinc).

As shown in Table 7-3, ECPCs selected for the surface water sample collected from the ephemeral wetland at Site 16 include two inorganic analytes (aluminum and lead).

As shown in Table 7-4, ECPCs selected for the unfiltered groundwater samples collected at Site 16 include three VOCs (benzene, TCE, and xylenes), one SVOC (-bis(2-ethylhexyl)phthalate), one pesticide (4,4'-DDT), and ten inorganics (aluminum, barium, cobalt, copper, cyanide, iron, lead, manganese, vanadium, and zinc).

- 7.4 EXPOSURE ASSESSMENT. The purpose of the ecological exposure assessment is to estimate or measure the amount of an ECPC to which an ecological receptor may be exposed. The following sections briefly describe how contaminant exposures are estimated or measured for wildlife, terrestrial plants, and invertebrates at Site 16 and aquatic receptors in Clear Creek downgradient of Site 16. The contaminant pathway model (Figure 7-2) provides a summary of the potential exposure pathways that exist at Site 16 for each group of receptors. Additional details regarding the exposure assessment are provided in the GIR (HLA, 1998).
- 7.4.1 Calculation of EPCs The EPC is a representative concentration used for evaluating risks throughout this ERA. RME and central tendency (CT) concentrations are derived for each ECPC. Because the sample sizes for both the surface soil and groundwater data sets are greater than ten, the RME value is equal to the lesser of the maximum detected concentration and the 95 percent UCL calculated on the log-transformed arithmetic mean (USEPA, 1992c). One-half of the detection limit is used to calculate the 95 percent UCL. If potential risks are predicted based on the RME scenario, then the CT exposure scenario is also evaluated. The CT exposure concentration is represented by the arithmetic mean of all samples. One-half of the detection limit is also used as a surrogate value for sample results that are below the detection limit. Because only one surface water sample was collected at Site 16, the EPC for surface water ECPCs is equal to the detected concentration for each ECPC.
- Tables 7-2, 7-3, and 7-4 present the EPCs for surface soil, surface water, and groundwater ECPCs, respectively.
- 7.4.2 Terrestrial Wildlife Exposure routes for wildlife receptors include direct ingestion of soil and surface water and indirect ingestion of food containing site-related chemicals. The actual amount of an ECPC taken in by

Table 7-2 Selection of Ecological Chemicals of Potential Concern in Surface Soil Associated with Site 16

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

				Militori, F	ioriua						
Analyte	Frequency of Detection ¹	Reporting Limit	Detected Concentration Range ²	Average of Detected Concentra-	Background Screening Concentra-	Ecological Screening Value ⁵	Chemical of Ecological	95th % UCL ⁷	Average of All		ntratio
	Detection	Range	Hange	tions ³	tion⁴	value	Concern ⁶		Samples ⁸	RME®	СТ"
Volatiles Organic Compoun	nds (µg/kg)		•								
Toluene	1/20	6 to 13	1	1 ,	ND	50	No ¹²				
Xylenes (total)	3/20	6 to 13	1 to 5	2.7	ND	50	No ¹²				
Semivolatile Organic Comp	ounds (µg/kg)									
Anthracene	1/20	350 to 420	95	95	ND	100	No ^{11, 12}				
Benzo(a)anthracene	4/20	350 to 420	56 to 2,300	668	ND	¹⁵ 100	Yes	351	286	351	286
Benzo(a)pyrene	5/20	350 to 840	71 to 3,100	746	ND	100	Yes	372	328	372	328
Benzo(b)fluoranthene	4/20	350 to 840	86 to 3,600	1,084	ND	¹⁵ 100	Yes	412	369	412	369
Benzo(g,h,i)perylene	3/20	350 to 420	120 to 1,200	603	ND	¹⁵ 100	Yes	299	251	299	251
Benzo(k)fluoranthene	3/20	350 to 420	73 to 3,200	1,204	ND	¹⁵ 100	Yes	388	343	388	343
Carbazole	1/17	350 to 420	97	97	ND	NA	Yes	202	185	97	97
Chrysene	5/20	350 to 420	54 to 3,200	741	ND	¹⁵ 100	Yes	388	327	388	327
Dibenzo(a,h)anthracene	2/20	350 to 420	110 to 700	405	ND	¹⁵ 100	Yes	240	212	240	212
Fluoranthene	4/20	350 to 420	59 to 2,300	676	ND	100	Yes	344	288	344	288
Indeno (1,2,3-cd) pyrene	4/20	350 to 420	62 to 1,900	573	ND	¹⁵ 100	Yes	324	266	324	266
Phenanthrene	2/20	350 to 420	52 to 440.	246	ND	100	Yes	233	196	233	196
Pyrene	4/20	350 to 420	44 to 1,700	516	ND	100	Yes	314	256	314	256
bis(2-Ethylhexyl)phthalate	7/20	350 to 420	43 to 116.5*	70.1	80	100	Yes	204	149	117	117
See notes at end of table.											

Table 7-2 (Continued) Selection of Ecological Chemicals of Potential Concern in Surface Soil Associated with Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Analyte	Frequency	Reporting Limit	Detected Concentration	Average of Detected	Background Screening	Ecological Screening	Chemical of	95th %	Average of All	٠,	re Poin intration
,y.c	Detection¹	Range	Range ²	Concentra- tions ³	Concentra- tion⁴	Value ⁵	Ecological Concern ⁶	UCL ⁷	Samples ⁸	RME ⁹	CT ¹⁰
Pesticides and PCBs	(µg/kg)										
4,4'-DDD	2/20	3.6 to 21	2.1 to 18	10.1	ND	2.5	Yes	6.2	4.4	6.2	4.4
4,4'-DDE	9/20	3.6 to 21	2.6* to 100	30.2	ND	2.5	Yes	37	15	37	15
4,4'-DDT	9/20	3.6 to 21	3.25* to 89	20.8	ND	2.5	Yes	19.9	10.8	19.9	10.8
Aroclor-1254	2/20	36 to 210	36 to 130	83	ND	20	Yes	68	46	68	46
Aroclor-1260	1/20	36 to 210	79*	79	ND	20	No ¹¹				
Dieldrin	8/20	3.6 to 21	2.5 to 130	31	29	0.5	Yes	31.5	14.7	31.5	14.7
alpha-Chlordane	3/20	1.8 to 99	1.6 to 9.4*	4.5	ND	100	No ¹²				
gamma-Chlordane	3/20	1.8 to 99	1 to 5.95*	3.1	ND	100	No ¹²				
Inorganic Analytes (mg/kg)										
Aluminum	20/20	40 to 40	1,890* to 18,600	8,724	13,500	50	Yes	11,271	8,724 1	1,271	8,724
Antimony	1/20	2.7 to 12	5.9	5.9	8	3.5	No ¹³				
Arsenic	20/20	2	0.7* to 12.1	2.8	¹⁶ 4.6	10	Yes	3.8	2.8	3.8	2.8
Barium	20/20	40	4.45* to 257	36.8	18.8	165	Yes	63.4	36.8	63.4	36.8
Beryllium	15/20	1	0.06 to 0.295*	0.12	0.36	1.1	No ¹²				
Cadmium	17/20	0.61 to 1	0.21 to 7.6	1.3	0.98	1.6	Yes	2.1	1.2	2.1	1.2
Calcium	20/20	1,000	70.8 to 2,350	584	446	NA	No ¹⁴				
Chromium	20/20	2	3.2 to 29.2	10.6	10	0.4	Yes	15	10.6	15	10.€
Cobalt	11/20	10	0.69 to 4.1	1.7	2.8	20	No ¹²				
Copper	19/20	5	2.9 to 202	34.1	8	40	Yes	78.3	32.5	78.3	32.5
Cyanide	8/20	0.24 to 0.5	0.12* to 0.51	0.2	0.28	5.0	No ¹²				
Iron	20/20	20	1,390* to 48,900	9,240	7,744	200	No ¹⁴				

Table 7-2 (Continued) Selection of Ecological Chemicals of Potential Concern in Surface Soil Associated with Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

				Wilton,	1 londa						
Analyte	Frequency of Detection ¹	Reporting Limit Range	Detected Concentration Range ²	Average of Detected Concentra- tions ³	Background Screening Concentra- tion ⁴	Ecological Screening Value ⁵	Chemical of Ecological Concern ⁶	95th % UCL ⁷	Average of All Samples ⁸	, ,	re Point ntration CT ¹⁰
Inorganic Analyte	es (mg/kg) (Con	tinued)	L	<u></u>	<u> </u>	<u> </u>				<u></u>	
Lead	20/20	0.6 to 1	4.4 to 759	110	10.2	50	Yes	473	110	473	110
Magnesium	20/20	1,000	34.2* to 443	157	244	NA	No ¹⁴				
Manganese	20/20	3	5.25* to 372	129	324	100	Yes	296	129	296	129
Mercury	9/20	0.08 to 0.1	0.05 to 0.65	0.17	0.12	0.1	Yes	0.13	0.1	0.13	0.1
Nickel	11/20	2.4 to 8	2.3 to 26	7.2	6.8	- 30	No ¹²				
Potassium	6/20	133 to 1,000	69.7 to 288.8*	159	177	NA	No ¹⁴				
Selenium	7/20	0.41 to 1	0.15 to 0.345*	0.21	0.46	0.81	No ^{12, 13}				
Silver	6/20	0.33 to 2	0.87 to 7.1	2.8	0.7	2.0	Yes	2.3	1.4	2.3	1.4
Sodium	18/20	1,000	114 to 361	178	382	NA	No ^{13, 14}				
Thallium	2/20	0.46 to 2	0.13 to 0.18	0.16	1.16	1.0	No ^{12, 13}				
Vanadium	20/20	10 to 10	3.3* to 28.9	15.8	19	2.0	Yes	21.1	15.8	21.1	15.8
Zinc	20/20	4 to 4	3.75* to 773	104	15.8	50	Yes	412	104	412	104

Frequency of detection is the number of samples in which the analyte was detected in relation to the total number of samples analyzed (excluding rejected values).

Notes continued on next page.

² The value indicated by an asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetect value, one-half of the detection limit is used as a surrogate for concentration for the sample where a nondetection was reported.

³ The average of detected concentrations is the arithmetic mean of all samples in which the analyte was detected. It does not include those samples with "R", "U", or "UJ" validation qualifiers.

⁴ The background screening value is twice the average of detected concentrations for inorganic analytes in background samples. Background screening values for organic analyte values are one times the average of detected concentrations. Organic values are included for comparison purposes only (i.e., not used to select ecological contaminant of potential concerns).

⁵ The ecological screening values are the Region IV Recommended Ecological Screening values for Soil. USEPA Region IV memorandum 4WD-OTS, December 22, 1998.

⁶ These chemicals are retained for further evaluation in the ecological risk assessment.

⁷ The 95% UCL is calculated on the log-transformed average of all samples using the formula provided in the USEPA Supplemental Guidance to RAGS: Calculating the Concentration Term (USEPA, 1992d). The 95% UCL is not calculated when there are less than 10 total samples.

⁸ The average of all samples assigns a value of one-half of the detection limit as a surrogate concentration for nondetect values.

The RME concentration is equal to the lesser of the maximum detected concentration or the 95th % UCL.

Table 7-2 (Continued) Selection of Ecological Chemicals of Potential Concern in Surface Soil Associated with Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

¹⁰ The CT exposure point concentration (EPC) is equal to the lesser of the average of all samples or the maximum exposure point concentration.

¹⁴ The analyte is an essential nutrient and not considered toxic.

¹⁵ The ecological screening value of benzo(a)pyrene is used as a surrogate value.

¹⁶ The background screening concentration for arsenic is the average of surface and subsurface soil background concentration. For additional information, see Appendix I in the GIR (HLA, 1998).

Notes: Samples: 16-SL-01, 16-SL-02, 16-SL-03, 16S00101, 16S00201, 16S00301, 16S00401, 16S00501, 16S00601, 16S00701, 16S00801, 16S00801, 16S01001, 16S01201, 16S01201, 16S01301, 16S01401, 16S01501, 16S01601, 16S01701.

Duplicate samples: 16S00101D, 16S01001D.

Background samples: BKG-SL-01, BKG-SL-02, BKG-SL-06, BKG-SL-07, BKG-SL-08, BKG-SL-09, BKG-SL-10, BKS00101, BKS00201, BKS00401, BKS00501.

Background duplicate samples: BKG-SL-09A, BKS00201D.

% = percent.

UCL = upper confidence level.

RME = reasonable maximum exposure.

CT = central tendency.

 $\mu g/kg = micrograms per kilogram.$

ND = not detected in any background sample.

* = average of a sample and its duplicate.

PCB = polychlorinated biphenyl.

DDD = dichlorodiphenyldichloroethane.

DDT = dichlorodiphenyltrichloroethane.

DDE = dichlorodiphenyldichloroethene.

mg/kg = milligrams per kilogram.

NA = not available.

¹¹ The analyte was detected in less than 5 percent of the samples and was not detected in any other media.

¹² The maximum detected concentration is less than the ecological screening value.

¹³ The maximum detected concentration is less than the background screening concentration.

Table 7-3 Selection of Ecological Chemicals of Potential Concern in Surface Water at Site 16

品籍 流溢 翻

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Analyte	Frequency of Detection ¹	Reporting Limit	Detected Concentration	Background Screening Concentration ²	Chemical of Ecological Concern
Inorganic Analytes (µg/ℓ)					
Aluminum	1/1	200	758	654	Yes
Barium	1/1	200	28.6	72.6	No ³
Beryllium	1/1	5	0.21	0.94	No ³
Calcium	1/1	5,000	8,890	3,320	No ⁴
Iron	1/1	100	730	964	No ³
Lead	1/1	3	5.2	ND	Yes
Magnesium	1/1	5,000	1,170	2,430	No ⁴
Manganese	1/1	15	4.4	42.8	No³
Potassium	1/1	5,000	2,780	1,530	No ⁴
Sodium	1/1	5,000	1,120	4,770	No⁴
Zinc	1/1	20	29.2	200	No ³

¹ Frequency of detection is the number of samples in which the analyte was detected in relation to the total number of samples analyzed (excluding rejected values).

Notes: Sample: 16W00101.

 $\mu g/\ell$ = micrograms per liter.

² The background screening concentration is twice the average detected concentration for inorganic analytes in background samples.

³ The detected concentration is less than the background screening concentration. Therefore, the analyte will not be evaluated further.

⁴ Analyte is an essential nutrient and not considered toxic.

Table 7-4 Selection of Ecological Chemicals of Potential Concern in Unfiltered Groundwater at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Analyte	Frequency of	Reporting Limit	Detected Concentration	Average of Detected	Background Screening	USEPA Chronic	Chemical of	95th %	Average of All	Exposu Concer	re Point ntration
Anaiyie	Detection ¹	Range	Range ²	Concentra- tions ³	Concentra- tion ⁴	Screening Values (µg/1) ⁵	Ecological Concern	UCL ⁶	Samples ⁷	RME ⁸	СТ
Volatiles Organic Compour	<u>ids</u> (µg/ !)										
1,2-Dichloroethane	6/17	10 to 50	1 to 32	19	NA	2000	No ¹⁰				
1,2-Dichloroethene (total)	6/17	10 to 50	1 to 50	16.5	NA	303	No ¹⁰				
Benzene	7/17	10 to 50	1 to 820	428	NA	53	Yes	4,188	179	820	179
Chloroform	3/17	10 to 40	1	1	NA	289	No ¹⁰				
Ethylbenzene	2/17	10 to 50	5 to 6	5.5	NA	453	No ¹⁰				
Toluene	2/17	10 to 50	1	1	NA	175	No ¹⁰				
Trichloroethene	5/17	10 to 50	2 to 7	3.8	NA	NSC	Yes	7.1	5.5	7	5.5
Xylenes (total)	1/17	10 to 50	1	1	NA	NSC	Yes	10.3	7.1	1	1
Semivolatile Organic Comp	ounds (µg/ℓ))									
Naphthalene	3/17	10	1	1	NA	62	No ¹⁰				
Phenol	3/17	10	4 to 8	5.7	NA	256	No ¹⁰				
bis(2-Ethylhexyl)phthalate	7/17	10	1 to 53	9.5	NA	0.3	Yes	11.7	6.9	11.7	6.9
Pesticides and PCBs (µg/ℓ)	ı										
4,4-DDT	2/17	0.1	0.14 to 0.15	0.15	NA	0.001	Yes	0.07	0.06	0.07	0.06
Inorganic Analytes (µg/ℓ)											
Aluminum	10/17	14.65 to 200	121 to 3,930	796	654	87	Yes	2,165	491	2,165	491
Antimony	1/17	8.6 to 60	17.4	17.4	20.4	160	No ^{10,11}				
Arsenic	4/17	0.5 to 10	0.6 to 3.6	1.5	ND	190	No ¹⁰				
Barium	17/17	200	10* to 456	53.9	72.6	NSC	Yes	73	53.9	73	53.9
See notes at end of table.											

Table 7-4 (Continued) Selection of Ecological Chemicals of Potential Concern in Unfiltered Groundwater at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Aughdo	Frequency	Reporting	Detected	Average of Detected	Background Screening	USEPA Chronic	Chemical of	95th %	Average		sure Poin entration
Analyte	of Detection ¹	Limit Range	Concentration Range ²	Concentra- tions ³	Concentra- tion⁴	Screening Values (µg/1) ⁵	Ecological Concern	UCL®	of All Samples ⁷	RME ⁸	СТ°
Inorganic Analytes ($\mu {f g}/{m \ell}$) (Continu	ed)									
Beryllium	1/17	0.3 to 5	0.42	0.42	0.94	0.53	No ^{10,11}				
Cadmium	2/17	1.2 to 5	2.2 to 12.5	7.4	4.4	0.66	No ¹⁰				
Calcium	15/17	236.5 to 308	623 to 78,800	16,462	3,320	NSC	No ¹²				
Chromium	4/17	2 to 10	2.1 to 4.6	2.9	30	11	No 10,11				
Cobalt	2/17	1.15 to 50	2.175* to 3	2.6	ND	NSC	Yes	76.7	18.2	3	3
Copper	6/17	1.1 to 25	1.4 to 11.9	4.2	10.8	6.54	Yes	26.8	7.5	11.9	7.5
Cyanide	1/17	1.5 to 5.2	12	12	7	5.2	Yes	2.3	1.8	2.3	1.8
lron	14/17	41.2 to 100	7.25* to 68,600	5,538	964	1000	Yes	44,802	4,568 4	4,802	4,568
Lead	4/17	0.5 to 3	0.5 to 5.7	3.1	ND	1.32	Yes	3.2	1.6	3.2	1.6
Magnesium	17/17	NR	268.5* to 8,690	1,841	2,430	NSC	No ¹²				
Manganese	17/17	0.5 to 15	1.3* to 1,370	188	42.8	NSC	Yes	1,652	188	1,370	188
Nickel	3/17	7.3 to 40	7.7 to 8.7	8.2	42.8	87.71	No ^{10,11}				
Potassium	13/17	316 to 5,000	322 to 4,790	1,600	1,530	NSC	No ¹²				
Sodium	17/17	NR	1,500* to 20,400	4,466	4,770	NSC	No ¹²				
Vanadium	4/17	1.2 to 50	1.3 to 25.2	7.6	3.8	NSC	Yes	124	15.2	25.2	15.2
Zinc	8/17	1.5 to 20	26.7 to 381	138	200	58.91	Yes	572	69.1	381	69.1

¹ Frequency of detection is the number of samples in which the analyte was detected in relation to the total number of samples analyzed (excluding rejected values).

Notes continued on next page.

² The value indicated by an asterisk is the average of a sample and its duplicate. For duplicate samples having one nondetect value, one-half of the contract required quantification limit/contract required detection limit is used as a surrogate concentration for the sample where nondetect was reported.

³ The average of detected concentrations is the arithmetic average of all samples in which the analyte was detected. It does not include those samples with "R", "U", or "UJ" validation qualifiers.

⁴ The background screening concentration is twice the average of detected concentrations for inorganic analytes in background samples.

⁵ The ecological screening values are from USEPA Region IV Supplemental Guidance to RAGS: Ecological Risk Assessment, (USEPA, 1995c).

Table 7-4 (Continued) Selection of Ecological Chemicals of Potential Concern in Unfiltered Groundwater at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

⁶ The 95% upper confidence limit (UCL) is calculated on the log-transformed average of all samples using the formula provided in the USEPA Supplemental Guidance to RAGS: Calculating the Concentration Term (USEPA, 1992d). The 95% UCL is not calculated when there are less than 10 total samples.

⁷ The average of all samples assigns a value of one-half of the contract required quantification limit/contract required detection limit as a surrogate concentration for samples where nondetect was reported.

⁸ The RME concentration is equal to the lesser of the maximum detected concentration or the 95th % UCL.

⁹ The CT concentration is equal to the lesser of the average of all samples or the maximum exposure point concentration.

¹⁰ The maximum detected concentration is less than the ecological screening concentration. Therefore, the analyte will not be evaluated further.

"The maximum detected concentration is less than the background screening concentration. Therefore, the analyte will not be evaluated further.

12 Analyte is an essential nutrient and is not considered toxic. Therefore, the analyte will not be evaluated further.

Notes: Samples: 16G00101, 16G00201, 16G00202, 16G00203, 16G00301, 16G00302, 16G00303, 16G00304, 16G00401, 16G00402, 16G00403, 16G00501, 16G00601,

16G00602, 16G00701, 16G00702, and 16G00703.

Duplicate sample: 16G00501D.

Background samples: BKG00101 through BKG00103, BKG00201 through BKG00203, and BKG00301.

Background duplicate sample: BKG00101D.

USEPA = U.S. Environmental Protection Agency.

uq/l = micrograms per liter.

% = percent.

UCL = upper confidence level; see footnote 6.

RME = reasonable maximum exposure.

CT = central tendency.

NA = not available.

NSC = no screening concentration available.

PCB = polychlorinated biphenyl.

DDT = dichlorodiphenyltrichloroethane.

* = average of sample and duplicate.

ND = not detected in any background sample.

wildlife species (i.e., ingestion dose in milligrams per kilogram per day [mg/kg-day]) depends on a number of factors. A potential dietary exposure (PDE) model is used to estimate exposure to representative wildlife species. The PDE (or body dose) is calculated for each ECPC in surface soil and surface water using the equations presented in Table 7-5 and the methodologies described in the GIR (HLA, 1998).

Wildlife species from different trophic guilds, which may be present at the site, were selected for the PDE model. The model uses species-specific feeding and habitat characteristics to estimate chemical exposures to wildlife species respective to their position in the food chain. Terrestrial receptors were chosen to represent the trophic levels typically found in the planted pine forest habitat present at Site 16. The representative wildlife species considered in the ERA are summarized in Table 7-6 and discussed below.

- Cotton mouse (Peromyscus gossypinus). The cotton mouse represents a small mammalian herbivore that could potentially be exposed to contamination in soil and in plant tissue (accumulated from the soil). The cotton mouse home range is estimated at 0.147 acre and could reside entirely on the site. The cotton mouse represents the small mammal herbivore community at Site 16.
- Short-tailed shrew (Blarina brevicauda). The short-tailed shrew finds suitable habitat in forests, fields, marshes, and brush and has a home range of approximately 1 acre. It primarily feeds on earthworms, snails, centipedes, insects, small vertebrates, and slugs (DeGraaf and Rudis, 1986). Insectivorous species may receive relatively high chemical doses of bioaccumulating compounds as a result of their voracious appetites. The shrew represents small omnivorous mammals that may be found in the pine forest of Site 16. An insectivorous bird was selected as a representative species rather than a graminivorous bird because it represents a worse case scenario, as invertebrates tend to bioaccumulate chemicals more readily than plants. As indicated in Table H-1, the invertebrate bioaccumulation factors are an order of magnitude higher than the plant bioaccumulation factors, for the CPCs in surface soil.
- Eastern meadowlark (Sturnella magna). The eastern meadowlark is most commonly found in open pastures, prairies, farms, and meadows, and has a home range of approximately 5 acres. The meadowlark feeds primarily on invertebrates, although its diet is supplemented with plants. The meadowlark represents insectivorous avian receptors at Site 16. An insectivorous bird was selected as a representative species rather than a graminivorous bird because it represents a worse case scenario, as invertebrates tend to bioaccumulate chemicals more readily than plants. As indicated in Table H-1, the invertebrate bioaccumulation factors are an order of magnitude higher than the plant bioaccumulation factors, for the CPCs in surface soil.
- Red Fox (Vulpes vulpes). This omnivorous mammal prefers open woodlands
 and grassy fields and is most active at night and twilight. It is an
 opportunistic forager, feeding on small mammals, birds, amphibians,
 reptiles, invertebrates, berries, and other fruits (Burt and

Table 7-5 Estimation of Potential Chemical Exposures for Representative Wildlife Species at Site 16

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Estimation of Chemical Exposures Related to Surface Soil

Scope:

Estimates the amount (dose) of a chemical ingested and accumulated by a species via incidental ingestion of surface soil and food items containing site-related chemicals.

Soil Chemical Concentration:

The lesser of the maximum detected concentration or the 95th percent upper confidence limit (UCL) of the mean is selected as the reasonable maximum exposure concentration.

Soil Exposure Concentration:

Primary Prey Item Concentration (T_{N1})

$$\begin{array}{ll} \textit{Primary} & \textit{Soil} \\ \textit{Prey Item} & = (\textit{BAF}_{\textit{inv or plant}} \times \textit{Concentration}) \\ \textit{(mg/kg)} & \textit{(mg/kg)} \end{array}$$

Secondary Prey Item Concentration (T_{N2}):

Secondary Tissue Concentration of Prey Item = (
$$BAF_{mam\ or\ bird} \times Primary$$
) Prey Items* (mg/kg)

where BAF =

Bioaccumulation Factor or mg/kg fresh weight tissue over mg/kg dry weight soil for invertebrates and plants, and mg/kg fresh weight tissue over mg/kg fresh weight food for small mammals and small birds.

* For a discussion of the weighted chemical concentration in prey items, see explanation of the PDE term below, and the GIR (HLA, 1998)

Total Exposure Related to Surface Soil:

$$\frac{\textit{PDE}}{(\textit{mg/kgBW-day})} = \frac{[\textit{P}_1 \times \textit{T}_1 + \ldots + \textit{P}_N \times \textit{T}_N + \underset{\textit{exposure}}{\textit{soil}}] \times \textit{IR}_{\textit{Diet}} \times \textit{SFF} \times \textit{ED}}{\textit{BW}}$$

where

PDE = potential dietary exposure (mg/kg BW-day),

 P_N = percent of diet composed of food item N, T_N = tissue concentration in food item N (mg/kg),

IR_{Diet} = food ingestion rate of receptor (kg of food or dietary

item per day),

BW = body weight (kg) of receptor,

SFF = site foraging frequency (site area [acres] divided by home range [acres])

(SFF cannot be greater than 1), and

ED = exposure duration (fraction of year species is expected to occur onsite

See notes at end of table.

Table 7-5 (Continued) Estimation of Potential Chemical Exposures for Representative Wildlife Species at Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Estimation of Chemical Exposures Related to Surface Water

Description:

Estimates the amount of a chemical ingested and accumulated by a species resulting from

incidental ingestion of surface water.

Chemical Concentration:

Same procedure as described above for soil .

Surface Water Exposure:

 $\begin{array}{lll} Surface \ Water & IR_{SW} & Surface \ Water \\ Exposure & = (\frac{IR_{SW}}{(\ell/day)} & x \ Concentration) \\ (mg/\ell) & (mg/\ell) \end{array}$

Where IR_{sw} = water ingestion rate of receptors (liters of water per day)

Notes: mg/kg = milligrams per kilogram.

% = percent.

BAF = bioaccumulation factor. inv = invertebrate species. mam = mammal species. BW-day = body weight per day.

kg = kilograms.

mg/day = milligrams per day. l/day = liters per day. mg/l = milligrams per liter. Grossenheider, 1976). The red fox has an estimated home range of approximately 250 acres and represents the large predatory mammal guild at Site 16.

Great-horned owl (Bubo virginianus). The great-horned owl is primarily a nocturnal hunter of small mammals. Its habitat includes deep woods and heavily wooded swamps often near open country where it may hunt for primary prey items consisting of small mammals and birds (DeGraaf and Rudis, 1986). The great-horned owl home range is approximately 15 acres. The owl represents the predatory avian carnivores of forested areas of Site 16.

Table 7-6
Ecological Receptors Evaluated For Site 16

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Rece	ptor Evaluated	Method of Evaluation				
Common Name	Scientific Name					
Terrestrial Plants	Lettuce seed (Lactuca sativa)	Toxicity testing using lettuce seed germination				
Terrestrial Invertebrates	Earthworm (Eisenia foetida)	Toxicity testing using survival and growth of earthworms				
Cotton mouse	Peromyscus gossypinus	Food-web model				
Short-tailed shrew	Blarina brevicauda	Food-web model				
Eastern meadowlark	Sturnella magna	Food-web model				
Red fox	Vulpes vulpes	Food-web model				
Great-horned owl	Bubo virginianus	Food-web model				

Parameters for quantitatively evaluating exposures to wildlife include body weight, food ingestion rate, home range, and relative consumption of food items. Exposure assumptions for each of the representative wildlife species for Site 16 are provided in Table 7-7 and Tables H-7 and H-11 of Appendix H. In addition to these parameters, the species foraging habits and bioaccumulation in food items are also considered.

The site foraging frequency (SFF) is an adjustment term that accounts for the frequency a receptor feeds within the site area. The SFF is based on both the acreage of the site relative to the receptor's home range and the fraction of the year the receptor would be exposed to site-related chemicals (i.e., the exposure duration). By definition, the SFF cannot exceed 1. The area of Site 16 (approximately 12 acres) is larger than the home range for the cotton mouse, short-tailed shrew, and eastern meadowlark and smaller than the home range for the red fox and the great-horned owl. Because all representative wildlife species are expected to actively forage at the site year-round, it is assumed that the exposure durations for these organisms are 1.

Wildlife species may be exposed to ECPCs in surface soil via incidental ingestion of soil or by ingesting prey items that have bioaccumulated these ECPCs. To estimate this exposure, a PDE is estimated for all representative wildlife

Table 7-7 Exposure Parameters for Representative Wildlife Species

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Representative Body Weigh Wildlife Species (kg)		Reported Diet	Assumed Diet for Terrestrial Exposure Assessment (% of diet)	Food Ingestion Rate (kg/day)	Water Ingestion Rate (£/day)	Home Range (acres)	
Cotton mouse [a] (Peromyscus gossypinus)	0.021 [b]	Seeds and some insects. [c]	88% Plants 10% Invertebrates 2% Soil [d]	0.0029 [e]	0.003 [f]	0.147 [g]	
Eastern meadowlark (<i>Sturnella magna</i>)	0.087 [i]	Insects, weed seeds and grass seeds, 75% of diet is invertebrates (beetles, grubs, bugs, grasshoppers, crickets, ants, and spiders). [i]	75% Invertebrates 20% Plants 5% Soil [i]	0.0119 [I]	0.0115 [k]	5 [i]	
Short-tailed shrew (<i>Blarina brevicauda</i>)	0.017 [h]	Earthworms, slugs and snails, fungi, insects, and vegetation. [c]	78% Invertebrates 12% Plants 10% Soil [c]	0.0024 [e]	0.0025 [f]	0.96 ± 0.09 [c]	
Great-horned owl (Bubo virginianus)	1.50 [i]	Mostly rabbits, mice, rats, squir- rels, birds. bats, snakes, frog, cray- fish and grasshoppers. [i]	80% Small mammals 19% Birds 1% Soil [c]	0.078 [1]	0.077 [k]	15 [m] 250 [c]	
Red fox (<i>Vulpes vulpes)</i>	4.69 [c]	Small mammals, birds, and invertebrates, as well as berries and other fruits. [c]	57% Small mammals 20% Invertebrates 10% Small birds 10% Plants 3% Soil [c]	0.24 [e]	0.398 [f]	250 [c]	

Table 7-7 (Continued) Exposure Parameters for Representative Wildlife Species

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

References:

- [a] Values for the deer mouse were used for the cotton mouse (U.S. Environmental Protection Agency [USEPA], 1993b).
- [b] Average of adult male and female deer mice in North America (USEPA, 1993b).
- [c] Wildlife Exposure Factors Handbook (USEPA, 1993b).
 - Invertebrate, plant, and soil values for the short-tailed shrew derived from data presented in Whitaker & Ferraro, 1963.
 - Invertebrate, plant, small mammal, small bird and soil values for red fox are averages of values presented in Wildlife Exposure Factors Handbook.
 - Small mammal, small bird, and soil values for the owl are averages of the values presented in Wildlife Exposure Factors Handbook,
- [d] Deer mouse value used for cotton mouse based on similarities in diet. Plant, invertebrate, and soil values are averages of values presented in the Wildlife Exposure Factors Handbook (USEPA 1993b).
- [e] Calculated using the mammal equation based on body weight (Wt.) in kg. Food ingestion (kg/day) = 0.0687 x Wt ^{0.822} (kg) (USEPA, 1993b).
- [f] Water ingestion rate for mammals is based on body weight in kg: water ingestion (I/day) = 0.099 x Wt ^{0.9} (kg) (USEPA, 1993b).
- [g] Average for male and female deer mice living in a mixed deciduous forest of Virginia (USEPA, 1993b).
- [h] Mean of means reported for male and female shrews in summer and fall (USEPA, 1993b).
- [i] Terres (1980).
- [j] DeGraaf & Rudis (1986).
- [k] Water ingestion rate for birds is based on body weight in kg: water ingestion (I/day) = 0.059 x Wt ^{0.67} (kg) (USEPA, 1993b).
- [I] Calculated using the bird equation based on body weight (Wt.) in kg. Food ingestion (kg/day) = 0.0582 x Wt 0.651 (kg) (USEPA, 1993b).
- [m] Great-horned owl home range taken from low end of range in SE Madison County, N.Y. (Hager, 1957).

Notes: kg = kilograms.

kg/day = kilograms per day.

!/day = liters per day.

% = percent.

 \pm = plus or minus.

species for each ECPC according to the equations in Table 7-5 and the methodologies described in Subsection 2.4.3 of the GIR (HLA, 1998).

Bioaccumulation factors (BAFs) are used in the wildlife exposure model to estimate the transfer of chemicals in soil to plants or soil invertebrates, and between these organisms and primary consumer species. To estimate the PDE, tissue concentrations of ECPCs in prey items are estimated using BAFs for surface soil. BAFs for most receptors are extrapolated from literature values or estimated using regression equations from scientific liter-literature. Based on the evidence provided in several reference materials (Suter, 1993; Maughan, 1993), an assumption is made that VOCs do not bioaccumulate in prey tissue. The general approach used to select BAFs for Site 16 is summarized in Table 7-8.

BAFs for invertebrate and plant food items are defined as the ratio of the ECPC concentration in plant or invertebrate tissue (mg chemical/kg tissue wet-weight) to the ECPC concentration in surface soil (mg chemical/kg dry-weight soil). BAFs reported in the scientific literature for avian and mammalian receptors are the reported ratios of ECPC concentrations in the tissues of these receptors (mg chemical/kg tissue wet-weight) to the concentrations of ECPCs in their food items (mg chemical/kg tissue wet-weight). BAFs for each of the ECPCs evaluated at Site 16 are included in Table H-1 of Appendix H.

- 7.4.3 Terrestrial Plants and Invertebrates Terrestrial plants and invertebrates may be exposed to ECPCs via direct contact with and root uptake (plants) or ingestion (invertebrates) of ECPCs measured in Site 16 surface soil and surface water. For the purposes of the quantitative evaluation of soils at Site 16, the primary exposures to terrestrial plants and invertebrates are assumed to occur within the top one-foot interval of surface soil and these data were qualitatively evaluated. Exposure of terrestrial plants and invertebrates is qualitatively evaluated for exposure to subsurface soil as deep rooted and deep burrowing invertebrates may be exposed to this medium. Exposure of terrestrial plants to groundwater is not evaluated because the depth to the water table is approximately 10 to 15 feet bls (see hydrogeological discussion in Section 5.2 of this report).
- 7.4.4 Aquatic Receptors Exposure concentrations for aquatic receptors in Clear Creek are equal to the RME concentrations of ECPCs detected in groundwater. The focus of the groundwater evaluation is to screen the contaminants detected in groundwater at Site 16, not to estimate actual exposures. The screening evaluation will be used to identify the analytes, detected at concentrations that could potentially pose a risk to aquatic receptors. The results of this screen will be used to identify potentially significant migration pathways to Clear Creek.
- 7.5 ECOLOGICAL EFFECTS ASSESSMENT. The ecological effects assessment discusses what measurement endpoints were used to evaluate potential adverse impacts to the assessment endpoints (i.e., the maintenance of receptor populations). The methods used for identifying and characterizing ecological effects for ECPCs in surface soil, surface water, and groundwater are described in the following subsections and in greater detail in Subsection 2.4.4 of the GIR (HLA, 1998).

Wildlife receptors, terrestrial plants, and terrestrial invertebrates are potentially exposed to ECPCs in surface soil; terrestrial wildlife is exposed to

Table 7-8 Estimation of Bioaccumulation Factors for Site 16

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Receptor Group	Nature of Approach	General Approach
Terrestrial Plants		
Unit: mg/kg wet tissue per mg/kg dry soil	Literature Values	When available, literature values were used to estimate plant BAFs.
·	SAR	When literature values were not available, plant BAFs for semivolatile organic compounds (SVOCs) were calculated using a regression equation based on the relationship between plant bioconcentration factors and the <i>n</i> -octanol-water partition coefficient for soil (K _{ow} s) of analytes (Travis and Arms, 1988). The study found that bioconcentration factors for vegetation are inversely proportional to the square root of the K _{ow} s of an analyte.
	Extrapolation and Empirical Data	When literature values were not available, plant BAFs for inorganic compounds were obtained from Baes et al. (1984). 1
	Assumption	Although evidence suggests that plants may transport organic analytes with log $K_{ow}s < 5$ (i.e., volatile organic compounds [VOCs]) from the roots into leafy portions (Briggs et al., 1982; Briggs et al., 1983), bioaccumulation data for VOCs is generally lacking in the scientific literature. In addition, evidence in the literature (Suter, 1993; Maughan, 1993) suggests that analytes with log $K_{ow}s < 3.5$ are not bioaccumulated into animal tissue. Therefore, it was assumed that transfer of VOCs from plant tissue to animal tissue does not occur.
Terrestrial Invertebrates Unit: mg/kg wet tissue per mg/kg dry soil	Literature Values	When no site-specific values were available, literature values were used to estimate BAFs for invertebrates.
	Assumption	Bioaccumulation data for VOCs are generally lacking in the scientific literature. In addition, evidence in the literature (Suter, 1993; Maughan, 1993) suggests that analytes with log K_{ow} s <3.5 are not bioaccumulated into animal tissue. Therefore, it was assumed that soil invertebrates do not bioaccumulate VOCs.
Small Mammals Unit : mg/kg wet tissue per mg/kg wet food	Literature Values	When available, literature values were used to estimate BAFs for small mammals.
	SAR	When literature values were not available for SVOCs, BAFs for small mammals were estimated using a regression equation based on the uptake of organic chemicals into beef tissue from Travis and Arms (1988) ³ .
	Extrapolation and Empirical Data	When literature values were not available, BAFs for small mammals for inorganics were derived from ingestion-to-beef biotransfer factors (BTFs) presented in Baes et al. (1984) ² .
	Assumption	Bioaccumulation data for VOCs are generally lacking in the scientific literature. In addition, evidence in the literature (Suter, 1993; Maughan, 1993) suggests that analytes with log K_{ow} s < 3.5 are not bioaccumulated into animal tissue. Therefore, it was assumed that small mammals do not bioaccumulate VOCs.

Table 7-8 (Continued) Estimation of Bioaccumulation Factors For Site 16

wheath and the training to the Table

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Receptor Group		Nature of Approach	General Approach			
Small Unit:	Birds mg/kg wet tissue per mg/kg wet food	Literature Values	When available, literature values were used to estimate BAFs for small birds.			
		No Information	BAFs were not obtained for SVOCs or for inorganic compounds as there is little bioaccumulation data available for birds. It was assumed that small birds do not accumulate VOCs.			

BAFs derived from Baes et al. (1984). Values are based on analysis of literature references, correlations with other chemical and physical parameters, or comparisons of observed and predicted elemental concentrations in vegetative and reproductive plant material and soil. Data are based on dry weight and were converted to a fresh weight basis assuming that plants are 80 percent water. This is generally consistent with the water content of berries (82 to 87 percent water) and leafy vegetables (87 to 95 percent water), presented in Suter (1993). Grains contain a much lower percentage of water (approximately 10 percent); therefore, this assumption likely underestimates exposure to graminivores.

Notes: mg/kg = milligrams per kilogram.

BAFs = bioaccumulation factors.

 $Log K_{ow} = Logarithmic$ expression of the octanol-water partition coefficient.

< = less than.

kg = kilogram.

⁽approximately 10 percent); therefore, this assumption likely underestimates exposure to graminivores.

² BTFs were converted to a BAF (mg/kg tissue divided by mg/kg food) by multiplying by a food ingestion rate of 12 kg (dry weight) per day (average intake for lactating and nonlactating cattle reported in Travis and Arms, 1988).

ECPCs in the surface water at Site 16; and aquatic receptors are potentially exposed to ECPCs in groundwater that discharge to the surface water of Clear Creek. The measures of adverse ecological effects for these receptors are discussed separately.

7.5.1 Terrestrial Wildlife As identified in the problem formulation, the assessment endpoint selected for terrestrial wildlife is the survival and maintenance of wildlife populations and communities present within the planted pine forest area of Site 16. Because no long-term wildlife population data are available at NAS Whiting Field, a direct measurement of this assessment endpoint is not possible. The literature-derived results of laboratory toxicity studies that relate the dose of a chemical in an oral exposure with an adverse response to growth, reproduction, or survival of a test population (avian or mammalian species) are used as a measure of the assessment endpoint. Wildlife ingestion toxicity data found in the literature are presented in Appendix H, Table H-2 of this report.

Reference toxicity values (RTVs) are derived for each ECPC and representative wildlife species according to the data hierarchy presented in Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final (USEPA, 1997b). The RTV represents the highest exposure level (e.g., concentration in the diet) not shown to produce adverse effects (e.g., reduced growth, impaired reproduction, increased mortality). For each ECPC, two RTVs representing lethal and sublethal effects are selected for each representative wildlife species. Lethal effects are those that result in mortality while sublethal effects include those that impair or prevent reproduction or growth. The RTVs are assumed to be a measure of the assessment endpoints for the protection of the survival, growth, and reproduction of terrestrial wildlife populations. Lethal RTVs are developed using the following data hierarchy discussed in items 1, 2, and 3 (below), while sublethal RTVs are derived using the methodology discussed in items 1 and 2:

- For contaminants with well-documented adverse effects, the highest reported exposure level not resulting in significant adverse effects (i.e., a no observed adverse effect level (NOAEL)) was selected as the RTV
- 2. Generally, one-tenth of the lowest observed adverse effect level (LOAEL) was selected as the RTV for analytes lacking NOAEL values. However, application of the 10-fold uncertainty factor was based on consideration of the exposure duration, type of toxicity test, and the relationship between the selected measurement and assessment endpoints.
- 3. The lowest reported oral LD_{50} (oral dose [in mg/kg body weight-day] lethal to 50 percent of a test population) was used to derive the lethal RTV if NOAEL or LOAEL values (based on lethal effects) were not available. The lethal RTV is one-fifth of the lowest reported LD_{50} value for the species most closely related to the representative wildlife receptor. One-fifth of an oral LD_{50} value is considered to be protective against lethal effects for 99.9 percent of individuals in a test population (USEPA, 1986). An assumption is made that the value represented by one-fifth of an oral LD_{50} would be protective of 99.9 percent of the individuals within the terrestrial wildlife populations and represents a level of acceptable risk.

A summary of lethal and sublethal RTVs selected from the ingestion toxicity data is provided in Table H-3 of Appendix H.

the first of the property of the parties of the con-

If neither lethal nor sublethal toxicity information were available for a taxonomic group, no RTVs were identified and risks associated with the respective ECPC were not quantitatively evaluated. However, the absence of specific data for a taxonomic group does not imply that there is no toxicological effect associated with contaminant exposure by these receptors; therefore, potential risks to these taxonomic groups are qualitatively discussed in the Uncertainties Section (Section 7.7).

7.5.2 Terrestrial Plants and Invertebrates The assessment endpoints selected for terrestrial plants and soil invertebrates at Site 16 are survival and growth of these communities. The toxicity of surface soil at Site 16 was measured using two laboratory toxicity tests: a 14-day survival and a 30-day growth test with earthworms ($E.\ foetida$) and a 120-hour lettuce seed ($L.\ sativa$) germination test.

Surface soil samples for toxicity testing were collected from six locations at Site 16 (16N00201, 16N00301, 16N00601, 16N00801, 16N01201, and 16N01301 and a duplicate 16N00301D) and two reference soil samples from uncontaminated sites at NAS Whiting Field (BKN00101 and BKN00301 and its duplicate BKN00301D). The Site 16 and reference soil samples were collected concurrently with surface soil samples (16S00201, 16S00301, 16S00601, 16S00801, 16S01201, 16S01301, BKNS00101 and BKNS00301, respectively) for chemical analyses and represent split samples. The results of the chemical analyses can, therefore, be used to establish contaminant exposure concentrations and provide the means to interpret responses in the bioassays. If adverse effects were observed in either of the bioassays, simple linear regressions were completed to determine if a correlation(s) exists between the concentration of an analyte and the adverse response measured in the bioassay.

Appendix F of the GIR (HLA, 1998) presents the results of the toxicity testing of Site 16 surface soil with E. foetida and L. sativa. A summary of the results from the earthworm survival and growth and lettuce seed germination test performed on Site 16 surface soil is presented in Table 7-9. A summary of toxicity data for plant receptors and terrestrial invertebrates is presented in Appendix H, Summary of Toxicity Data, Table H-4 and H-5.

Because the earthworm survival and lettuce seed germination data in the reference sample, BKN00101, were significantly different ($P \ge 0.05$) than the reference location, BKN00301, and data from sample BKN00301 were not significantly different from the laboratory control, toxicity data from BKN00101 were not included in the statistical comparison of site-related data and control/reference data. Site-related toxicity data were evaluated by a statistical comparison of mean survival, growth (as wet weight), or germination with the reference sample (BKN00301 and BKN00301D) and the laboratory control.

In the six surface soil samples collected from Site 16, survival of E. foetida after 14 and 30 days was 100 percent. Growth rates of E. foetida in the six surface soil samples from Site 16 were not significantly (P \geq 0.05) different from the laboratory control or the reference sample (BKN00301), indicating that the surface soil from Site 16 is not acutely or chronically toxic to invertebrates.

Table 7-9 Summary of Results from Biological Toxicity Testing¹

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Sample Identification	Eisenia foetida Percent Survival After 14 days (30 days)	Eisenia foetida Percent Growth After 30 days	Lactuca sativa Percent Germination After 120 Hours
16N00201	100(100)	27.6	96
16N00301	100(100)	8.3	91
16N00301D	100(100)	-4.8	89
16N00601	100(100)	12.3	94
16N00801	100(100)	-1.6	97
16N01201	100(100)	2.3	56*
16N01301	100(100)	9.4	92
Lab. Control	100(100)	13	91
BKN00301	100(100)	10.9	97
BKN00301D	100(100)	5	90
BKN00101	100(63)	29.1	43*

¹ The complete biological testing report is presented in Appendix F of General Information Report (Harding Lawson Associates, 1998).

Note: * = Significantly different (probability less than or equal to 0.05) from the laboratory control.

Soil collected from one of the six Site 16 sampling locations inhibited germination of the lettuce seed. Germination potential of lettuce seed, L. sativa, in the laboratory control and reference sample (BKN00301) was significantly different (P \geq 0.05) from surface soil collected from location 16N01201. Germination in the reference samples was 97 and 90 percent (for samples BKN00301 and BKN00301D, respectively) as compared to 56 percent in sample 16N01201.

- 7.5.3 Aquatic Receptors. Potential adverse effects associated with Site 16 groundwater ECPCs are available in the form of laboratory aquatic toxicity testing results for individual ECPCs. Aquatic toxicity information for the ECPCs was obtained from searches of the USEPA AQUIRE database (USEPA, 1994d). Information on the AQUIRE database is included in Appendix I. The State of Florida Surface Water Quality Standards (Florida Legislature, 1996) and USEPA Ambient Water Quality Criteria (AWQC); (USEPA, 1988b and 1991c) were also used to assess the potential for adverse effects to aquatic receptors.
- 7.6 RISK CHARACTERIZATION. This section presents the risk characterization for ecological receptors exposed to affected surface soil, surface water, and groundwater at Site 16. Potential risks associated with exposures to ECPCs in surface soil at Site 16 are discussed separately for wildlife, terrestrial plants, and soil invertebrates. Risks associated with terrestrial wildlife ingestion of surface water ECPCs and aquatic receptor exposures to groundwater ECPCs are also characterized.

Risks to wildlife are characterized by comparing the PDE concentrations for each surface soil and surface water ECPC with its respective RTV (estimated threshold dose for toxicity). Risks to terrestrial plants and soil invertebrates are evaluated based on the results of the respective soil toxicity tests. Risks for aquatic receptors in Clear Creek are evaluated by comparing aquatic toxicity benchmarks to groundwater RME concentrations following application of a 10-fold attenuation factor.

7.6.1 Terrestrial Wildlife Risks for the representative wildlife species associated with ingestion and bioaccumulation of ECPCs in surface soil and prey items were quantitatively evaluated using HQs. HQs are calculated for each ECPC by dividing the PDE concentration by the selected lethal and sublethal RTV. were determined for each receptor by summing the HQs for all ECPCs. estimated PDE is less than the RTV (i.e., the HQ < 1), it is assumed that chemical exposures are not associated with adverse effects to receptors and risks to wildlife populations are unlikely to be significant. For instance, if the PDE calculated using the RME concentration is less than the lethal RTV, then it is assumed that adverse effects to the survival of wildlife populations are unlikely Similarly, if the reasonable maximum PDE is less than the sublethal RTV, then it is assumed that adverse effects to wildlife populations related to growth and reproduction are unlikely to occur. When an HI is greater than 1, a discussion of the ecological significance of the HQs comprising the HI is completed and risks from exposure to CT concentrations of ECPCs are evaluated.

This hazard ranking scheme evaluates potential ecological effects to individual organisms and does not evaluate potential populationwide effects. Contaminants may cause population reductions by affecting birth and mortality rates, immigration, and emigration (USEPA, 1989d). In many circumstances, lethal or

sublethal effects may occur to individual organisms with little population-or community-level impacts; however, as the number of individual organisms experiencing toxic effects increases, the probability that population effects will occur also increases. The number of affected individuals in a population presumably increases with increasing HQ or HI values; therefore, the likelihood of population-level effects occurring is generally expected to increase with higher HQ or HI values.

The HQs and HIs based on lethal and sublethal RTVs were calculated for each ECPC and each representative wildlife species. Tables H-8, H-9, H-12, and H-13 of Appendix H present the HQ and HI calculations. A summary of risks to representative wildlife receptors from surface soil ECPCs is provided in Table 7-10. The HIs based on lethal and sublethal RTVs were calculated for each surface water ECPC and each representative wildlife species. Table 7-11 presents the HI calculations.

Lethal effect HIs for representative wildlife species exposed to RME and central tendency concentrations of ECPCs were less than 1; therefore population-level risks are not predicted for these receptors (i.e., bioaccumulating chemicals are not present at sufficiently high enough concentrations to reduce survivability in terrestrial wildlife populations at Site 16).

With the exception of the cotton mouse, sublethal effect HIs for representative wildlife species exposed to RME and CT concentrations of ECPCs were less than 1. Sublethal HIs based on exposure to RME and central tendency concentrations for the white-footed mouse are 5.3 and 2.5 respectively. The primary risk drivers, based on RME concentrations are cadmium and zinc. The primary risk driver, based on central tendency concentrations is cadmium. Based on the results of the foodweb model, reductions in the growth and reproduction of small herbivorous mammals are possible at Site 16, but unlikely due to the relatively low HI s (i.e., HI s less than 10).

Summary HIs for representative wildlife species exposed to RME concentrations of surface water ECPCs for lethal and sublethal effects were less than 1; therefore risks are not predicted for these receptors (i.e., ingestion of surface water from the ephemeral wetland at Site 16 is not likely to reduce survivability, growth, and reproduction in terrestrial wildlife populations at Site 16).

7.6.2 Terrestrial Plants Risks for terrestrial plants at Site 16 were evaluated based on the results of soil toxicity tests using lettuce seeds. With the exception of sample 16N01201, germination of the lettuce seed was not inhibited as compared to the reference sample, BKN00301, and the laboratory control. Appendix H presents a series of simple linear regression analyses that evaluate the statistical relationship between biological effects observed in the surface soil bioassays and concentrations of selected analytes in Site 16 surface soil. Although germination of lettuce seeds was slightly inhibited at one of the Site 16 surface soil sampling location, no correlation between germination inhibition and ECPC concentrations was observed (Appendix H). It is possible that reduced germination observed at 16S01201 was either the result of synergistic effects of multiple contaminants or not related to contamination. Nonmeasured physical, biological, or chemical factors may be responsible for the observed slight reduction in lettuce seed germination (i.e., ECPC exposure concentrations are likely not responsible for the observed effect).

Table 7-10 Summary of Hazard Indices for Terrestrial Wildlife Associated with Exposure to Site 16 Surface Soil¹

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Ecological Receptors	Lethal Effects from Exposure to Reasonable Maximum EPCs	Lethal Effects from Exposure to Central Tendency EPCs	Sublethal Effects from Exposure to Reasonable Maximum EPCs	Sublethal Effects from Exposure to Central Tendency EPCs
Cotton mouse	0.41	0.21	5.3	2.5
Eastern meadowlark	0.0033	0.0014	0.13	0.069
Short-tailed shrew	0.12	0.061	0.94	0.38
Red fox	0.000078	0.0028	0.0012	0.041
Great-horned owl	0.000044	0.00002	0.014	0.0078

¹ Hazard indices are presented in Tables H-8, H-9, H-12, and H-13.

Note: EPC = exposure point concentration.

Table 7-11 Risks for Representative Wildlife Species from Surface Water ECPCs

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

	Exposure Point Concentration	Water Ingestion Rate	Body Weight (kg) [a]		RTVs [d]		HI [e]	
Receptor [a]				Body Dose [c]	Lethal	Sublethal	Lethai	Sublethal
			(mg	ng/kgBW-day)				
Aluminum		<u> </u>		·				
Cotton mouse	0.758	0.003	0.021	1.1E-01	7.4E+02	4.3E+02	1.5E-04	2.5E-04
Short-tailed shrew	0.758	0.0025	0.017	1.1E-01	7.4E+02	4.3E+02	1.5E-04	2.6E-04
Eastern meadowlark	0.758	0.0115	0.087	1.0E-01	NA	NA	NC	NC
Red fox	0.758	0.398	4.69	6.4E-02	7.4E+02	4.3E+02	8.7E-05	1.5E-04
Great-horned Owl	0.758	0.077	1.5	3.9E-02	NA	NA	NC	NC
Lead								
Cotton mouse	0.0052	0.003	0.021	7.4E-04	6.0E+01	3.0E+01	1.2E-05	2.5E-05
Short-tailed shrew	0.0052	0.0025	0.017	7.6E-04	6.0E+01	3.0E+01	1.3E-05	2.5E-05
Eastern meadowlark	0.0052	0.0115	0.087	6.9E-04	7.5E+01	4.6E+00	9.2E-06	1.5E-04
Red fox	0.0052	0.398	4.69	4.4E-04	6.0E+01	3.0E+01	7.4E-06	1.5E-05
Great-horned Owl	0.0052	0.077	1.5	2.7E-04	7.5E+01	4.6E+00	3.6E-06	5.8E-05

- [a] Exposure parameters including receptors, water ingestion rate, and body weight are presented in Table 7-7.
- [b] The surface water exposure point concentrations (EPCs) for aluminum and lead are presented in Table 7-3.
- [c] The total body dose is calculated by multiplying the EPC by the water ingestion rate and dividing by body weight.
- [d] The RTVs for aluminum and lead are present in Appendix H, Table H-3.
- [e] The lethal and sublethal Hazard Indices are calculated by dividing the body dose by the RTV.

Note: NA = not available.

- <u>7.6.3 Terrestrial Invertebrates</u> Risks for soil invertebrates at Site 16 were evaluated based on the results of soil toxicity tests using earthworms. After 30 days of exposure to Site 16 surface soil, survival of earthworms in the toxicity test was 100 percent, and percent change in growth was similar (($P \ge 0.05$) to laboratory control and reference sample (BKN00301). The results of the toxicity testing show that surface soil samples collected from Site 16 are not expected to impact the survival and growth of terrestrial invertebrate communities.
- 7.6.4 Aquatic Receptors The risks associated with ECPCs in groundwater discharged to Clear Creek were evaluated based on comparison of the EPCs in groundwater to reported laboratory toxicity test data (AQUIRE information, USEPA 1994d), Federal AWQC (USEPA, 1988b and 1991c), and State of Florida Surface Water Quality Standards for Class III waters (Florida Legislature, 1996). As previously discussed, EPCs for groundwater are equal to the reasonable maximum exposure point concentrations presented in Table 7-4. Comparison of groundwater EPCs to benchmark values are presented in Table 7-12.

The organic ECPCs in unfiltered groundwater that exceed available screening values include benzene, bis(2-ethylhexyl)phthalate, and 4,4'-DDT. The inorganic ECPCs in unfiltered groundwater that exceed available screening values included aluminum, copper, iron, lead, manganese, and zinc. The results of this screening indicate that there are several analytes detected in groundwater that may pose a potential risk to aquatic receptors. However, further evaluation of the potential and actual risks to aquatic receptors associated with contaminant exposures to Site 16 groundwater will be provided in the ERA for Clear Creek (Site 39).

7.7 UNCERTAINTY ANALYSIS. The objective of the uncertainty analysis is to discuss the assumptions of the ERA process that may influence the risk assessment results and conclusions. Table 2-5 of the GIR presents several general uncertainties inherent in the risk assessment process. (HLA, 1998)

Specific uncertainties associated with exposure to surface soil, surface water, and groundwater at Site 16 include the following:

- Risks to avian species may have been underestimated because bioaccumulation and toxicity data for this taxonomic group are generally lacking in the literature. As a result, potential risks associated with several ECPCs were not evaluated for avian species. If the toxicological and contaminant transport data obtained from studies conducted on mammals were used to estimate risks to avian species, then risk estimates for birds would be higher. However, there is also uncertainty in assuming that the metabolic functions of mammals and birds are similar enough to use inter-taxonomic surrogates.
- The risks to terrestrial wildlife may have been underestimated because the dermal absorption and inhalation pathways were not quantitatively evaluated. Inhalation risks to avian and mammalian species would not likely occur at this site, as this pathway become significant only when there has been an acute exposures (i.e., following a spill or release). Risks to juvenile burrowing/subterranean dwellers may exist as they are in a sensitive lifestage, however fur, feathers, or a chitinous

Table 7-12 Comparison of Site 16 Groundwater ECPC Exposure Concentrations to Toxicity Benchmark Values

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Analyte	RME Exposure Point Concentration (µg/ℓ)	FDEP Class III Fresh Water Quality Standards $(\mu g/\ell)^2$	AWQC (µg/1)³	AQUIRE Lowest Reported Adverse Effect Concentration (µg/ℓ)/Test Species ⁴	Result
Volatile Organic Compoun					
Benzene	820	71.28	5,300	3,660/leopard frog LC ₅₀	
Trichloroethene	7	⁵ 80.7	21,900	1,900/medaka LC ₅₀	
Xylenes (total)	· 1	NA	NA	350/scud LC ₅₀	
Semivolatile Organic Comp	oounds				
bis(2-Ethylhexyl)phthalate	11.7	3	160,-	0.89/moorfrog hatchability	Exceeds TBV
Pesticides and PCBs					
4,4'-DDT	0.07	0.001	0.001	0.04/water flea mortality	Exceeds TBV
Inorganic Compounds					
Aluminum	2,165	NA	NA	15/brown trout	Exceeds TBV
Barium	73	NA	NA	68,000/Water flea LC ₅₀	
Cobalt	3	NA	NA	⁷ 11/pikeperch mortality	
Copper	11.9	83.6	83.6	1.5/Water flea reproductive effects	Exceeds TBV
Cyanide	2.3	5.2	5.2	432/Water flea LC ₅₀	
Iron	44,802	1,000	1,000	460/brown trout hatchability	Exceeds TBV
Lead	3.2	⁸ 0.5	⁸ 0.5	52/rainbow trout mortality	Exceeds TBV
Manganese	1,370	NA	NA	280/phytoplanton species diversity	Exceeds TBV
Vanadium	25.2	NA	NA	128/guppy LC _{so}	
Zinc	381	⁸ 86	⁸ 86	17/invertebrate species diversity	Exceeds TBV

Table 7-12 (Continued) Comparison of Site 16 Groundwater ECPC Exposure Concentrations to **Toxicity Benchmark Values**

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Notes: ECPC = ecological chemical of potential concern.

RME = reasonable maximum exposure.

 LC_{50} = lethal concentration to 50 percent of test population. NA = not available. TBV = toxicity benchmark value.

 $\mu g/l = micrograms per liter.$

FDEP = Florida Department of Environmental Protection.

AWQC = Ambient Water Quality Criteria.

PCB = polychlorinated biphenyl.

DDT = dichlorodiphenyltrichloroethane.

AQUIRE = Aquatic Information Retrieval Database.

¹ The exposure point concentration is equal to the RME concentration from Table 7-4.

² Chapter 62-302, Surface Water Quality Standards (Florida Legislature, 1996).

³ Federal Ambient Water Quality Chronic Criteria (USEPA, 1988b and 1991c).

From Appendix I, Table I-1. Only growth, mortality, and reproductive effects to plants, invertebrates, reptiles/amphibians, and fish were considered (USEPA, 1994d).

⁵ This standard is based on human health effects.

⁶ Value for aluminum as aluminum chloride.

⁷ Value for cobalt as cobalt chloride.

⁸ The value is based on an assumed site hardness concentration of 25 milligrams/liter (mg/ℓ) as calcium carbonate (CaCO₃).

exoskeleton are likely to prevent exposure. In any event, risks associated with the ingestion pathway, which was evaluated will far outweigh those other pathways under most circumstances.

- Risks to adult amphibians and reptiles species were not estimated for surface soil ECPCs because bioaccumulation and toxicity data for this taxonomic group are generally lacking in the literature. As a result, potential risks associated with ECPCs are uncertain for these species. However, it is unlikely that these receptors would be adversely affected at this site. For analytes detected in surface soil, the available literature suggests that amphibians are most sensitive to Aroclor and mercury. However, it is unlikely that these contaminants would pose a risk to these receptors at Site 16, as they would be less bioavailable in the surface soil medium, moreover sensitive life stages would not likely be exposed to surface soil. Intertaxonomic surrogates were not used to calculate dietary risks to reptiles and adult amphibian because of the uncertainty associated with extrapolation of data from endothermic to essentially ectothermic species.
- An assumption has been made that organisms evaluated in the surface soil toxicity tests are representative of species at the site. Depending on the sensitivities of terrestrial plants and invertebrates occurring at Site 16, risks may be over- or underestimated.
- Characterization of risks associated with ingestion of surface water by terrestrial wildlife is based on data from one surface water sample collected from the Site 16 ephemeral wetland. Depending on the conditions at the time of sample collection, the surface water data may not be representative of site conditions, and potential risks may be either over- or underestimated.
- The RTVs selected for evaluation of mercury at Site 16 were for organic forms of mercury (e.g., methylmercury). Because available literature indicates that methylmercury is generally more toxic than inorganic forms of mercury, it is likely that the Site 16 ERA overestimates risks from mercury. Although chemical speciation of mercury was not conducted, the available evidence suggests that site conditions are unlikely to result in the conversion of inorganic mercury to methylmercury. Therefore, risks to terrestrial wildlife associated with ingestion of mercury in surface soil may be overestimated.
- BAFs for plant material are based on the assumption that plants are 80 percent water. This assumption applies to berries and leafy vegetables, but does not apply to grains, which have a moisture content of only 10 percent. Since the diet of the cotton mouse consists primarily of grains, the risks to this receptor may be underestimated.
- There is uncertainty associated with the ingestion toxicity data derived from the Registry of Toxic Effects Chemical Substances (RTECS) database. The RTECS data were obtained in 1993, and the primary literature citation was not provided; therefore, the primary literature for these studies were not reviewed. This may have resulted in the selection of RTVs that may overestimate or under-estimate potential risks to wildlife receptors. RTVs for bis(2-ethylhexyl)phthalate,

fluoranthene, phenanthrene, pyrene, cadmium, and lead were obtained from RTECS.

- There is uncertainty associated with risks to terrestrial plant and invertebrates from exposure to subsurface soil. Subsurface soil was not quantitatively evaluated in this ERA; however, deep-rooted plants and invertebrates, may have contact with this medium. Therefore, the following qualitative evaluation was conducted in order to evaluate subsurface soil. This evaluation is based on the comparison of analytes detected in subsurface soil with analytes detected in surface soil, ecological toxicity data, and ecological screening values.
- Several VOCs, SVOCs, pesticides and PCBs, and inorganic analytes were detected in subsurface soil. However, nearly all of the analytes in subsurface soil were detected at concentrations that were below the maximum detected concentrations in surface soil and which did not result in toxicity in the site specific assays. All of the pesticides detected in subsurface soil were detected at concentrations that were less than or comparable to concentrations detected in surface soil. The results of this ERA suggest that there would be no impacts to terrestrial invertebrate or plant communities, based on earthworm and lettuce seed germination toxicity tests conducted using site surface soil.
- Three VOCs and two SVOCs were detected in subsurface soil and were not detected in surface soil, however it is unlikely that they would pose a risk to plants or invertebrates due to the low frequency and concentrations detected. The inorganic analytes aluminum, copper, manganese, vanadium, and zinc were detected in subsurface soil at concentrations that exceeded maximum detected concentrations in surface available screening toxicity data for plants Aluminum and copper, and vanadium and zinc exceeded invertebrates. their respective screening values by three orders of magnitude and two orders of magnitude, respectively. The maximum detected concentration of manganese was six times the ecological screening value. Copper was the only analyte that was detected at a substantially higher concentration in subsurface soil (i.e., 3,620 mg/kg in subsurface soil vs. 202 mg/kg in surface soil). Based on this qualitative evaluation, deep-rooted plants and invertebrates may be at risk from exposure to these inorganic analytes in subsurface soil. However, there is uncertainty associated with applying surface soil benchmarks to this stratum.
- 7.8 SUMMARY OF ECOLOGICAL ASSESSMENT FOR SITE 16. Potential risks for ecological receptors were evaluated for ECPCs in surface soil, surface water, and groundwater at Site 16.

Risks associated with exposures to ECPCs in Site 16 surface soil and surface water were evaluated for terrestrial wildlife based on a model that estimates the amount of contaminant exposure obtained via the diet and incidental ingestion of surface soil and ingestion of surface water. Wildlife risks were evaluated by comparing the estimated doses for wildlife species (mammals and birds) to a reference toxicity dose representing the threshold at which lethal or sublethal

effects may occur. Risks associated with ingestion of surface water by terrestrial wildlife were not identified; therefore, reductions in the survivability, growth, and reproduction of wildlife receptor populations that drink water from the Site 16 ephemeral wetland are not expected to occur. The estimated lethal risks to wildlife receptors from direct and indirect exposure to surface soil and food items were equal to or less than 1 indicating no adverse impacts to the survivability of wildlife populations at Site 16. With the exception of the cotton mouse, sublethal HIs for the representative wildlife species (e.g., red fox, short-tailed shrew, Eastern meadowlark, and the greathorned owl) did not exceed one for both RME and CT exposure concentrations. Ingestion of cadmium, and zinc in surface soil and food items are the primary contributors to the sublethal risks to the cotton mouse. Based on the results of the food-web model, reductions in the growth and reproduction of small herbivorous mammal populations at Site 16 are possible.

Risks to terrestrial plants and soil invertebrates at Site 16 were evaluated based on the results of laboratory toxicity testing, using earthworms (E. foetida) and lettuce seeds (L. sativa). There was no significant difference in the survival and growth of earthworms as compared to the site background and laboratory control samples. Therefore, reduction in the survival and growth of terrestrial invertebrate communities at Site 16 is not likely. reduction in lettuce seed germination was observed in one surface soil sample (16S01201), there is no apparent correlation between the surface soil ECPC concentrations and the observed response. It is likely that a non-ECPC stressor (i.e., another physical, chemical, or biological stressor) is responsible for germination inhibition at Site 16. Based on the results of the lettuce seed germination toxicity test, reductions in the survival and growth of terrestrial plant communities at Site 16 are not expected. It is unlikely that terrestrial plants or soil invertebrates at Site 16 would be at risk from exposure to VOCs, SVOCs, pesticides and PCBs in subsurface soil, based on the qualitative evaluation of analytes detected in surface soil and available ecological screening toxicity data. However, several inorganic analytes detected in subsurface soil may present a risk to deep-rooted plants and invertebrates at Site 16.

Potential risks for aquatic receptors were evaluated for exposures to ECPCs in groundwater. Comparison of the RME concentrations of each ECPC with available criteria and toxicity benchmarks is the basis of the risk characterization. Several organic and inorganic analytes were detected in groundwater at concentrations that exceeded ecological screening benchmarks. Therefore, the potential for risks to aquatic receptors in Clear Creek associated with exposure to RME concentrations detected in groundwater at Site 16 may exist. However, the ERA for Site 39 will provide additional information regarding potential risks for aquatic receptors in Clear Creek based on actual site-related surface water and sediment data.

This ERA does not follow the step-wise procedure delineated in the *Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessment* ("Process Document", 1997) for the selection of ecological contaminants of concern (COC). The procedures outlined in the "Process Document" state that the first-step in the selection of COCs should be a comparison to ecological screening values, prior to using any other screening tool (i.e., FOD, comparison to background, or identification as an essential nutrient). Therefore, the following evaluation was conducted to determine if the

conclusions presented in this report would change if the most recent Process Document approach was followed.

In surface soil, Aroclor-1260 and antimony were eliminated from further evaluation, based on FOD and comparison to background, respectively. Several other analytes including calcium, iron, magnesium, potassium, and sodium were eliminated from further evaluation, as they were considered to be essential Including these analytes in further evaluation would not have nutrients. significantly changed the outcome of the ERA, as site specific toxicity testing indicated that the soils are not toxic to plants and invertebrates. In addition, the foodweb modeling showed that similar contaminants that were evaluated did not contribute significantly to the predicted risks at Site 16. In groundwater, the following analytes calcium, magnesium, potassium, and sodium, were eliminated from further evaluation because they are considered essential nutrients. All of the other analytes that were eliminated from further evaluation were eliminated based on comparisons to ecological screening values. Including the essential nutrients in the ERA for further evaluation would not have changed the outcome of this assessment. Surface water was screened using background concentrations only, because the available surface water screening values are protective of aquatic receptors, which are lacking from the habitat where the single surface water sample was collected. The essential nutrients calcium, magnesium, potassium, and sodium detected in surface water were eliminated from further evaluation. The analytes that were eliminated from further evaluation based on comparisons to background included barium, beryllium, iron, manganese, and zinc. Based on the HIs, calculated for the two analytes retained as surface water COCs, it is unlikely that including any or all of the analytes detected in surface water would have changed the conclusions of the ERA.

In summary, the results of the ERA suggest that only sublethal risks (i.e., reductions in growth and reproduction) to small herbivorous mammals are predicted. These risks are likely associated with ingestion of cadmium and zinc in surface soil and food items that have bioaccumulated these inorganic constituents.

8.0 CONTAMINANT FATE AND TRANSPORT

This chapter discusses the fate and transport of human health and ecological chemicals of potential concern (CPCs) detected in soil and groundwater samples at Site 16. Fate, in the context of this chapter, refers to the ultimate disposition of a given CPC following its release into the environment. Transport refers to the mechanism(s) by which a given chemical released into the environment will arrive at its fate. Explanation of the fate and transport of chemicals in the environment can be very complicated or very simple, depending on the physical, chemical, and biological characteristics of the compound or metal considered and the environment into which that compound is released.

Several organic compounds and inorganics were detected in soil and groundwater sampled at Site 16. Because of the number of potential chemicals detected and the myriad fate and transport scenarios possible for those chemicals in the media, this discussion will focus only on those chemicals that may pose adverse risk to human or ecological receptors, as identified by the HHRA (Chapter 6.0) and the ERA (Chapter 7.0) in this report.

The following discussion of contaminant fate and transport is divided into two sections. Section 8.1 discusses potential migration routes of a chemical(s) in the media evaluated and does not focus specifically on media found to be of concern at Site 16. The site-specific persistence, fate, and transport of those compounds and elements found to pose a potential risk to human health or the environment are discussed in Section 8.2.

8.1 POTENTIAL ROUTES OF MIGRATION. Several routes of migration are possible for a contaminant in the various media: air, soil, surface water, groundwater, and biota. These routes are summarized below.

<u>Air</u>. Gases and particulate material can be transported in the atmosphere. Organic compounds, metals, and metal complexes that exist as gases at surface temperature and pressure may disperse or diffuse into the air and particulates may become entrained in air and thereby migrate. The extent to which gaseous constituents and particulate material remain airborne is a function of the level of excitation of the air (wind and temperature) and fate processes acting on the constituent and, for particulates, their density. Particulate material as discussed herein consists of organic compounds and inorganic material that would otherwise not be present in a gaseous medium under atmospheric conditions.

<u>Soil</u>. The primary agents of migration acting on soil include wind, rainwater, running water, biological activity, and human activity. Wind commonly transports soil in the form of particulate material. Rainwater may cause soil to migrate either by washing soil particles downward into the subsurface or by carrying soil particles overland to surface water bodies or other areas of deposition. The amount and type of vegetative cover and surface disturbance affects the degree to which wind and water cause soil to migrate.

<u>Surface Water</u>. The mechanisms for migration of constituents in surface water are dissolution and suspension. Several organic compounds and metals are soluble in water and can be transported in the aqueous phase. Other organic compounds and elements are not soluble in water, but may be transported by surface water via

suspension. The amount of suspended particulate material in surface water is largely a function of the water's energy; as that energy decreases, suspended material will settle and become part of the soil or sediment. Colloidal material may remain in suspension (by electrochemical forces) in water of very low energy (e.g., standing water).

<u>Sediment</u>. Saltation, traction, suspension, biological action, and human action are the primary mechanisms of migration for sediment. Physical, chemical, and biological processes affecting a constituent will determine where and how migration from sediment will occur.

<u>Groundwater</u>. Groundwater is a liquid medium capable of transporting constituents as colloidal forms, as complexes, as pure-phase liquids, or as dissolved-phase liquids. Organic compounds and elements generally reach groundwater either by being placed directly into the water table (e.g., disposal pits) or by being leached from soil or solid waste to the water table by physical or chemical processes. Groundwater may discharge to the land surface, surface water bodies, other aquifers, or pumping wells. The migration of constituents from groundwater upon discharge depends on the chemical and/or physical processes acting upon that individual constituent in the medium to which it is discharged.

<u>Biota</u>. Biota may be considered a medium for migration of certain organic compounds and inorganics. Several compounds and elements are known to accumulate in the tissues of organisms at various levels in the food chain. As these organisms are consumed by other organisms, compounds and elements are accumulated in their tissue and passed on to organisms higher in the food chain. In this manner, contaminants may be transported by biota. Additionally, some organisms disturb bed sediments in streams and rivers. This disturbance can cause organic compounds and elements to be transported downstream as suspended material in surface water.

- 8.2 CONTAMINANT PERSISTENCE AND FATE. The discussion of contaminant persistence and fate in the environment is divided into three subsections. Subsection 8.2.1 discusses the processes that control the persistence and fate of organic compounds and inorganics in the environment. Subsection 8.2.2 discusses the primary persistence and fate characteristics of the constituents detected at Site 16. Subsection 8.2.3 discusses contaminant transport for Site 16.
- <u>8.2.1 Processes</u> The persistence and fate of chemical constituents in the environment depends on various chemical, physical, and biological processes. The predominant processes affecting the environmental persistence and fate of chemical constituents include solubility, photolysis, volatilization, hydrolysis, oxidation, chemical speciation, complexion, precipitation or coprecipitation, cationic exchange, sorption, biodegradation or biotransformation, and bioaccumulation. These processes are briefly summarized below.

<u>Solubility</u>. The solubility of chemical constituents in water is important in assessing their mobility in the environment. This is particularly important for the transport and ultimate fate of chemicals from soil and sediment to water (i.e., groundwater and/or surface water). Generally for organic compounds, aqueous solubility is a function of molecular size, molecular polarity, temperature, and the presence of other dissolved organic cosolvents. For metals and other inorganic parameters, solubility is generally controlled by chemical

speciation, pH, Eh (redox potential), oxygen content, and the presence of dissolved and/or colloidal organic compounds (e.g., humic and fulvic acids) or other inorganic ion species (e.g., hydroxides and sulfates) (USEPA, 1979). Increased solubility is usually directly related to increased environmental mobility with groundwater and/or surface water being the principal transport medium. Therefore, solubility is a significant factor affecting the fate of a compound or element in the water environment.

The section of the section of the section of the section of

<u>Photolysis</u>. Many chemical constituents, particularly organic compounds, are susceptible to photolytic degradation either directly or indirectly. Direct photolysis involves a splitting of the chemical compound by light, whereas indirect photolysis occurs when another compound is transformed by light into a reactive species (i.e., usually an hydroxyl radical) that reacts with and modifies the original compound. In general, photolysis primarily occurs within the atmosphere, although it may also occur to a limited extent in surface water and/or soil under certain environmental conditions (USEPA, 1979).

<u>Volatilization</u>. Volatilization of organic chemicals from soil or water to the atmosphere is an important pathway for chemicals with high vapor pressures. For organic compounds, volatilization is a function of partial pressure gradients, temperature, and molecular size and is more likely to occur for compounds with low molecular weights. In addition, certain metals such as mercury, arsenic, and lead are capable of undergoing biologically mediated transformations (i.e., alkylation) that form volatile end products. Volatilization is important for the transport of certain chemical constituents from surface soil (i.e., vadose zone), sediment, and surface water and is evaluated using Henry's law and other associated chemical-specific rate constants.

<u>Hydrolysis</u>. Hydrolysis involves the decomposition of a chemical compound by its reaction with water. The rate of reaction may be promoted by acid (hydronium ion, $[H_30^+]$) and/or base (hydroxyl ion, $[OH^-]$) compounds. In general, most organic compounds are resistant to hydrolytic reactions unless they contain a functional group (or groups) capable of reacting with water. Metallic compounds, however, generally dissociate readily in water depending upon the aqueous environmental conditions (e.g., pH and ionic strength). For metals, hydrolytic dissociation is an indirect process that affects the primary fate and transport mechanism of aqueous solubility.

Oxidation. The direct oxidation of organic compounds in natural environmental matrices may occur but this is generally a slow, insignificant transformation mechanism of minimal importance (USEPA, 1979). However, some inorganic compounds may be rapidly oxidized under naturally occurring environmental conditions when the surrounding environment changes from anaerobic to aerobic conditions.

Chemical Speciation. Chemical speciation is important primarily for metals that may exist in multiple forms in the environment, particularly within aqueous matrices. In general, the aqueous speciation of metals depends primarily upon the relative stabilities of individual valence states (which are element-specific), oxygen content, pH and Eh condition, and the presence of available complexating agents and/or other cations and anions (USEPA, 1979). Because various metallic species exhibit differential aqueous solubilities and differential mobilities within soils and/or sediments (USEPA, 1979), the particular speciation of an individual metal will greatly affect its environmental mobility.

<u>Complexation</u>. For metals, complexation with various ligands is an important process because these complexes may be highly soluble in water. Complexation may, therefore, greatly enhance mobility within environmental matrices, particularly in groundwater and surface water, depending upon the aqueous solubility of the resulting complex. Complexation depends upon numerous factors such as pH, Eh, type and concentration of complexing ligands, and other ions present (USEPA, 1979).

Most metals are capable of forming numerous organic and/or inorganic complexes in the natural environment (USEPA, 1979). Metals may form organo-metallic complexes, especially with naturally occurring organic acids (i.e., humic and fulvic acids). In some cases, these metallic species may exhibit varying affinities for different organic ligands (i.e., mercury and arsenic for amino acids and their derivatives) (USEPA, 1979). Metals may also form metalloinorganic complexes with inorganic ligands such as carbonate, halogens (usually chlorine), hydroxyl, and sulfate (USEPA, 1979). However, organo-metallic complex formation is usually favored over metallo-inorganic complexes.

<u>Precipitation and Coprecipitation</u>. Both chemical precipitation and coprecipitation are important removal mechanisms, particularly for metals and metallo-cyanides in the environment. Precipitation and/or coprecipitation reactions depend on numerous aqueous environmental conditions such as pH, Eh, organic ligands present, oxygen content, and cationic and anionic species present (USEPA, 1979). Depending on the specific conditions, the removal of aqueous metallic species and metallo-cyanides from groundwater and/or surface water can greatly affect a metal's environmental mobility and, hence, its ultimate fate and transport.

<u>Cation Exchange</u>. Cation exchange is important primarily for metals and other ions that may substitute with other cations of similar charge and size within the lattice structure of clay minerals in soil and/or sediment (USEPA, 1979). This process, therefore, can significantly affect the mobility of an aqueous metal cation by removing it from solution under certain environmental conditions.

Sorption. The sorption of chemical constituents by inorganic particulate matter (i.e., soil or sediment) and organic compounds is an important process that affects mobility in the environment. This process is particularly important for the fate and transport of chemicals from soil or sediment to water (i.e., groundwater and surface water). In general, most metals exhibit a potential for adsorption to inorganic particulate matter and organic compounds (USEPA, 1979). Organic compounds also exhibit sorptive capability, but show greater variability in their ability to sorb to particulate or organic matter. The tendency for organic compounds to sorb to soils or sediment is reflected in their organic carbon partitioning coefficients (K_{oc}) . K_{oc} is a measure of relative adsorption potential. The normal range of $K_{\rm oc}$ values is from 1 to 10^7 with higher values indicating greater sorption potential. Actual adsorption is chemical-specific and is largely dependent on the organic content of the soil. The fraction of organic carbon, f_{oc} , in soil times the K_{oc} is defined as the distribution The K_d is a ratio of the concentration adsorbed to the coefficient, K_d. concentration partitioned to water.

Regardless of chemical class, sorption is a reversible process whereby desorption can be favored over sorption under certain environmental conditions (e.g., low pH for metals). For organic compounds in general, as the molecular weight

increases and the aqueous solubility decreases (i.e., low polarity and high hydrophobicity), the sorptive binding affinity increases (i.e., $K_{\rm oc}$ increases). The tendency for chemical constituents to adsorb to inorganic particulate and/or organic compounds is a particularly important process because sorption to soils and/or sediments can effectively reduce a chemical constituent's mobility.

Biodegradation or Biotransformation. Biodegradation is a result of the enzyme-catalyzed transformation of chemicals. Organisms require energy, carbon, and essential nutrients from the environment for their growth and maintenance. In the process, chemicals from the environment will be transformed by enzymes into a form that can be used by the organism. The biodegradation rate is the rate by which contaminants will be degraded. The rate is a function of microbial biomass and a chemical's concentration under given environmental conditions. When a pollutant is introduced into the environment, there is often a lag time before biodegradation begins while the organism generates an enzyme capable of digesting the chemical. Co-metabolism occurs when a pollutant can be biotransformed only in the presence of another compound that serves as a carbon and energy source (USEPA, 1979).

<u>Bioaccumulation</u>. Bioconcentration and bioaccumulation data are important when evaluating the impact of chemicals in the aquatic environment. The process is characterized by hydrophobic chemicals that can be partitioned into fat and lipid tissues and inorganic chemicals that can be partitioned into bone marrow. The bioconcentration factor is a measure of the concentration of a chemical in tissue (on a dry-weight basis) divided by the concentration in water, and is a commonly used parameter to quantify bioconcentration (USEPA, 1979). The process is significant because bioaccumulation magnifies up through the food chain.

8.2.2 Persistence and Fate of Site 16 CPCs This section discusses the persistence and fate characteristics for CPCs detected at Site 16. To focus the discussion of persistence and fate characteristics, only those constituents that were (1) identified by the human health or ERAs (presented in Chapters 6.0 and 7.0, respectively) as CPCs and (2) those constituents that were present above relevant standards will be addressed. These constituents are summarized below by medium for Site 16.

Human Health Assessment Constituents

Surface soil:

VOCs: None.

SVOCs: Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, carbazole, chrysene, dibenz-(a,h)anthracene, and indeno(1,2,3-cd)pyrene.

Pesticides/PCBs: Dieldrin.

Inorganics: Aluminum, arseníc, cadmium, iron, lead, and manganese.

Groundwater:

VOCs: 1,2-Dichloroethane, 1,2-dichloroethene total, benzene, chloroform, TCE.

SVOCs: Bis(2-ethylhexyl)phthalate.

Pesticides/PCBs: 4,4'-DDT.

Inorganics: Aluminum, arsenic, barium, cadmium, iron, and

manganese.

Ecological Assessment Constituents

• Surface soil:

VOCs: None.

SVOCs: Carbazole, bis(2-ethylhexyl)phthalate, benzo(a) anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo-(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)-anthracene, fluoranthene, indeno (1,2,3-cd) pyrene, phenanthrene, and pyrene.

Pesticides/PCBs: Aroclor-1254.

Inorganics: Aluminum, barium, cadmium, copper, lead,
 manganese, mercury, silver, vanadium, and zinc.

Surface Water:

VOCs: None. SVOCs: None.

Pesticides/PCBs: None.

Inorganics: Aluminum, barium, beryllium, iron, lead,

manganese, and zinc.

Groundwater:

VOCs: Benzene, TCE, and xylenes. SVOCs: Bis(2-ethylhexyl)phthalate.

Pesticides/PCBs: 4,4'-DDT.

Inorganics: Aluminum, barium, cobalt, copper, cyanide, iron,

lead, manganese, vanadium, and zinc.

The fate and persistence characteristics of these constituents are summarized below by analytical fraction.

VOCs

Benzene. Benzene (C_6H_6) may enter the environment as result of the production, storage, transport, venting, and combustion of gasoline, as well as the production, transport and storage of benzene as a pure product. Benzene is also natural by-product of forest fires (Howard, 1990).

Benzene is highly volatile, and is highly mobile in soil. If released to the soil, benzene will evaporate or leach from the soil to the groundwater. Biodegradation of benzene is likely in shallow aerobic waters, though not under anaerobic conditions. Abiotic degradation is largely limited to benzene present in the atmosphere. Hydrolysis is an insignificant mechanism for the breakdown of benzene (Howard, 1990).

- 1,2-Dichloroethane. 1,2-Dichloroethane (1,2-DCA) is used primarily as an industrial solvent, scouring compound, wetting, and penetrating agent. It is used in a wide variety of applications such as fumigant for grain, rubber goods fabrication, degreasing, and metal cleaning.
- 1,2-DCA has a moderately high vapor pressure, which allows small releases to the ground to evaporate relatively rapidly. In the atmosphere, 1,2-DCA degrades to hydroxyl radicals rapidly with a half-life of just over a month. 1,2-DCA volatilizes rapidly from surface water with a typical half-life of 10 days. The

half-life in a stream would be much shorter with no adsorption to stream or river sediments. Biodegradation and hydrolysis are slow (USEPA, 1979).

<u>1.2-Dichloroethene</u>. Dichloroethene (1,2-DCE) ($C_2H_2CL_2$) exists as two isomers, cis and trans. The trans isomer is twice as toxic as the cis isomer. Both may enter the environment in emissions and wastewater and as a solvent and extractant in the production of perfumes, lacquers, and thermoplastics. In addition, 1,2-DCE is a breakdown product in the reductive dehalogenation of TCE and tetrachloroethene (PCE) (Howard, 1990).

When released to soil, 1,2-DCE will either evaporate or leach to the groundwater. Adsorption to soil and sediment particles is low and biodegradation in soil and groundwater is slow. The greatest removal mechanism of 1,2-DCE from soils and waters is through volatilization (Howard, 1990).

<u>Chloroform</u>. Chloroform has been widely used in refrigerants, solvents, adhesives, dry-cleaning spot removers, fire extinguisher, in manufacturing of dyes and pesticides, and as a fumigant. Chloroform was previously used as an anesthetic (Agency for Toxic Substances and Disease Registry [ATSDR], 1991a).

Most chloroform released into the environment will eventually end up in the atmosphere, and a much smaller amount will enter the groundwater. Chloroform in the atmosphere is degraded by indirect photochemical reactions (ATSDR, 1991a).

Chloroform is released to soil by improperly disposed of wastes. It can be released to water during manufacture; however, most releases to groundwater at sites occur by leaching. Chloroform will readily leach from soil into the groundwater because of low soil adsorption and significant water solubility (ATSDR, 1991a).

Chemical hydrolysis and biodegradation are not a significant removal process in soil or water. Chloroform is expected to persist for a long time in groundwater (ATSDR, 1991a).

<u>Trichloroethene</u>. TCE is used as an industrial solvent particularly in metal degreasing. It is also used in a wide variety of other applications such as dry cleaning, as a fumigant, as a diluent in paints and adhesives, and in textile processing (Howard, 1990).

TCE has a relatively high vapor pressure of 58.7 millimeter of mercury (mm Hg) at 25 °C and would be expected to volatilize rapidly from surface soils. TCE has a relatively small sorption value of 125 $\rm K_{oc}$, indicating that it would not sorb strongly to organic material in soil. TCE is soluble in water (1,100 milligrams per liter (mg/ ℓ) at 25°C, (USEPA, 1986b) and would be carried by infiltrating rainwater to groundwater where migration with groundwater will occur.

<u>Xylenes</u>. Xylenes are chemicals primarily man-made from petroleum or coal. Xylene is a colorless liquid with a sweet odor that evaporates and burns easily. Xylene does not mix well with water, but does mix well with alcohol and other chemicals. Xylene has three isomers: meta-xylene, ortho-xylene, and para-xylene, (respectively m-, o-, and p-xylene), which, when mixed together, are termed xylenes.

Xylene is used as a solvent in the printing, rubber, cleaning, and leather industries, and as a thinner for paints. Xylene is found in gasoline and airplane fuel and is used as a material/ingredient in the manufacture of some plastics.

Xylenes when spilled on land either volatilize or leach into the ground. Sorption is an important factor in soils with high organic matter or high carbon content. Xylene are relatively mobile in soil with low carbon content and may leach into groundwater depending on soil conditions. Xylenes in groundwater are known to persist for several years (ATSDR, 1993a).

<u>PAHs</u>. A total of thirteen PAHs was identified as CPCs (benzo(a)anthracene, benzo(a)pyrene, benzo(g,h,i)perylene, benzo(b)fluoranthene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, carbazole, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene) at Site 16. PAHs are a group of chemicals that are formed during the incomplete burning of coal, oil, gas, wood, garbage, or other organic substances. PAHs can either be man-made or occur naturally. A few of the PAHs are used in medicines and to make dyes, plastics, and pesticides, while others are contained in asphalt used in road construction. There are more than 100 different PAH compounds (ATSDR, 1993a).

In air, PAHs are found sorbed to particulates and as gases. Particle-bound PAHs can be transported long distances and are removed from the atmosphere through precipitation and dry deposition. PAHs are transported in surface waters by volatilization and sorption to settling particles. The compounds are transformed in surface waters by photooxidation, chemical oxidation, and microbial metabolism. Sorption of PAHs to soil and sediment increases with increasing organic content and is also directly dependant upon particle size. Microbial metabolism is the major process for degradation of PAHs in soil environments. PAHs have relatively low solubilities, but if transported through soils by either leaching or colloidal movement, PAHs can enter groundwater and be transported within an aquifer (ATSDR, 1993a).

Pesticides/PCBs

<u>Dieldrin</u>. The pesticides aldrin and dieldrin were used, from the 1950s until the early 1970s, as insecticides on crops such as corn and cotton. The USDA canceled all uses of aldrin and dieldrin in 1970. However, aldrin and dieldrin were approved for killing termites by the USEPA in 1972. Use of aldrin and dieldrin to control termites continued until 1987. Aldrin is readily converted to dieldrin, which is ubiquitous in the environment (ASTDR, 1991b).

Dieldrin is persistent in the environment because it is more resistant to biotransformation and abiotic degradation than aldrin; as a result, dieldrin is found in low levels in all media, even at a distance from the site of concentration. Transport of dieldrin in soils is minimal because it tends to bind tightly to soil; however, it can volatilize from soil. Most dieldrin found in surface water is the result of runoff from contaminated soil. The resistance of dieldrin to soil leaching generally precludes its migration into groundwater (ASTDR, 1991b).

<u>4,4'-DDT</u>. 4,4'-DDT and its primary metabolites, 4,4'-DDE and 4,4'-DDD, are manmade chemicals and are not known to occur naturally in the environment. Most releases of the chemicals are related to their manufacture and use as insecti-

cides in agriculture and vector control. Pesticidal use of DDT, except in public health emergency, was banned in the United States in 1972. Due to the extensive past use of DDT worldwide and the persistence of DDT and its metabolites, these materials are virtually ubiquitous and are continually being transformed and redistributed in the environment (ATSDR, 1992).

DDT, DDE, and DDD are only slightly soluble in water. Therefore, they are not easily displaced from their site of application, nor do they tend to leach to groundwater. Appreciable amounts of the compounds may remain in the soil for extended periods of time and are only readily moved by physical erosion of soil particles (ATSDR, 1992).

Four mechanisms have been identified as accounting for the most losses of DDT residues from soils: volatilization, removal by harvest of organic matter, water runoff, and chemical transformation. Photooxidation of DDT is known to occur on soil surfaces; however, it is not known to hydrolyze. Biodegradation may occur under both aerobic and anaerobic conditions in the presence of certain soil microorganisms (ASTDR, 1992).

Aroclor-1254. Available empirical data suggest that PCBs, especially those with four or more chlorines, are persistent in the environment (ATDSR, 1992). Aroclor-1254 is a high molecular weight PCB (325 grams per mole [g/mole]) with a very low solubility. As a result, the fate and persistence of this PCB tends to bind to soil and eventually biodegrade over several years (USEPA, 1979).

Inorganics

<u>Aluminum</u>. Aluminum is the third most common element in the environment, though not generally found in elevated concentrations in groundwater. Aluminum is known to complex readily, however, and high concentrations present in groundwater are generally due to silt-sized particles of aluminum-containing compounds often present as clays or aluminum hydroxides. Complexing and polymerization of the most common valence state of aluminum, Al⁺³, represents the predominant transport mechanism for aluminum in the environment.

Arsenic. Arsenic has two stable forms in solution in groundwater, arsenate (As^{5+}) and arsenite (As^{3+}) . In groundwater with Ph ranging from 3 to 7, the monovalent arsenate anion $H_2AsO_4^-$ is the dominant form. Upon entering surface water, via groundwater discharge, arsenic may partition to sediment from solution by hydrous iron oxide adsorption and/or coprecipitation (or a combination of both) with sulfides in the sediment. The Eh and Ph conditions of the surface water and sediment govern the effectiveness of these mechanisms (adsorption and coprecipitation) as a sink for arsenic. These mechanisms appear to be the major inorganic factors controlling arsenic concentrations in surface water (Hem, 1992).

Arsenic may be very mobile in the aquatic environment, cycling through the water column, sediment, biota, and air. Most arsenic released into the environment (on the earth's surface) eventually ends up either in sediments (in stream beds or lakes) or in the oceans. Eh and Ph conditions largely govern the fate of arsenic (USEPA, 1979).

Barium. The concentration of dissolved barium in water is usually controlled by the solubility of the barium sulfate barite (BaSO4), whose solubility product is

approximately 10E-10. For a dissolved sulfate concentration of 1 mg/ ℓ , the expected dissolved barium concentration would be approximately 1.4 mg/ ℓ . Barium may also adsorb to metal oxide or hydroxide coating on aquifer solid media.

Beryllium. Beryllium has a very low solubility and is probably adsorbed onto soils as rainwater moves downward through the vadose zone. Complexing agents may solubilize beryllium, but water quality data suggest that the concentration of this metal in heavily polluted water is low. Beryllium is generally found in the environment in particulate rather than dissolved form (USEPA, 1979). Though little information is available regarding the bioaccumulation of beryllium, studies have shown the beryllium does bioaccumulate at relatively low rates (USEPA, 1979).

<u>Cadmium</u>. Cadmium is persistent in the environment as an ore or mineral. Cadmium is not readily soluble in water, but soluble in acids and alkalies. Cadmium released into the environment from the Earth's surface eventually ends up in either sediments (in stream beds or lakes) or in the oceans. Eh and pH conditions largely govern the fate of cadmium (USEPA, 1979).

<u>Cobalt</u>. Cobalt is a relatively rare element, ranking 30th in abundance in the earths crust. Cobalt exist as a mixture of two allotropes with the β form predominating below 400 C, and the α form predominating above that temperature. Cobalt has two oxidation states, besides the environmental form: +2 is the most important oxidation state and +3, which is a strong oxidizing agent. Cobalt forms oxides, nitrates, and ammines, as well as chloride, sulfate, and acetate (Hem, 1992).

Aqueous species of Co^3+ do not appear to be thermodynamically stable under Eh and Ph conditions that normally occur in natural waters (Hem, 1992). Co^2+ compounds are moderately soluble in groundwater or surface water and are expected to migrate with the water.

 $\underline{\text{Cyanide}}$. Cyanides are any of the compounds that include the group -(CN). The cyanide ion (CN) can react with a variety of metals to form insoluble metal cyanides. If the ion is present in excess, in an environment with transitional metals, complex metallocyanides may form, which are soluble and may be transported in solution.

Cyanide is typically used in the form of hydrogen cyanide, a highly toxic gas, to manufacture acrylonitrile, acrylates, adiponitrile, cyanide salts, dyes, chelates, rodenticides, and pesticides. Metal cyanides are soluble and are used extensively in electroplating.

Simple metal cyanide complexes are sorbed by sediments while more complex metal cyanide complexes are highly soluble in water; however, adsorption does not appear to be important in controlling the mobility of cyanides in soil or water. Metal cyanide salts are not volatile. Bioaccumulation of metal cyanide complexes occurs but the toxic effects limit the amount of accumulation (USEPA, 1979).

 $\underline{\text{Iron}}$. Iron is the second most abundant element in the environment though dissolved concentrations present in groundwater are generally low. The chemical behavior of iron and its solubility depend upon the oxidation intensity and pH of the environmental system in which it is found. Iron exists in two valence states, Fe^{2+} and Fe^{3+} , with the Fe^{2+} or ferrous form the most common form of iron

found in solution in the reducing conditions within the groundwater environment. Dissolved iron generally sorbs to sediment and may precipitate as iron hydroxide or may oxidize to form iron oxides and iron oxyhydroxides (USEPA, 1979). Iron also may complex with organic molecules, especially fulvic and humic acids. Aerated or flowing water with a pH in the range of 6.5 to 8.5 should contain little dissolved iron.

Lead. The accumulation of lead in most soils is primarily a function of the rate of deposition from the atmosphere. Most lead is retained strongly in soil, and very little is transported into surface water or groundwater. The fate of lead in soil is affected by the specific or exchange adsorption at mineral interfaces, the precipitation of sparingly soluble solid phases, and the formation of relatively stable organic-metal complexes or chelates with soil organic matter. These processes are dependant on such factors as soil pH, organic content of soil, the presence of inorganic colloids and iron oxides, ion-exchange characteristics, and the amount of lead in soil (ASTDR, 1988a).

The chemistry of lead in aqueous solutions is highly complex because this element can be found in a many forms. Lead has a tendency to form compounds of low solubility with major anions of natural water. In the natural environment, the divalent form (Pb^{2+}) is the stable ionic species of lead. Hydroxide, carbonate, sulfide, and, more rarely, sulfate may act as solubility controls in precipitating lead from water. The amount of lead that remains in the solution depends upon the pH of the water and the dissolved salt content (ASTDR, 1988a).

Manganese. Manganese is a naturally occurring element found in soil, lakes, streams, and food. Manganese does not occur in the environment as a pure metal, but is found combined with other chemicals like oxygen, sulfur, and chlorine. Elemental manganese and inorganic manganese compounds have negligible vapor pressures, but exist in air as suspended particulate matter derived from industrial emissions or the erosion of soils. Manganese is often transported in rivers as suspended sediment. The metal may exist in any of four oxidation states (2+, 3+, 4+, or 7+). Mn+2 is the most common form found in water with a pH between 4 and 7, but manganese may oxidize at a pH greater than 8. The transportation of manganese in water is controlled by the solubility of the specific chemical form present and the characteristics of available anions (ATSDR, 1990a).

Mercury is an element that occurs naturally in the environment, typically at very low levels. In the elemental form mercury is a shiny, silver-white odorless liquid with a metallic taste. Mercury in combination with carbon-containing compounds is called "organic mercury"; if no carbon is present, the compound is called "inorganic mercury". All compounds of mercury are considered poisonous.

Mercury has three valence states that are dependant on a number of factors, including redox potential and pH of the medium. In soil and surface water, mercury can exist in the mercuric (Hg^{+2}) and mercurous (Hg^{+1}) states as a number of complex ions with varying water solubilities.

Mercury released to the environment is typically very stable and lingers for a long time, possibly changing from the organic to the inorganic form and vice versa. Mercury released to the environment by human activity is typically higher

than is naturally found. Mercury released to surface soil remains in the soil for a long time and seldom migrates through soil to groundwater.

<u>Silver</u>. The major source of elevated silver levels in cultivated soils is from the application of sewage sludge and sludge effluents as agricultural amendments. Additional anthropogenic sources of silver in soil include atmospheric deposition and landfilling of household refuse or industrial wastes (ASTDR, 1989).

The mobility of silver in soils is affected by drainage (silver tends to be removed from well-drained soils), oxidation-reduction potential and pH conditions, and the presence of organic matter (which complexes with silver and reduces its mobility). Silver tends to form complexes with inorganic chemicals and humic substances in soils. Silver is toxic to soil microorganisms and inhibits bacterial biodegrative enzymes; therefore, biotransformation is not expected to be a significant process in the transformation and degradation of silver (ASTDR, 1989).

<u>Vanadium</u>. Vanadium commonly exists in the V^{3+} , V^{4+} , and V^{5+} valence states. Its aqueous chemistry is quite complex, but overall concentrations seem to be controlled more by availability of a vanadium source, rather than equilibrium considerations. Bioconcentration of vanadium by vegetation has been reported by several researchers.

Zinc. Zinc is a natural element found in soil. Zinc is also deposited in soils by atmospheric deposition. It is released to the atmosphere as dust and fumes from zinc production facilities, lead smelters, brass works, automobile emissions, fuel combustion, incineration, and soil erosion. Zinc occurs in the environment in the +2 oxidation state. The relative mobility of zinc in soil is determined by the solubility of the compound, soil type, and pH and salinity of the soil (ASTDR, 1988b).

<u>8.2.3 Transport of Contaminants</u> This section discusses the transport of chemicals in various media at Site 16. All media, surface soil, subsurface soil, surface water, sediment, and groundwater will be discussed.

<u>Surface Soil</u>. Transport of the CPCs in soil is dependent on several factors, as discussed in Section 8.1. The primary agents of migration acting on soil include wind, water, and human activity. Soil can also act as a source medium from which the CPCs are transported to other media. Transport of the CPCs from soil via wind is not expected to be a major transport mechanism because of the heavy vegetation present at Site 16. Vegetative cover is an effective means of limiting wind erosion of soil. Humans are effective at moving soil and can greatly affect the transport of soil-bound chemicals at hazardous waste sites. Under the current use of Site 16, human activity is not a major transport mechanism for the CPCs in soils. This condition may change based on the future use of Site 16.

Water can cause the transport of soil and, therefore, the CPCs in soil, via the mechanisms of physical transport of soil or the leaching of constituents from the soil to groundwater. Soil erosion, the physical transport of soil via surface water runoff, is currently not considered a major mechanism for the transport of the CPCs in soil at Site 16 because of (1) the low grade (slope) of the land surface at the site, (2) the heavy vegetation at the site, and (3) the nature of the constituents remaining in the soil at the site.

During the period of reported active disposal at Site 16, from 1943 to 1965, the potential for physical transport of both soil and CPCs via runoff could have been a potentially significant mechanism for transport. If pits were excavated into the soil and waste materials were dumped into the pits, heavy precipitation events could have easily moved the unvegetated soil around the pits. Additionally, the possibility exists that the pits overflowed during heavy rain storms because they were not covered during their operation. The pits are presumed to be backfilled following their periods of use, and the area revegetated. No significant transport of surface soil is expected since revegation of the Site 16 area.

The majority of the analytes detected in the soil at Site 16 are likely to remain attached to the soil because most metal analytes adsorb readily to or are natural constituents of clays and other minerals.

<u>Surface Water</u>. There are no permanent surface water bodies associated with Site 16. Transport of the waterborne CPCs from Site 16 may occur during heavy rain events as surface runoff. Surface water runoff is directed west (approximately 500 feet) toward Clear Creek. Water infiltration directly into the soil is presumed to occur during all but the heaviest rain events.

Currently, transport of the CPCs at Site 16 via runoff is not considered an important transport mechanism because of (1) the low slope of the land surface at the site, (2) high infiltration capacity of soil at the site, (3) the heavy vegetation at Site 16, and (4) the tendency of the surface soil contaminants at the sites to remain attached to clays in the soil.

When Site 16 was an active disposal area, transport of the CPCs via surface water runoff may have been a more significant means of contaminant transport. If disposal pits were open to rainfall during their operation, it is possible that intense precipitation could have caused the pits (if they existed) to overflow. Transport of the CPCs via surface water runoff is not considered important now that the site is vegetated.

<u>Sediment</u>. The transport of sediment at Site 16 by the action of humans is not currently a significant transport mechanism because very little human activity occurs in the drainage ditch. Saltation, traction, and suspension are possible means of sediment transport in water at Site 16 during heavy rain events.

Normally there is no over-land flow off the site. During heavy rain events, sediment may become suspended in surface water runoff. It is believed that the sediment would not remain in suspension long enough to reach the tributary of Clear Creek because most of the surface water would infiltrate rapidly into the ground.

<u>Groundwater</u>. As discussed in Section 5.5, the observed concentrations of the inorganics in unfiltered groundwater at Site 16 was affected by turbidity in the groundwater samples at the time of collection. The groundwater samples collected in 1996 (during Phase IIB) are thought to be more representative of groundwater conditions at the site. It is probable that particulate material of larger than colloidal size does not easily move through the matrix of the aquifer. Colloid-sized material may be transported through the aquifer matrix at flow rates present in the surficial aquifer system at Site 16.

Hydrogeology at Site 16 is discussed in Section 5.2 of this report. The aquifer present at the site is the surficial (sand and gravel) aquifer. The CPCs identified for groundwater are associated with the surficial aquifer system. Recharge of the surficial aquifer at Site 16 occurs primarily by rainfall on the site and in the area north of the site. Groundwater flow direction in the surficial aquifer at Site 16 is primarily to the south-southwest. Clear Creek acts as a point of discharge approximately 400 feet west to southwest of the site.

Hydraulic data from well clusters completed at Site 16 indicate that the vertical gradient in this area is downward. The upper (approximately) 100 feet of material is sand with varying amounts of silt and clay and likely acts as a single hydraulic unit.

It is important to note that the presence of upward or downward vertical hydraulic gradients does not mean that flow is actually occurring, only that flow, if it were to occur, would be in a horizontal direction with an upward or downward component. Lithologies present at a site, such as clay or clayey sands, may retard the vertical flow. Vertical hydraulic gradients should be viewed as indicative of a potential, not necessarily as an actual, transport route.

Horizontal hydraulic gradient estimates have been developed for the combined Site 15 and 16 area. The gradient was calculated for the periods of January 1997 and August 1997 and averaged (Table 5-2). The average hydraulic gradient in the surficial aquifer is 0.0067 and 0.0064 ft/ft respectively in a south-southwest direction.

Hydraulic conductivity testing was completed on six monitoring wells at Site 16. The average hydraulic conductivity value for the site is 0.0154 feet per minute or 22.2 ft/day (Table 5-4).

Horizontal groundwater seepage velocity calculations have been completed for the surficial aquifer system at Site 16 using available hydraulic information (Section 5.2). A seepage velocity of 139 ft/yr was calculated using the average hydraulic conductivity from eight monitoring wells at Site 16 (0.38 ft/day), an average horizontal gradient of 0.0067 ft/ft for these monitoring wells, and an estimated effective porosity of 0.35. Disposal activities at Site 16 may have begun releasing contaminants to the aquifer approximately 50 years ago. Using the seepage velocity calculated above and a 50-year time frame, the total distance of potential contaminant migration was estimated to be approximately 3,100 feet.

The calculated estimate of 3,100 feet of migration relies on hydraulic conductivity values derived from slug test data. Slug tests provide a rough estimate of hydraulic conductivity that can be more accurately measured using pumping tests. Slug data may differ by up to a factor of 10 (Bouwer and Rice, 1989). If the hydraulic conductivity value used in the calculation were decreased by an order of magnitude, a total migration of only 310 feet would be expected for the 50-year history of the site.

Clear Creek is the final point of discharge for groundwater from the surficial aquifer at Site 16. Clear Creek is located approximately 400 feet southwest of Site 16. Surface water and sediment samples collected during Phase I of the RI from sampling locations located upstream and downstream of the expected

groundwater discharge points from Site 16 do not conclusively support any impact to surface water quality of Clear Creek from past Site 16 activities (ABB-ES, 1992b). The results of surface water and sediment sampling are presented in Technical Memorandum No. 4, Surface Water and Sediments (ABB-ES, 1992b) and will also be presented in the concurrent RI report for Site 39, Clear Creek Floodplain.

9.0 CONCLUSIONS AND RECOMMENDATIONS

- 9.1 CONCLUSIONS. The following conclusions are based on the RI at Site 16, Open Disposal and Burning Area at NAS Whiting Field:
 - Geophysical survey results suggested the presence of two separate large areas of geophysical anomalies indicating general disposal areas rather than trenched fill areas. Smaller geophysical anomalies present east of the site are interpreted to represent random disposal areas rather than points of controlled fill.
 - Ten test pits were excavated at the locations of geophysical anomalies at Site 16. Materials encountered during test pit excavations include construction debris, metallic debris, and aircraft parts.
 - Methane and VOCs were detected during the soil gas survey conducted at Site 16. The highest soil gas concentrations (exceeding 5,000 parts per million [ppm] methane) were reported near the northeastern boundary of the southern landfill boundary.
 - Two VOCs, 14 SVOCs, 6 pesticides, and 2 PCB compounds were detected in 30 Site 16 surface soil samples. No VOCs were detected in surface soils that exceeded regulatory limits.
 - The SVOCs benzo(g,h,i)perylene and dibenzo(a,h)anthracene exceeded the residential USEPA Region III RBCs. Two SVOCs, benzo(a)pyrene and benzo-(g,h,i)perylene, exceeded the industrial cleanup target levels for Florida. Benzo(a)pyrene and dibenzo(a,h)anthracene exceeded the industrial Region III RBCs. Benzo(a)pyrene and benzo(b)fluoranthene exceed the USEPA Region III RBCs and Florida residential cleanup goals for surface soil.
 - Dieldrin was detected in two samples at concentrations exceeding the residential SCTL for Florida and the USEPA Region III RBC. No other pesticides or PCBs were detected at concentrations that exceeded either Florida or Federal SCTLs.
 - Twenty-three inorganic analytes and cyanide were detected in the 30 surface soil samples. Eighteen inorganic analytes exceeded the background screening values for surface soil. Beryllium, iron, and lead exceeded the Florida residential SCTLs. Arsenic and beryllium exceeded the residential USEPA Region III RBCs. Arsenic also exceeded the USEPA Region III industrial RBCs.
 - Seven VOCs, 11 SVOCs, and 4 pesticides compounds were detected in the five Site 16 subsurface soil samples. None of the detected concentrations of VOCs, SVOCs, or pesticides exceeded the USEPA Region III RBCs for industrial-use soils.
 - Twenty inorganic analytes were detected in the five subsurface soil samples. Eight analytes (calcium, chromium, iron, manganese, potassium, vanadium, zinc, and cyanide) were detected at concentrations

exceeding the background screening values. None of these inorganics exceeded industrial standards for either the Florida SCTLs or USEPA Region III RBCs.

- Arsenic was detected in all five subsurface soil samples at concentrations ranging from 1.5 to 15.1 mg/kg. Three of the five environmental samples and the duplicate sample exceeded the industrial SCTL for Florida (3.7 mg/kg) and the USEPA Region III RBC (3.8 mg/kg).
- Lead was detected in all five subsurface soil samples at concentrations ranging from 6.8 to 766 mg/kg. Lead concentrations exceeded the industrial values of the USEPA Region III RBC (400 mg/kg) in two samples.
- The pH values of the groundwater samples collected from monitoring wells were below the lower range for the Federal and State secondary MCL of 6.5 SUs but were within the range of pH values observed in background groundwater samples collected at NAS Whiting Field.
- No VOCs, SVOCs, pesticides, or PCBs were detected in the surface water sample collected at Site 16. Eleven inorganic analytes were detected in the surface water sample, but only aluminum exceeded the Florida Class III fresh surface water value. Aluminum was detected at a concentration (758 $\mu g/l$) that exceeded the Florida groundwater guidance concentration of 200 $\mu g/l$.
- No VOCs were detected in the groundwater samples collected from the shallow monitoring wells at Site 16 nor were VOCs detected in background groundwater samples. One SVOC, bis(2-ethylhexyl)phthalate) was detected in groundwater samples collected from the shallow monitoring wells at concentrations below the Federal MCL and Florida groundwater guidance concentrations of 4.8 and 6 μ g/ ℓ , respectively, for bis(2-ethylhexyl)phthalate. Bis(2-ethylhexyl)phthalate was not detected in background groundwater samples. One pesticide (4,4'-DDT) was detected in a shallow groundwater monitoring well at a concentration of 0.15 μ g/ ℓ , which exceeded the Florida groundwater guidance concentration of 0.1 μ g/ ℓ . No PCB compounds were detected in any shallow Phase IIB groundwater samples.
- Twenty analytes (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, vanadium, zinc and cyanide) were detected in shallow groundwater samples collected from Site 16. Thirteen inorganic analytes (aluminum, barium, cadmium, calcium, copper, iron, magnesium, manganese, potassium, sodium, vanadium, zinc, and cyanide) were detected at concentrations exceeding the background screening concentrations. Six inorganic analytes (aluminum, antimony, beryllium, cadmium, iron, and manganese) were detected at concentrations exceeding either Federal or State regulatory limits.
- Eight VOCs (1,2-dichloroethane, 1,2-dichloroethene [total], benzene, chloroform, ethylbenzene, toluene, TCE, and xylenes [total]) were detected in the groundwater samples collected from the intermediate monitoring wells at Site 16. 1,2-Dichloroethane, 1,2-dichloroethene,

benzene, TCE, and xylenes were detected at concentrations that either equaled or exceeded the Florida groundwater guidance concentrations.

and the state of t

- Three SVOCs (naphthalene, phenol, and bis(2-ethylhexyl)phthalate) were detected in the groundwater samples collected from the intermediate monitoring wells at Site 16. None of the detected SVOCs were found in background groundwater samples. Bis(2-ethylhexyl)phthalate was detected at a concentration equal to the Federal MCL of 6 $\mu g/\ell$ and exceeding the Florida groundwater guidance concentration of 4.8 $\mu g/\ell$ for bis(2-ethylhexyl)phthalate.
- One pesticide (4,4'-DDT) detected at a concentration of 0.14 $\mu g/\ell$ exceeded the Florida groundwater guidance concentration of 0.1 $\mu g/\ell$. No PCB compounds were detected in any Phase IIB intermediate depth groundwater samples.
- Fourteen inorganic analytes were detected in intermediate groundwater samples collected from Site 16. Seven inorganic analytes (barium, calcium, iron, magnesium, manganese, sodium, and zinc) were detected at concentrations exceeding the background screening concentrations. Four inorganic analytes (aluminum, antimony, iron, and manganese) were detected at concentrations exceeding either Federal or State regulatory limits.
- Five VOCs (1,2-dichloroethane, 1,2-dichloroethene [total], benzene, toluene, and TCE) were detected in the groundwater samples collected from monitoring wells screened in the deeper level at Site 16. 1,2-Dichloroethane, 1,2-dichloroethene, benzene, and TCE were detected at concentrations exceeding the Federal MCLs. 1,2-Dichloroethane and benzene were detected at concentrations exceeding the Florida groundwater guidance concentrations.
- Three SVOCs (naphthalene, phenol, and bis(2-ethylhexyl)phthalate) were detected in groundwater samples collected from monitoring wells screened in the deep surficial aquifer at Site 16. None of the detected SVOCs were found in background groundwater samples. Only bis(2-ethylhexyl)phthalate was detected at concentrations exceeding both the Federal MCL and the Florida groundwater guidance concentration.
- No pesticides or PCB compounds were detected in any groundwater samples collected from monitoring wells screened in the deeper level of the surficial water table.
- Fifteen inorganic analytes were detected in deep groundwater samples collected from Site 16. Seven inorganic analytes (aluminum, copper, iron, lead, manganese, potassium, and sodium) were detected at concentrations exceeding the background screening concentrations. Three inorganic analytes (aluminum, iron, and manganese) were detected at concentrations exceeding either Federal or State regulatory limits.
- The groundwater flow direction is toward the southwest and likely discharges to Clear Creek. Clear Creek is located approximately 400 feet west-southwest of the site. The average horizontal hydraulic

gradient for the site is 0.0066 ft/ft. The geometric mean for the hydraulic conductivity data for monitoring wells in the site area is 22.2 ft/day and the average seepage velocity value is 0.38 ft/day.

- risk identified health assessment eight (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, carbazole, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene), one pesticide (dieldrin) and ten inorganic analytes (aluminum, barium, arsenic, cadmium, chromium, copper, iron, lead, manganese, and vanadium) as HHCPCs for surface soil at Site 16. Three inorganic analytes (arsenic, iron, and lead) were identified as HHCPCs for subsurface soil at Site 16. Five VOCs (1,2-dichloroethane, 1,2-dichloroethene [total], benzene, chloroform, and TCE); one SVOC (bis(2ethylhexyl)phthalate), one pesticide (4,4'-DDT)inorganics (aluminum, arsenic, barium, cadmium, iron, and manganese) were identified as HHCPCs for groundwater in Site 16.
- The total ELCR at Site 16 associated with ingestion of soil by a hypothetical future resident, current and hypothetical future trespasser, and hypothetical future occupational worker exceeded Florida's target risk level of concern (1×10^{-6}) due primarily to carcinogenic PAHs and arsenic. The background levels of arsenic at Site 16 exceed the Florida residential SCTL and may result in an unacceptable carcinogenic risk. It is likely that naturally occurring arsenic contributes to the FDEP target risk-level exceedance.
- Noncancer risk levels for soil, subsurface soil, and surface water meet the USEPA and FDEP target HI of one.
- The surface water ELCR for hypothetical future residents exceeds Florida's target level of concern due to beryllium. It should be noted, however, that this ELCR is based only on one sample.
- The ELCR for groundwater associated with residential ingestion and inhalation of volatiles while showering exceeded the Florida target level of concern due primarily to VOCs (primarily benzene) and arsenic; however, groundwater contamination is being addressed as a separate RI site under a facilitywide investigation.
- The central tendency risks from surface soil and surface water to a hypothetical current and future trespasser and a hypothetical future occupational worker (soil only) met the Florida level of concern (1×10^{-6}) for Site 16. Central tendency residential risks remain slightly above the FDEP target levels. The hypothetical future residential groundwater risks (carcinogenic and noncarcinogenic) remain above the FDEP target risk levels, but provide the risk managers and decision makers with a perspective of the hypothetical risk range to future residents.
- The ecological risk assessment selection of ECPCs for the surface soil samples collected at Site 16 include 13 SVOCs (carbazole, bis(2-ethylhexyl)phthalate, benzo(a)anthracene, benzo(a)pyrene, benzo(b)-fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno (1,2,3-cd) pyrene, phenanthrene, and pyrene), 1 PCB (Aroclor-1254), 1 pesticide (dieldrin), and

- 10 inorganic constituents (aluminum, barium, cadmium, copper, lead, manganese, mercury, silver, vanadium, and zinc).
- ECPCs selected for the surface water sample collected from the ephemeral wetland at Site 16 include seven inorganic analytes (aluminum, barium, beryllium, iron, lead, manganese, and zinc).
- Risks were identified for terrestrial wildlife resulting from exposure to ECPCs in surface soil; therefore, reductions in the survivability, growth, and reproduction of wildlife receptor populations at Site 16 may occur.
- ECPCs selected for the unfiltered groundwater samples collected at Site 16 include three VOCs (benzene, TCE, and xylenes), one SVOC (bis(2-ethylhexyl)phthalate), one pesticide (4,4'-DDT), and ten inorganics (aluminum, barium, cobalt, copper, cyanide, iron, lead, manganese, vanadium, and zinc).
- Reduction in terrestrial plant and soil invertebrate biomass used as
 forage material was evaluated by comparing exposure concentrations for
 surface soil with toxicity benchmarks. Based on this comparison it is
 unlikely that plant and invertebrate biomass or plant cover availability would be reduced such that small mammal and bird populations at Site
 16 would be affected.
- Potential risks for aquatic receptors were evaluated for exposures to ECPCs in groundwater. The concentrations of ECPCs in groundwater as they discharge to Clear Creek 450 feet downgradient of Site 16 were estimated based on application of a 10-fold attenuation factor to the RME concentration. Based on the screening evaluation of groundwater, risks to aquatic receptors in Clear Creek associated with exposure to groundwater ECPCs from Site 16 are not expected. The ERA for Site 39 will provide additional information regarding potential risks for aquatic receptors in Clear Creek based on actual site-related surface water and sediment data.
- In summary, the results of the ERA suggest that only sublethal risks (i.e., reductions in growth and reproduction) to small mammal and bird and predatory bird populations are predicted. These risks are likely associated with ingestion of cadmium, lead, and zinc in surface soil and food items that have bioaccumulated these inorganic constituents.
- 9.2 RECOMMENDATIONS. Based upon the interpretation of findings from the RI activities, a FS is recommended for Site 16 to evaluate potential strategies for the reduction in human health and ecological risks associated with surface soil at the site. In addition, the presence of organic and inorganic analytes in Site 16 groundwater samples at concentrations exceeding Florida's target risk levels indicates that additional sampling and remedial measures may be required. However, all groundwater contamination issues will be addressed as part of the RI for the facilitywide groundwater study to be completed in the future.

10.0 PROFESSIONAL REVIEW CERTIFICATION

The work and professional opinions rendered in this report were conducted and developed in accordance with commonly accepted procedures and protocols consistent with applied standards of practice. This report is based on the geologic investigation and associated information detailed in the text and appended to this report. If conditions are discovered or determined to exist that differ from those described, the undersigned geologist should be notified to evaluate the effects of any additional information on the assessment described in this report. The RI for Site 16, Open Disposal and Burning Area, was developed for NAS Whiting Field in Milton, Florida, and should not be construed to apply for any other purpose of or to any other site.

Eric A. Blomberg

Professional Geologist

P.G. No. 1695

1-17-00

Date

REFERENCES

- ABB Environmental Services Inc. (ABB-ES). 1992a. Remedial Investigation and Feasibility Study, Technical Memorandum No. 1, Geological Assessment, Naval Air Station Whiting Field, Milton, Florida: Final Report. Prepared for Southern Division, Naval Facilities Engineering Command (SOUTHNAVFAC-ENGCOM), North Charleston, South Carolina.
- ABB-ES. 1992b. Remedial Investigation and Feasibility Study, Technical Memorandum No. 4, Surface Water and Sediments, Naval Air Station Whiting Field, Milton, Florida: Final Report. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.
- ABB-ES. 1993. Geophysical Survey Technical Report, Naval Air Station Whiting Field, Milton, Florida: Final Report. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.
- ABB-ES. 1995a. Remedial Investigation and Feasibility Study, Technical Memorandum No. 2, Geological Assessment, Naval Air Station Whiting Field, Milton, Florida: Draft Final Report. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.
- ABB-ES. 1995b. Remedial Investigation and Feasibility Study, Technical Memorandum No. 3, Soil Assessment, Naval Air Station Whiting Field, Milton, Florida: Draft Report. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.
- ABB-ES. 1995c. Remedial Investigation and Feasibility Study, Technical Memorandum No. 4, Hydrogeologic Assessment, Naval Air Station Whiting Field, Milton, Florida: Draft Final Report. Prepared for SOUTHNAVFAC-ENGCOM, North Charleston, South Carolina.
- ABB-ES. 1995d. Remedial Investigation and Feasibility Study, Technical Memorandum No. 5, Groundwater Assessment, Naval Air Station Whiting Field, Milton, Florida: Draft Final Report. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.
- ABB-ES. 1995e. Remedial Investigation and Feasibility Study, Technical Memorandum No. 7, Phase IIB Workplan, Naval Air Station Whiting Field, Milton, Florida: Draft Final Report. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.
- Agency for Toxic Substances and Disease Registry (ATSDR). 1988a. "Toxicological Profile for Lead." U.S. Public Health Service (October).
- ATSDR. 1988b. "Toxicological Profile for Zinc." U.S. Public Health Service.
- ATSDR. 1989. "Toxicological Profile for Silver." U.S. Public Health Service.
- ATSDR. 1990a. "Toxicological Profile for Manganese." U.S. Public Health Service (October).
- ATSDR. 1991a. "Toxicological Profile for Chloroform." U.S. Public Health Service (October).

- ATSDR. 1991b. "Toxicological Profile for Dieldrin." U.S. Public Health Service (October).
- ATSDR, 1992. "Toxicological Profile for 4,4-DDT." U.S. Public Health Service (October).
- ATSDR. 1993a. "Toxicological Profile for Xylenes." U.S. Public Health Service (October).
- Baes, C.F. III, R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture. ORNL-5786. U.S. Department of Energy, Environmental Sciences Division. Oak Ridge, Tennessee: Oak Ridge National Laboratory (September).
- Beyer, W.N. 1990. Evaluating Soil Contamination. Biological Report No. 90(2). U.S. Department of the Interior, Fish and Wildlife Service. Washington, D.C.
- Bouwer, H., and R.C. Rice. 1989. The Bouwer and Rice Slug Test An Update, Ground Water, vol. 27, No. 3, p. 304-309.
- Briggs, G.G., R.H. Bromilow, and A.A. Evans. 1982. "Relationships Between Lipophilicity and Root Uptake and Translocation of Non-ionised Chemicals by Barley." *Pestic. Sci.* 14 (January):495-504.
- Briggs, G.G., R.H. Bromilow, A.A. Evans, and M. Williams. 1983. "Relationships Between Lipophilicity and the Distribution of Non-Ionised Chemicals in Barley Shoots Following Uptake by the Roots." *Pestic. Sci.* 14(February): 492-500.
- Burt, W.H., and R.P. Grossenheider. 1976. A Field Guide to the Mammals. Boston: Houghton Mifflin Co.
- DeGraaf, R.M., and D.D. Rudis. 1986. New England Wildlife: Habitat, Natural History, and Distribution. General Technical Report NE-108. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. Washington, D.C.
- E.C. Jordan Co. Inc. 1990. Remedial Investigation and Feasibility Study Planning Document, Naval Air Station Whiting Field, Milton, Florida. Volume I (Work Plan); Volume II (Sampling and Analysis Plan); Volume III (Data Management and Health and Safety Plan): Final Report. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.
- Envirodyne Engineers, Inc. 1985. Initial Assessment Study, Naval Air Station Whiting Field, Milton, Florida: final report. Prepared for Naval Energy and Environmental Support Activity, Port Hueneme, California.
- Fetter, C.W. 1988. Applied Hydrogeology: Columbus, Ohio: Merrill Publishing.

- FDEP. 1999. Development of Soil Cleanup Target Levels for Chapter 62-770, Florida Administrative Code (May).
- Geraghty & Miller, Inc. 1986. Verification Study, Assessment of Potential Groundwater Pollution at NAS Whiting Field, Milton, Florida. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.
- Hager. 1957. The Atlas of Breeding Birds in New York State, Great Horned Owl, In: Andrle, R.F. and J.R. Carrol, eds. Cornell University: Ithaca, New York; 1988.
- Harding Lawson Associates. 1998. Remedial Investigation and Feasibility Study, General Information Report (GIR), Naval Air Station Whiting Field, Milton, Florida: Draft Final Report. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.
- Hem, John D. 1992. Study and Interpretation of the Chemical Characteristics of Natural Water, 3rd Edition. U.S. Geological Survey, Water-Supply Paper 2254, 263 p.
- Howard, P.H. 1990. Handbook of Environmental Fate and Exposure Data for Organic Chemicals: Vol. I. Chelsea, Michigan: Lewis Publishers.
- Laboratory Data Consultants, Inc. 1996-97. Data Validation Report for Sample Delivery Groups (SDGs) WF006, WF007, WF11A, WF11B, WF027, and WF028.
- Maughan, J.T. 1993. Ecological Assessment of Hazardous Waste Sites. New York: Van Nostrand Reinhold.

- Nature Conservancy/Florida Natural Areas Inventory. 1997. "Rare Plant, Rare Vertebrate, and Natural Community Survey of Naval Air Station Whiting Field, Blackwater River Recreation Area, and Outlying Landing Fields Harold, Santa Rosa, Holley, Site 8A, Pace, Spencer, Wolf, Barrin, Summerdale, and Silverhill." Final Report. Sub-Agreement (N62467-95-RP00236) to the 1995 Cooperative Agreement between the Department of Defense and the Nature Conservancy (June).
- Naval Energy and Environmental Support Activity. 1988. Sampling and Chemical Analysis Quality Assurance Requirements for the Navy Installation Program: NEESA Guidance Document, 20.2-047B.
- Simon, T. 1997. Personal communication between Mr. Ted Simon of U.S. Environmental Protection Agency Region IV and Ms. Anita Pease of ABB-ES (September 18).
- Suter, G. W. 1993. Ecological Risk Assessment. Chelsea, Michigan: Lewis Publishers.
- Terres, J. 1980. Audubon Encyclopedia of North American Birds. New York: Alfred Knopf.
- Travis, C.C., and A.D. Arms. 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation." *Environ. Sci. Tech.* 22:271-274.
- U.S. Department of Agriculture. 1980. Soil Conservation Service, Soil Survey of Santa Rosa County, Florida.
- U.S. Environmental Protection Agency (USEPA). 1979. Water-Related Fate of 129 Priority Pollutants, Volumes I and II.
- USEPA. 1986a. Test Methods for Evaluating Solid Waste, Volume IB, Laboratory Manual Physical/Chemical Methods. Office of Solid Waste and Emergency Response, Washington, D.C. (November).
- USEPA. 1986b. Hazard Evaluation Division Standard Evaluation Procedure: Ecological Risk Assessment. USEPA/540/9-85-001. Office of Pesticide Programs. Washington, D.C.
- USEPA. 1988a. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (February).
- USEPA. 1988b. Ambient Water Quality Criteria for Aluminum. EPA-440/5-88-008. 47 pp.
- USEPA. 1989a. Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A). (December).
- USEPA. 1989b. Risk Assessment Guidance for Superfund, Environmental Evaluation Manual.

The state of the s

- USEPA. 1989c. Risk Assessment Guidance for Superfund: Environmental Evaluation Manual. Volume 2. EPA/540/1-89/002. Washington, D.C. (December).
- USEPA. 1989d. Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference. EPA 600/3-89/013. Environmental Research Laboratory. Corvallis, Oregon.
- USEPA. 1990. National Contingency Plan.
- USEPA. 1991a. Standard Operating Procedures and Quality Assurance Manual (SOPQAM). Environmental Compliance Branch, Region IV (February 1).
- USEPA. 1991b. Contract Laboratory Program National Functional Guidelines for Organic Data Review (February).
- USEPA. 1991c. Ambient Water Quality Criteria Summary. Washington, D.C. (May 1).
- USEPA. 1991d. ECO Update. Volume 1: Number 1 (September), Number 2 (December). Publication No. 9345.0.051. Washington, D.C.
- USEPA. 1992a. Guidance for Data Useability in Risk Assessment (Parts A and B), Final.
- USEPA. 1992b. Framework for Ecological Risk Assessment. USEPA/630/R-92/001. Washington, D.C. (February).
- USEPA. 1992c. Central Tendency and RME Exposure Parameters. Memorandum from Jon Rausher, Texas Remedy Section, Region VI (August 18).
- USEPA. 1992d. Supplemental Guidance to RAGS: Calculating the Concentration Term. PB92-963373. Office of Solid Waste and Emergency Response. Washington, D.C. (May).
- USEPA. 1992e. ECO Update. Volume 1: Number 3 (March), Number 4 (May), Number 5 (August). Publication 9345.0-051. Washington, D.C.
- USEPA. 1992f. ECO Update. Volume 1, Number 3, Publication 9345.0-051 (August).
- USEPA. 1993a. Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening. USEPA Region III (January).
- USEPA. 1993b. Wildlife Exposure Factors Handbook. Vols. I and II. USEPA/600/-R93/187a,b. Office of Research and Development. Washington, D.C. (December).
- USEPA. 1994a. Contract Laboratory Program National Functional Guidelines for Organic Review. Office of Emergency and Remedial Response. Washington, D.C. (February).
- USEPA. 1994b. Contract Laboratory Program National Functional Guidelines for Inorganic Review. Office of Emergency and Remedial Response. Washington, D.C. (February).

- USEPA. 1994c. Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. Office of Solid Waste and Emergency Response.
- USEPA. 1994d. Aquatic Retrieval System (AQUIRE) On-Line Aquatic Database Record Search.
- USEPA. 1995a. Supplemental Guidance to RAGS: Human Health Risk Assessment. Region 4 Bulletins (November).
- USEPA. 1995b. Water Quality Standards. USEPA Region IV, Atlanta, Georgia (January).
- USEPA. 1995c. Supplemental Guidance to RAGS: Ecological Risk Assessment. Region IV Bulletins. USEPA Region IV Waste Management Division, Atlanta, Georgia.
- USEPA. 1996a. Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (May).
- USEPA. 1996b. Drinking Water Regulations and Health Advisors. Office of Water (October).
- USEPA. 1996c. Proposed Guidelines for Ecological Risk Assessment. Federal Register, 61(175):47552-631 (September 9).
- USEPA. 1997a. Memorandum from Roy L. Smith, Technical Support Section. Subject: Risk Based Concentration Tables (February 17).
- USEPA. 1997b. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments.
- USEPA. 1997c. Risk-Based Concentration Table. USEPA Region III (October).
- USEPA. 1997d. Health Effects Assessment Summary Tables (July).
- USEPA. 1998. Integrated Risk Information System (February).
- Wolfe, S.H., J.A. Reidenauer, and D.B. Means. 1988. "An Ecological Characterization of the Florida Panhandle." Biological Report 88(12), OCS MMS 88-0063. Fish and Wildlife Service. U.S. Department of the Interior. Washington, D.C.

APPENDIX A

QUALITY CONTROL PARCCs REPORT

LABORATORY DATA CONSULTANTS, INC.
7750 El Camino Real, Suite 2C, Carlsbad, CA 92009 Phone: 619 634-0437 Fax: 619 634-0439

APPENDIX A

Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida **PARCC Summary Tables**

Draft Version

08/30/96

APPENDIX A

Table of Contents

Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton, Florida

Table	Title	Page No.
 	Sample Delivery Group Versus Sample Identification	A-11
<u>Organi</u>	<u>ics</u>	
V VI VII VIII IX	Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples Summary of Surrogate Recoveries Summary of Compounds Exceeding Instrument Calibration Summary of Method Blank Contamination Summary of Field Blank Contamination	A-14 A-16 A-17 A-19
Inorga	<u>nics</u>	
X XI XII XIII XIV	Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike and Laboratory Duplicate Samples Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples Summary of Analytes Exceeding Instrument Calibration Summary of Method Blank Contamination Summary of Field Blank Contamination	A-26 A-29 A-30
XV	Sample Event PARCC Summary	A-33

SDG#: WF016 **VALIDATION SAMPLE TABLE** LDC#: 1876A Project Name: NAS Whiting Field Parameters/Analytical Method Job#: 8532-20 QC Date Client ID # Lab ID # Type Matrix Collected VOA **SVOA** Pesticides/PCBs Metals Cyanide BKB00101 RB583001 soil 5-20-96 Х Х Χ Х Х BKB00102 RB583002 soil 5-20-96 Χ Х Х Х Х BKB00401 RB583003 FD soil 5-20-96 Х Х Х Х Х FD Х BKB00401D RB583004 soil 5-20-96 Х Х Х Х BKB00402 RB583005 soil 5-20-96 Х Χ Х Х Х BKB00201 RB583006 soil 5-20-96 Х Х Х Х Х Х Х Х BKB00202 RB583007 soil 5-20-96 Х Х BKR00201 R Х Х Х RB583008 water 5-20-96 Х Х RB583009 Х BKF00101 SB water 5-20-96 Χ Х Х Х RB583010 TB 5-20-96 Х BKT00201 water Х BKB00301 5-21-96 Х Х Х RB583011 soil Х Х Х Х BKB00302 RB583012 soil 5-21-96 Х Х BKB00501 RB583013 5-21-96 Х Х X X soil Х Х Х Х BKB00502 RB583014 soil 5-21-96 Х Χ Х Х Х Х BKB00601 RB583015 soil 5-21-96 Х Х Х Х Х BKB00602 RB583016 FD soil 5-21-96 Х Х Х Х Х BKB00602D FD RB583017 soil 5-21-96 Х Х X. Х Х BKB00701 RB583018 soil 5-21-96 Х Х Х Х Х X BKB00702 RB583019 5-21-96 soil Х Х Х X Х BKB00401MS RB583003MS MS 5-20-96 soil BKB00401MSD RB583003MSD MSD 5-20-96 Х Х Х Х Х soil

5-20-96

5-20-96

water

water

MS

MSD

RB583008MS

RB583008MSD

BKR00201MS

BKR00201MSD

Х

Х

					Table	. 1			
SDG#: WF016					VALIDATION SA			LDC#: 1876A	
Project Name: NAS Whiting Field			T		Parameters/Anal	ytical Method			Job#: 8532-20
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide
BKF00101MS	RB583009MS	MS	water	5-20-96					х
BKF00101MSD	RB583009MSD	MSD	water	5-20-96					x

T 70 1

SDG#: WF017 VALIDATION SAMPLE TABLE LDC#: 1876B

Project Name: NAS Whiting Field Parameters/Analytical Method Job#: 8532-20

·									
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide
31B00601	RB592001	FD	soil	5-21-96	Х	Х	x	х	х
31B00602	RB592002		soil	5-21-96	Х	х	X	х	х
31B00603	RB592003		soil	5-21-96	X	Х	X	X	х
31B00604	RB592004		soil	5-21-96	X	X	x	×	Х
31B00605	RB592005		soil	5-21-96	X	x	X	x	х
31B00601D	RB592006	FD	soil	5-21-96	X	x	х	X	х
12B00101	RB592007	FD	soil	5-21-96	X	X	х	x	х
12B00101D	RB592008	FD	soil	5-21-96	X	x	x	x	X
12B00102	RB592009		soil	5-21-96	X	X	X	X	X ·
31B00701	RB592010		soil	5-22-96	X	x	x	X	х
31B00702	RB592011		soil	5-22-96	x	х	X	x	x
31B00703	RB592012		soil	5-22-96	x	X	x	XX	x
31B00704	RB592013		soil	5-22-96	x	X	×	X	x
31B00705	RB592014		soil	5-22-96	X	, j X eli	X	X	X
31B00801	RB592015		soil	5-22-96	х	x iii	, x	X .	X
31B00801DL	RB592015DL		soil	5-22-96	X				
31B00802	RB592016		soil	5-22-96	Χ ,	X	x	×	X
31B00803	RB592017		soil	5-22-96	x	X	х	X	x
31B00803DL	RB592017DL		soil	5-22-96	x		·		
31B00804	RB592018		soil	5-22-96	X	Х	x	X	×
31B00804DL	RB592018DL		soil	5-22-96	x				
31B00805	RB592019		soil	5-22-96	x	x	x	,X	Х
31R00101	RB592020	R	water	5-22-96	x	x	x	x	X

					ا می او	1				
SDG#: WF017					VALIDATION SA	MPLE TABLE				
Project Name: NAS Whiting Field					Parameters/Anal	ytical Method		Job#: 8532-20		
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide	
31T00301	RB592021	тв	water	5-22-96	x					
12R00101	RB592022	R	water	5-21-96	. X	х	x	x	x	
BKT00301	RB592023	тв	water	5-21-96	х					
31B00601MS	RB592001MS	MS	soil	5-21-96	X	х	х	х	x	

31B00601MSD

RB592001MSD

MSD

soil

5-21-96

1		
- 1	1	

SDG#: WF018				····	VALIDATION SAMPLE TABLE		LDC#: 1876C			
Project Name:	NAS Whiting Field		<u> </u>	T1	Parameters/Analytical Method	Job#: 8532-2				
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Lead only			
30B00201	RB602001		soil	5-23-96	X	X	X			
30B00202	RB602002	FD	soil	5-23-96	X	X	X			
30B00203	RB602003		soil	5-23-96	X	X	X			
30B00202D	RB602005	FD	soil	5-23-96	X	X	X			
30B00101	RB602006		soil	5-23-96	X	X	X			
30B00102	RB602007		soil	5-23-96	X	X	X			
30B00103	RB602008		soil	5-23-96	X	X	X			
30R00101	RB602010	R	water	5-23-96	X	X	X			
30T00101	RB602011	ТВ	water	5-23-96	X					
30B00202MS	RB602002MS	MS	soil	5-23-96	X	X	Х			
30B00202MSD	RB602002MSD	MSD	soil	5-23-96	X	X	x			

· ·		4
121	NВ	

SDG#: WF019 VALIDATION SAMPLE TABLE LDC#: 1876D

Project Name:	NAS Whiting Field			······································	Parameters/Analytical Method	1	Job#: 8532-20	
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Lead only	
30B00501	MB047001		soil	6-4-96	Х	Х	X	
30B00502	MB047002	FD	soil	6-4-96	X	X	X	
30B00503	MB047003		soil	6-4-96	X	x	X	
30B00502D	MB047005	FD	soil	6-4-96	Х	X	X	
30B00401	MB047006		soil	6-4-96	X	x	X	
30B00402	MB047007		soil	6-4-96	Х	Х	X	
30B00403	MB047008		soil	6-4-96	X	X	X	
30R00201	MB047010	R	water	6-4-96	Х	X	X	
30T00201	MB047011	тв	water	6-4-96	X			
30R00301	MB068001	R	water	6-5-96	Х	X	X	
30T00301	MB068002	ТВ	water	6-5-96	X			
30F00101	MB068003	SB	water	6-5-96	X	magaji ka ji ka ji ka ji ka ji	X	
30B00601	MB068004		water	6-5-96	X	x	X	
30B00602	MB068005	FD	soil	6-5-96	x	X 44	X	
30B00 6 03	MB068006		soil	6-5-96	X	x	X	
30B00602D	MB068009	FD	soil	6-5-96	X .	X	X	
30B00301	MB068010		soil	6-5-96	X	X	X	
30B00302	MB068011		soil	6-5-96	Х	X	X	
30B00303	MB068012		soil	6-5-96	X	Х	X	
30B00303DL	MB068012DL		soil	6-5-96		х		
30800305	MB068015		soil	6-5-96	X	Х	X	
30B00502MS	MB047002MS	MS	soil	6-4-96	X	Х	X	
30B00502MSD	MB047002MSD	MSD	soil	6-4-96	X	. x	X	

): 1)
SDG#: WF019					VALIDATION SAMPLE TABL	.E '		LDC#: 1876D
Project Name:	NAS Whiting Field				Parameters/Analytical Method		Job#: 8532-20	
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA		SVOA	Lead only
30F00101MS	MB068003MS	MS	soil	6-4-96				×
30F00101MSD	MB068003MSD	MSD	soil	6-4-96				x
30B00601MS	MB068004MS	MS	water	6-5-96				x
30B00601MSD	MB068004MSD	MSD	water	6-5-96				 x

-		-
- 1	•	1
	 ~	- 1

SDG#: WF020					VALIDATION SAMPLE TABLE	100 100 100 100			LDC#: 1883A
Project Name:	NAS Whiting Field		-		Parameters/Analytical Method				Job#: 8532-20
Cilent ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA		SVOA		Lead only
33B00301	MB080001		soil	6-6-96	X		х		X
33B00302	MB080002	FD	soil	6-6-96	X		x		Х
33B00303	MB080003		soil	6-6-96	X		x		X
33B00304	MB080004		soil	6-6-96	X		х		X
33B00305	MB080005		soil	6-6-96	X		х		X
33B00305RE	MB080005RE		soil	6-6-96			X		
33B00306	MB080006		soil	6-6-96					х
33B00302D	MB080007	FD	soil	6-6-96	X		X		х
33B00201	MB080008		soil	6-6-96	X	·	X		x
33B00202	MB080009		soil	6-6-96	X		x		х
33B00203	MB080010		soil	6-6-96	X		X		X
33B00205	MB080011		soil	6-6-96		1.4		1 1 1	X
33B00101	MB080012		soil	6-6-96	X		X		X
33800102	MB080013	FD	soil	6-6-96	X		X		Х
33B00103	MB080014		soil	6-6-96	X		х		X
33B00102D	MB080015	FD	soil	6-6-96	X		X		X
33R00101	MB080016	R	water	6-6-96	x		X		X
33T00101	MB080017	тв	water	6-6-96	X				
33B00302MS	MB080002MS	мѕ	soil	6-6-96	X		X		
33B00302MSD	MB080002MSD	MSD	soil	6-6-96	X		х		
33B00302MSRE	MB080002MSRE	MS	soil	6-6-96			х		
33B00302MSDRE	MB080002MSDRE	MSD	soil	6-6-96			х		
33B00302S	MB080002S	MS	soil	6-6-96					Х

				:	7)1			
SDG#: WF020					VALIDATION SAMPLE TABLE	. 11		LDC#: 1883A
Project Name: NAS Whiting Field					Parameters/Analytical Method			Job#: 8532-20
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA		SVOA	Lead only
33B00302D	MB080002D	DUP	soil	6-6-96				X

Marie No.

					Tue 1			
SDG#: WHF02	21				VALIDATION SAMPLE TABLE			LDC#: 1883B
Project Name:	NAS Whiting Field				Parameters/Analytical Method			Job#: 8532-20
Client ID #	Lab ID #	QC Type	Matrix	Date Collected		TCLP Metals	 *	
30U00101	MB107001		soil	6-11-96		x		
30U00201	MB107002		soil	6-11-96		x		
30U00301	MB107003		soil	6-11-96		х		
30U00401	MB107004		soil	6-11-96		х		
33U00101	MB107005		soil	6-11-96		х		
33U00201	MB107006		soil	6-11-96		×		
33U00301	MB107007		soil	6-11-96		X		

Table II Summary of Rejected Data (Organics) Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds						
SDG	Fraction	Sample	Compound	Reason		
WF016	Volatiles Semivolatiles Pesticides & PCBS	All samples All samples All samples	No rejected results No rejected results No rejected results	- - -		
WF017	Volatiles Semivolatiles Pesticides & PCBs	All samples All samples All samples	No rejected results No rejected results No rejected results	-		
WF018	Volatiles Semivolatiles	All samples All samples	No rejected results No rejected results	-		
WF019	Volatiles Semivolatiles	Ali samples Ali samples	No rejected results No rejected results	-		
WF020	Volatiles Semivolatiles	Ali samples Ali samples	No rejected results No rejected results	· -		

Table III Summary of Rejected Data (Inorganics) Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes

SDG	Fraction	Sample	Analyte	Reason	
WF016	All metals Cyanide	Ali samples Ali samples	No rejected results No rejected results	-	
WF017	All metals Cyanide	All samples All samples	No rejected results No rejected results	-	
WF018	Lead	Ali samples	No rejected results	•	
WF019	Lead	Ali samples	No rejected results	-	

Table IV
Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates
Subsurface Soil Investigation, Phase IIB
NAS Whiting Field, Milton Florida

Organic Compounds

			Crite	ia	% Re	covery		
SDG	Client ID	Compound	% Recovery	RPD	Ms	MSD	RPD	Qualifier
WF016	BKB00401	Volatiles		•	-		-	None
		Semivolatiles	-	-	-	-	•	None
		Pesticides/PCBs	-	-	<u> </u>	<u> </u>	•	None
WF017	31B00601	Volatiles	•	-	•	-	-	None
		N-Nitroso-di-n-propylamine	41-126	≤38	33		45	None
		1,2,4-Trichlorobenzene	38-107	≤23	33	-	43	None
		Phenol	1 - 1	≤35	-		40	None
		1,4-Dichlorobenzene	-	≤27	-	-	44	None
		4-Chloro-3-methylphenol	-	≤33	-		38	None
		Acenaphthene	-	≤19	- '	•	30	None
		Pesticides/PCBs		-	<u>-</u>	-	-	None
WF018	30B00203	Volatiles		-	-	-	-	None
À.		N-Nitroso-di-n-propylamine	41-126	-	33	34	_	UJ
	'	1,2,4-Trichlorobenzene	38-107	-	35	35	_	UJ
*		Pyrene	35-142		33			บม
WF019	30800502	Volatiles	-	-		-	÷	None
		1,4-Dichlorobenzene	_	≤27		_	40	UJ
		1,2,4-Trichlorobenzene	1 - 1	≤23			34	UJ
		Acenaphthene	-	≤19		-	25	ບາ
WF020	33B00302	Volatiles	1 .				· •	None
· · · · · · · · · · · · · · · · · · ·		Semivolatiles		-			_	None

Table V Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG		Organic Compounds		RPD
WF016	Client ID Laboratory ID Collection Date	BKB00401 RB583003 5/20/96	BKB00401D RB583004 5/20/96	
	Acetone	6 ug/Kg	17 ug/Kg	96
	Di-n-butylphthalate	1000 ug/Kg	970 ug/Kg	3
	Pesticides/PBs	ND	ND	•
WF016	Client ID Laboratory ID Collection Date	BKB00602 RB583016 5/21/96	BKB00602D RB583017 5/21/96	
	Acetone	47 ug/Kg	6 ug/Kg	155
	Di-n-butylphthalate	580 ug/Kg	310 ug/Kg	61
	Pesticides/PCBs	ND	ND	•
WF017	Client ID Laboratory ID Collection Date	31B00601 RB592001 5/21/96	31 B00601 D RB592006 5/21/96	
	Acetone	3 ug/Kg	11 ug/Kg	114
	Di-n-butylphthalate Bis(2-ethylhexyl)phthalate	39 ug/Kg 110 ug/Kg	350U ug/Kg 79 ug/Kg	Not calculable 33
	Gamma-chlordane	1.5 ug/Kg	1.1 ug/Kg	31
WF017	Client ID Laboratory ID Collection Date	12B00101 RB592007 5/21/96	12B00101D RB592008 5/21/96	
	Acetone	8 ug/Kg	3 ug/Kg	91
	Diethylphthalate	830 ug/Kg	370U ug/Kg	Not calculable
	Pesticides/PCBs	ND	ND	-
WF018	Client ID Laboratory ID Collection Date	30B00202 RB602002 5/23/96	30B00202D RB602005 5/23/96	
	Acetone Methylene chloride Di-n-butylphthalate	7 ug/Kg 1 ug/Kg 380U ug/Kg	9 ug/Kg 2 ug/Kg 360 ug/Kg	25 67 Not calculable
W F019	Client ID Laboratory ID Collection Date	30B00502 MB047002 6/4/96	30B00502D MB047005 6/4/96	
	Acetone Methylene chloride Trichloroethene	16 ug/Kg 2 ug/Kg ND	14 ug/Kg 2 ug/Kg 1 ug/Kg	13 0 Not calculable
•	Bis(2-ethylhexyl)phthalate 2-Methylnaphthalene	1000 ug/Kg 1900U ug/Kg	970 ug/Kg 210 ug/Kg	3 Not calculable

Table V Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG	1	Organic Compounds		RPD
WF019	Client ID Laboratory ID Collection Date	30B00602 MB068005 6/5/96	30B00602D MB068009 6/5/96	
	Acetone Methylene chloride Trichloroethene	23 ug/Kg 5 ug/Kg ND	31 ug/Kg 4 ug/Kg 1	30 22 Not calculable
	Di-n-butylphthalate Bis(2-ethylhexyl)phthalate	51 ug/Kg 99 ug/Kg	43 ug/Kg 42 ug/Kg	17 81
WF020	Client ID Laboratory ID Collection Date	33B00302 MB080002 6/6/96	33B00302D MB08007 6/6/96	
	Acetone Methylene chloride 1,2-Dichloroethene (total) Trichloroethene	7 ug/Kg ND ND ND	8 ug/Kg 2 ug/Kg 4 ug/Kg 13 ug/Kg	13 Not calculable Not calculable Not calculable
	Bis(2-ethylhexyl)phthalate	48 ug/Kg	380U ug/Kg	Not calculable
WF020	Client ID Laboratory ID Collection Date	33B00102 MB080013 6/6/96	33B00102D MB080015 6/6/96	
	Acetone Methylene chloride	5 ug/Kg ND	5 ug/Kg 1 ug/Kg	0 Not calculable
	Di-n-butylphthalate Bis(2-ethylhexyl)phthalate	66 ug/Kg 760 ug/Kg	45 ug/Kg 370U ug/Kg	21 Not calculable

Table VI Summary of Surrogate Recoveries Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds

SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifler
WF016	All samples	Volatiles	All within QC limits	•	-	None
	All samples	Semivolatiles	All within QC limits	-		None
	All samples	Pesticides/PCBs	All within QC limits		<u> </u>	None
WF017	All samples	Volatiles	All within QC limits	•	-	None
	All samples	Semivolatiles	All within QC limits	- -	-	None
		Pesticides/PCBs			6	
	12R00101	Decachlorobiphenyl	57	60-150		UJ (all detects)
		Decachlorobiphenyl	56	60-150		UJ (all detects)
	31R00101	Decachlorobiphenyl	27	60-150		UJ (all detects)
		Decachlorobiphenyl	27	60-150		UJ (all detects)
	12B00101D	Tetrachloro-m-xylene	58	60-150		UJ (all detects)
	12B00102	Tetrachloro-m-xylene	55	60-150	•	UJ (all detects)
		Tetrachloro-m-xylene	56	60-150		UJ (all detects)
	31800603	Tetrachloro-m-xylene	46	60-150	1	UJ (all detects)
		Decachlorobiphenyl	54	60-150	1	UJ (all detects)
		Tetrachloro-m-xylene	49	60-150		UJ (all detects)
		Decachlorobiphenyl	53	60-150	}	UJ (all detects)
	31B00604	Tetrachloro-m-xylene	52	60-150		UJ (all detects)
		Decachlorobiphenyl	58	60-150		UJ (all detects)
		Tetrachloro-m-xylene	54	60-150		UJ (all detects)
WF018	All samples	Volatiles	All within QC limits	-		None
	All samples	Semivolatiles	All within QC limits	-	<u> </u>	None
WF019	All samples	Volatiles	All within QC limits	•		None
	All samples	Semivolatiles	All within QC limits	-		None
WF020	All samples	Volatiles	All within QC limits	•		None
	33B00305	Semivolatiles			1	
	33500303		0	25-121	1 ''	R (all compounds)
		2-Fluorophenol Phenol-d5		25-121 24-113		R (all compounds)
		2-Chlorophenol-d4	1 %	20-130		R (all compounds)
		1.2-Dichlorobenzene-d4	, , , , , , , , , , , , , , , , , , ,	20-130	1	R (all compounds)
		,=		20-130		R (all compounds)
		Nitrobenzene-d5	'	23-120 30-115		R (all compounds)
		2-Fluorobiphenyl	, , , , , , , , , , , , , , , , , , ,			, , , ,
		2,4,6-Tribromophenol	0	19-122	1	R (all compounds) R (all compounds)
	1	Terphenyl-d14	U	18-137	1	n (an compounds)

Notes:

J = estimated value

UJ = undetected, but number that is reported as the quantification limit is an estimated value.

Table VII Summary of Compounds Exceeding Instrument Calibration Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organi	ie Co	mpo	unds	

SDG	Date	Compound	Crit	eria	Qualifier
			Initial Calibration %RSD	Continuing Calibration %D	
WF016	5/31/96	Chloromethane	48.8	26.5	บม
	6/1/96	Chloromethane	42.0	•	บม
	6/2/96	Chloromethane	•	37.6	uJ .
	6/3/96	Chioromethane	•	33.4	uJ
	6/6/96	4-Nitroaniline Di-n-octylphthalate	- -	29.2 25.2	nn nn
	6/12/96	Endrin aldehyde	21.4	•	J
WF017	5/31/96	Chloromethane	48.8	26.5	UJ
	6/1/96	Chloromethane	42.0	•	υJ
	6/2/96	Chloromethane	-	37.6	UJ
	6/3/96	Chloromethane	•	33.4	υJ
	6/4/96	Chloromethane Chloroethane	- -	64.3 37.9	ນ
	6/4/96	Chioromethane	-	62.2	บม
	6/6/96	4-Nitroaniline Di-n-octylphthalate	- · •	29.2 25.2	ບາ
	6/7/96	Butylbenzylphthalate 3,3'-Dichlorobenzidine Bis(2-ethylhexyl)phthalate	- -	26.8 32.9 27.4	ນງ ບນ ບນ
	6/12/96	Endrin aldehyde	21.4	-	J
WF018	5/31/96	Chloromethane	48.8	26.5	UJ
	6/1/96	Chloromethane	42.0		UJ
	6/4/96	Chioromethane Chioroethane		64.3 37.9	m m
	6/6/96	4-Nitroaniline Di-n-octylphthalate	-	29.2 25.2	กา กา
WF019	All	Volatiles	•	-	None
	6/11/96	Hexachiorobenzene		30.8	ມ

Table VII

Summary of Compounds Exceeding Instrument Calibration Subsurface Soll Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds SDG Date Compound Criteria Qualifier Initial Calibration Continuing %RSD Calibration %D WF020 All Volatiles None 6/26/96 28.6 IJ Bis (2-ethylhexyl) phthalate

Notes:

%RSD = percent Relative Standard Deviation for initial calibrations

%D = percent Difference for continuing calibrations

Di-n-octylphthalate

J = the compound was positively identified; the associated numerical value is the approximate concentration of the compound in the sample, either because its concentration was lower than the QL (laboratory "J" flag), or because QC criteria were not met (validation "J").

33.8

UJ

UJ = the compound was not detected above the reported sample QL However, the reported sample QL is approximate; the compound concentration may not reliably be presumed to be less than the QL value.

R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the compound cannot be verified.

Table VIII

Summary of Method Blank Contamination Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

	Organi	c Compounds	
SDG	Compound	Concentration	Associated Samples
VF016	Acetone	2 ug/Kg	BKB00101
			BKB00401
			BKB00401D
			BKB00402
			BKB00201
			BKB00202
	free energy by any		BKB00301
			BKB00302
	·		BKB00501
			BKB00502
			BKB00601
			BKB00602
	Acetone	1 ug/Kg	BKB00602D
	Bis(2-ethylhexyl)phthalate	12 ug/L	BKR00201
			BKF00101
	Pestcides/PCBs	ND	-
F017	Acetone	1 ug/Kg	31B00601
		. .	31B00605
			12B00101
			12B00101D
			12800102
			31B00702
			31B00703
			31B00704
			31B00705
	- [31B00801
			31B00802
			31B00803
	Acetone	2 ug/Kg	31800701
			31B00804
			31B00805
	Acetone	2 ug/Kg	31B00803DL
		שייע <i>ם –</i>	31B00804DL
	Bis(2-ethylhexylphthalate	2 ug/L	31R00101
	Distantiane	z ug/L	GINOOTO
	Bis(2-ethylhexylphthalate	2 ug/L	12R00101
	Pesticides/PCBs	ND	1.

Table VIII Summary of Method Blank Contamination Subsurface Soll Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds					
SDG	Compound	Concentration	Associated Samples		
WF018	Acetone	2 ug/Kg	30B00201		
	Acetone	2 ug/Kg	30B00203		
	Acetone	- cg/\s	30B00202		
			30B00202D		
			30B00101		
			30B00102		
			30B00103		
	Bis(2-ethylhexyl)phthalate	43 ug/Kg	30B00201		
	1 200 (2 200)		30B00202		
			30B00203		
	av.		30B00202D		
			30B00101		
	*		30B00102		
	ı		30B00103		
/F019	Methylene chloride	5 ug/Kg	30B00501		
	Acetone	5 ug/Kg	30B00502		
			30B00503		
	·		30B00502D		
			30B00401		
			30B00402 30B00403		
			30500403		
	Acetone	5 ug/Kg	30B00601		
			30B00602		
			30B00603		
			30B00602D 30B00301		
			30800302		
			30B00303		
			30B00305		
	Bis (2-ethylhexyl) phthalate	1 ug/L	30R00201		
	Bis(2-ethylhexyl)phthalate	59 ug/Kg	30B00601		
			30B00602		
			30B00603		
			30B00602D		
			30B00301		
			30B00302 30B00303		
			30B00303DL		
		1	30B00305		

Table VIII Summary of Method Blank Contamination Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

	0	rganic Compounds	
SDG	Compound	Concentration	Associated Samples
WF020	Acetone	5 ug/Kg	33B00301
		1	33B00302
			33B00303
		<u> </u>	33B00304
			33B00305
			33B00302D
	i	1	33B00201
	1		33B00202
			33B00203
			33B00101
		•	33B00102
	1		33B00103
			33B00102D
	Bis(2-ethylhexyl)phthalate	6 ug/L	33R00101
	Bis(2-ethylhexyl)phthalate	43 ug/Kg	33B00301
			33B00302
			33B00303
	1		33B00304
			33B00302D
			33B00201
			33B00202
			33B00203
			33B00101
			33B00102
			33B00103
			33B00102D
	Bis(2-ethylhexylphthalate	300 ug/Kg	33B00305RE

Table IX Summary of Field Blank Contamination Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		Organic Comp	ounds	
SDG	Parameter		Concentration	Qualifier
WF016	Client ID: Laboratory ID: Collection Date: Type:	BKR00201 RB583008 5/20/96 Equipment Rinsate		
	Acetone		2 ug/L	None
	Di-n-butylphthalate Bis(2-ethylhexyl)pht	halate	8 ug/L 3 ug/L	None 10U ug/L¹
	Pesticides/PCBs		ND	None
WF016	Client ID: Laboratory ID: Collection Date: Type:	BKT00201 RB583010 5/20/96 Trip Blank		
	Methylene chloride Acetone		1 ug/L 13 ug/L	None None
WF016	Client ID: Laboratory ID: Collection Date: Type:	BKF00101 RB583009 5/20/96 Source Blank		
	Acetone		23 ug/L	None
	Di-n-butylphthalate Bis(2-ethylhexyl)pht	halate	9 ug/L 3 ug/L	None 10U ug/L ¹
	Pesticides/PCBs		ND ND	None
WF017	Client ID: Laboratory ID: Collection Date: Type:	12R00101 RB592022 5/21/96 Rinsate		and the state of t
	Acetone		8 ug/L	None
	Di-n-butylphthalate Bis(2-ethylhexyl)pht Butylbenzylphthalat		9 ug/L 15 ug/L 2 ug/L	None 15U ug/L¹ None
	Pesticides/PCBs		ND .	None
WF017	Client ID: Laboratory ID: Collection Date: Type:	31R00101 RB592020 5/22/96		
	Acetone		17 ug/L	None
•	Di-n-butylphthalate Bis(2-ethylhexyl)pht	thalate	6 ug/L 6 ug/L	None 10U ug/L¹
	Pesticides/PCBs		ND	None

Table IX Summary of Field Blank Contamination Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		Or	ganic Compound	S	
SDG	Parameter			Concentration	Qualifier
WF017	Client ID: Laboratory ID: Collection Date: Type:	31T00301 RB592021 5/22/96 Trip Blank		4.11=0	None
WF017	Client ID: Laboratory ID: Collection Date: Type:	BKT00301 RB592023 5/21/96 Trip Blank		4 ug/L	
WF018	Client ID: Laboratory ID: Collection Date: Type: Methylene chloride Acetone	30T00101 RB602011 5/23/96 Trip Blank	**************************************	3 ug/L 3 ug/L 10 ug/L	None None None
WF018	Client ID: Laboratory ID: Collection Date: Type:	30R00101 RB602010 5/23/96 Rinsate			
	Acetone Di-n-butylphthalate			6 ug/L 9 ug/L	None None
WF019	Client ID: Laboratory ID: Collection Date: Type:	30T00201 MB047011 6/4/96 Trip Blank			
WF019	Client ID: Laboratory ID: Collection Date: Type:	30T00301 MB068002 6/5/96 Trip Blank		ND .	None
	Volatiles			ND	None
WF019	Client ID: Laboratory ID: Collection Date: Type:	30R00201 MB047010 6/4/96 Rinsate			
	Volatiles			ND	None
	Di-n-butylphthalate Bis(2-ethylhexyl)pht	halate		3 ug/L 4 ug/L	None 10U ug/L¹

Table IX Summary of Field Blank Contamination Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

	Organic Compounds		
SDG	Parameter	Concentration	Qualifier
WF019	Client ID: 30R00301 Laboratory ID: MB068001 Collection Date: 6/5/96 Type: Rinsate		
	Methylene chloride	3 ug/L	None
·····	Di-n-butylphthalate Bis (2-ethylhexyl) phthalate	7 ug/L 4 ug./L	None None
WF019	Client ID: 30F00101 Laboratory ID: MB068003 Collection Date: 6/5/96 Type: Source Blank		
	Acetone	29 ug/L	None
	Di-n-butylphthalate	13 ug/L	None
WF020	Client ID: 33T00101 Laboratory ID: MB080017 Collection Date: 6/6/96 Type: Trip Blank		
	Volatiles	ND	None
WF020	Client ID: 33R00101 Laboratory ID: MB080016 Collection Date: 6/6/96 Type: Rinsate		
	Acetone	15 ug/L	None
	Di-n-butylphthalate Bis(2-ethylhexyl)phthalate	13 ug/L 3 ug/L	None 10U ug/L ¹
	ample result was modified based on an associated method ank concentration.		
Note: se	e detailed data validation report for the discrete qualifiers.		

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike and Laboratory Duplicate Samples Subsurface Soil Investigation, Phase IIB

NAS Whiting Field, Milton Florida

Inorganic Analytes

			Crite	teria	% Red	covery		
SDG	Client ID	Analyte	% Recovery	RPD	MS	MSD	RPD	Qualifler
WF016	BKB00401	All metals Cyanide		-	-	-	-	None None
WF016	BKR00201	Metals		-	_	-	•	None
WF016	BKF00101	Cyanide	-	-	-	-	•	None
WF017	31B00601	Lead Cyanide	75-125 -	≤35 -	179.2 -	-	49.3 -	J None
WF018	30B00202	Lead	-	-	-	-		None
WF019	30B00502	Lead	-		-	-	-	None
WF019	30F00101	Lead		-	-	-	•	None
WF019	30B00601	Lead	75-125	•	66.4	-		J
WF020	33B00302	Lead	-	-		-	-	None

Table XI Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG		RPD		
WF016	Client ID Laboratory ID Collection Date	BKB00401 RB583003 5/20/96	BKB00401D RB583004 5/20/96	
	Aluminum	3600 mg/Kg	2290 mg/Kg	44
	Arsenic	0.54 mg/Kg	0.79 mg/Kg	38
	Barium	7.2 mg/Kg	6.4 mg/Kg	12
	Beryllium	ND	0.07 mg/Kg	Not calculable
	Calcium	194 mg/Kg	203 mg/Kg	5
	Chromium	3.2 mg/Kg	2.4 mg/Kg	29
	Cobalt	0.77 mg/Kg	0.58 mg/Kg	28
	Copper	1.8 mg/Kg	1.7 mg/Kg	6
	Iron	2220 mg/Kg	1660 mg/Kg	29
	Lead	1.4 mg/Kg	2.4 mg/Kg	53
	Magnesium	114 mg/Kg	93.0 mg/Kg	20
	Manganese	19.5 mg/Kg	14.5 mg/Kg	29
	Nickel	1.5 mg/Kg	ND	Not calculable
	Potassium	84.5 mg/Kg	ND	Not calculable
	Sodium	27.6 mg/Kg	22.5 mg/Kg	20
	Vavadium	4.9 mg/Kg	3.4 mg/Kg	36
	Zinc	3.9 mg/Kg	2.7 mg/Kg	36
	Cyanide	0.10 mg/Kg	0.13 mg/Kg	26
WF016	Client ID	BKB00602	BKB00602D	
	Laboratory ID	RB583016	RB583017	
	Collection Date	5/21/96	5/21/96	
	Conecilon Date	' '		1
	Aluminum	5040 mg/Kg	6050 mg/Kg	18
		5040 mg/Kg 1.4 mg/Kg		18 38
	Aluminum	1 0 0	6050 mg/Kg 0.95 mg/Kg 5.9 mg/Kg	(
	Aluminum Arsenic	1.4 mg/Kg	0.95 mg/Kg	38
	Aluminum Arsenic Barium	1.4 mg/Kg 5.2 mg/Kg	0.95 mg/Kg 5.9 mg/Kg	38 13
	Aluminum Arsenic Barium Calcium Chromium	1.4 mg/Kg 5.2 mg/Kg 210 mg/Kg	0.95 mg/Kg 5.9 mg/Kg 195 mg/Kg 4.7 mg/Kg	38 13 7
	Aluminum Arsenic Barium Calcium	1.4 mg/Kg 5.2 mg/Kg 210 mg/Kg 4.5 mg/Kg 2.0 mg/Kg	0.95 mg/Kg 5.9 mg/Kg 195 mg/Kg 4.7 mg/Kg 2.3 mg/Kg	38 13 7 4
	Aluminum Arsenic Barium Calcium Chromium Copper	1.4 mg/Kg 5.2 mg/Kg 210 mg/Kg 4.5 mg/Kg	0.95 mg/Kg 5.9 mg/Kg 195 mg/Kg 4.7 mg/Kg	38 13 7 4 14
	Aluminum Arsenic Barium Calcium Chromium Copper Iron	1.4 mg/Kg 5.2 mg/Kg 210 mg/Kg 4.5 mg/Kg 2.0 mg/Kg 3430 mg/Kg	0.95 mg/Kg 5.9 mg/Kg 195 mg/Kg 4.7 mg/Kg 2.3 mg/Kg 3820 mg/Kg	38 13 7 4 14
	Aluminum Arsenic Barium Calcium Chromium Copper Iron Lead	1.4 mg/Kg 5.2 mg/Kg 210 mg/Kg 4.5 mg/Kg 2.0 mg/Kg 3430 mg/Kg 1.8 mg/Kg	0.95 mg/Kg 5.9 mg/Kg 195 mg/Kg 4.7 mg/Kg 2.3 mg/Kg 3820 mg/Kg 1.7 mg/Kg 111 mg/Kg	38 13 7 4 14 11 6
	Aluminum Arsenic Barium Calcium Chromium Copper Iron Lead Magnesium	1.4 mg/Kg 5.2 mg/Kg 210 mg/Kg 4.5 mg/Kg 2.0 mg/Kg 3430 mg/Kg 1.8 mg/Kg 97.6 mg/Kg 9.5 mg/Kg	0.95 mg/Kg 5.9 mg/Kg 195 mg/Kg 4.7 mg/Kg 2.3 mg/Kg 3820 mg/Kg 1.7 mg/Kg	38 13 7 4 14 11 6
	Aluminum Arsenic Barium Calcium Chromium Copper Iron Lead Magnesium Manganese	1.4 mg/Kg 5.2 mg/Kg 210 mg/Kg 4.5 mg/Kg 2.0 mg/Kg 3430 mg/Kg 1.8 mg/Kg 97.6 mg/Kg	0.95 mg/Kg 5.9 mg/Kg 195 mg/Kg 4.7 mg/Kg 2.3 mg/Kg 3820 mg/Kg 1.7 mg/Kg 111 mg/Kg 11.1 mg/Kg	38 13 7 4 14 11 6 13
	Aluminum Arsenic Barium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel	1.4 mg/Kg 5.2 mg/Kg 210 mg/Kg 4.5 mg/Kg 2.0 mg/Kg 3430 mg/Kg 1.8 mg/Kg 97.6 mg/Kg 9.5 mg/Kg 1.6 mg/Kg	0.95 mg/Kg 5.9 mg/Kg 195 mg/Kg 4.7 mg/Kg 2.3 mg/Kg 3820 mg/Kg 1.7 mg/Kg 111 mg/Kg 11.1 mg/Kg ND 26.2 mg/Kg	38 13 7 4 14 11 6 13 16 Not calculable
	Aluminum Arsenic Barium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Sodium	1.4 mg/Kg 5.2 mg/Kg 210 mg/Kg 4.5 mg/Kg 2.0 mg/Kg 3430 mg/Kg 1.8 mg/Kg 97.6 mg/Kg 9.5 mg/Kg 1.6 mg/Kg	0.95 mg/Kg 5.9 mg/Kg 195 mg/Kg 4.7 mg/Kg 2.3 mg/Kg 3820 mg/Kg 1.7 mg/Kg 111 mg/Kg 11.1 mg/Kg	38 13 7 4 14 11 6 13 16 Not calculable 9

Table XI

Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

WF017 Client ID S1800801 S1800801 RB592006 RB592006 S721796	α̈́	RPD		norganic Analytes	li i	SDG
Arsenic D.44 mg/kg D.25 mg/kg 25 mg/kg D.07 mg/kg D.08 mg/			RB592006	RB295001	Laboratory ID	WF017
Arsenic Barium	1	11	1760 ma/Ka	1580 ma/Ka	Aluminum	
Beryllium			:	,	•	
Beryllium	6	26	1		Barium	
Calcium)	0	0.07 mg/Kg	0.07 mg/Kg	Beryllium	
Chromium 3.9 mg/Kg 5.4 mg/Kg 13.6 mg/Kg 16 1120 mg/Kg 13.6 mg/Kg 16 1120 mg/Kg 13.6 mg/Kg 16 1120 mg/Kg 1310 mg/Kg 16 1120 mg/Kg 1310 mg/Kg 11 1120 mg/Kg 1310 mg/Kg 11 1120 mg/Kg 1310 mg/Kg 11 1120 mg/Kg 1320 mg/Kg 11 1230 mg/Kg 12 1230 mg/Kg 13 1230 mg/Kg 13 1230 mg/Kg 13 1230 mg/Kg 14 1230 mg/Kg 15.9 mg/Kg 36 12 1300 mg/Kg 13 1300 mg/Kg 13			0.68 mg/Kg		Cadmium	
Copper			• •			
Iron					1	
Lead 6.3 mg/kg 7.0 mg/kg 11			· · · · · · · · · · · · · · · · · · ·	1 - 1	1 ' '	
Magnesium			1		i	
Manganese 9.2 mg/Kg 11.3 mg/Kg 20						
Mercury			1		1 ~	
Selenium				1		
Silver			1		1	
Sodium						
Vanadium			1		Sodium	
Cyanide	}	9	1		Vanadium	
WF017 Client ID	6	36	15.9 mg/Kg	11.0 mg/Kg	Zinc	
Laboratory ID Collection Date Siz1/96	culable	Not calcu	ND	0.10 mg/Kg	Cyanide	
Collection Date 5/21/96 5/21/96			12B00101D	12B00101	Client ID	WF017
Aluminum			RB592008	RB592007	1	
Arsenic 5.3 mg/Kg 1.2 mg/Kg 126 Barium 18.0 mg/Kg 14.5 mg/Kg 22 Beryllium 0.20 mg/Kg ND Not calcula Cadmium 0.57 mg/Kg ND Not calcula Calcium 495 mg/Kg 552 mg/Kg 11 Chromium 19.9 mg/Kg 2.9 mg/Kg 74 Copper 6.3 mg/Kg 2.9 mg/Kg 74 Iron 16100 mg/Kg 8620 mg/Kg 61 Lead 4.7 mg/Kg 3.4 mg/Kg 32 Magnesium 170 mg/Kg 96.7 mg/Kg 32 Magnesium 170 mg/Kg 96.7 mg/Kg 4.9 mg/Kg 55 Manganese 7.7 mg/Kg 4.9 mg/Kg 55 Manganese 7.7 mg/Kg 0.04 mg/Kg			5/21/96	5/21/96	Collection Date	
Barium	6	96	8890 mg/Kg	25400 mg/Kg	Aluminum	
Beryllium	26	126	1.2 mg/Kg	5.3 mg/Kg	Arsenic	
Cadmium Calcium Calcium Calcium Chromium Copper Collection Date Colle			~ ~	18.0 mg/Kg	I	
Calcium			· -	1	l ·	
Chromium				1 1	•	
Copper 16.3 mg/kg 2.9 mg/kg 74 Iron						
Iron				1	1	
Lead						
Magnesium						
Manganese 7.7 mg/kg 4.9 mg/kg 44	_					
Mercury 0.04 mg/kg 0.04 mg/kg 0.04 mg/kg 0 Nickel 2.5 mg/kg ND Not calcular Not calcula			~ ~	1 1	*) •	
Nickel 2.5 mg/Kg ND Not calcular Not calc				1		
Potassium Sodium 49.8 mg/kg 33.4 mg/kg 39 39 39 31.2 mg/kg 33.4 mg/kg 34.5 35 35 35 35 35 35 35	-	_			, -	
Sodium					i i i	
Zinc 3.6 mg/Kg ND ND NOne	19	39	33.4 mg/Kg		Sodium	
Cyanide	15	45	26.5 mg/Kg	41.7 mg/Kg	Vanadium	
WF018 Client ID Laboratory ID Collection Date 30B00202 RB602002 RB602005 S/23/96 RB602005 S/23/96 5/23/96 5/23/96 5/23/96 5 5/23/96 5 5/23/96 5 5/23/96 5 5/23/96 5 5/23/96 5 5/23/96 5 5/23/96 5/23/96 5 5 5/23/96 5 5/23/96 5 5 5/23/96 5 5 5 5/23/96 5 5 5/23/96 6 4	3	3	3.7 mg/Kg	3.6 mg/Kg		
Laboratory ID RB602002 RB602005 5/23/96	one	None	ND	ND	Cyanide	
Collection Date 5/23/96 5/23/96 Lead 1.8 mg/Kg 1.9 mg/Kg 5			30B00202D	30B00202	Client ID	WF018
Lead 1.8 mg/Kg 1.9 mg/Kg 5 WF019 Client ID Laboratory ID Collection Date 30800502 MB047002 MB047005 6/4/96 30800502D MB047005 6/4/96 Lead 4.3 mg/Kg 3.9 mg/Kg 10 WF019 Client ID Laboratory ID 30800602 MB068005 MB068009 MB068009		I		RB602002	Laboratory ID	
WF019 Client ID			5/23/96	5/23/96	Collection Date	
Laboratory ID Collection Date MB047002 6/4/96 MB047005 6/4/96	5	5	1.9 mg/Kg	1.8 mg/Kg	Lead	
Collection Date 6/4/96 6/4/96				t	1	WF019
Lead 4.3 mg/Kg 3.9 mg/Kg 10 WF019 Client ID Laboratory ID 30B00602 MB068005 MB068009 30B00602D MB068009			l .		1 -	
WF019 Client ID 30B00602 30B00602D Laboratory ID MB068005 MB068009			6/4/96	6/4/96	Collection Date	
Laboratory ID MB068005 MB068009	10	10	3.9 mg/Kg	4.3 mg/Kg	Lead	
1 1			30B00602D	30B00602	Client ID	WF019
Collection Date 6/5/96 6/5/96				1	•	
			6/5/96	6/5/96	Collection Date	
Lead 4.5 mg/Kg 5.0 mg/Kg 11			E 0 #/-	4.5 04-	Load	

Table XI

SDG		Inorganic Analytes		RPD	
WF020	Client ID Laboratory ID Collection Date	•			
	Lead	7.8 mg/Kg	7.1 mg/Kg	9	
WF020	Client ID Laboratory ID Collection Date	33B00102 MB080013 6/6/96	33B00102D MB080015 6/6/96		
	Lead	7.2 mg/Kg	8.0 mg/Kg	11	

Table XII

Summary of Analytes Exceeding Instrument Calibration Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

	inorganic Analytes											
SDG	Date	Analyte	Crit	Qualifier								
			initial Calibration	Continuing Calibration %R								
WF016	All	All metals Cyanide	-	-	None None							
WF017	All	All metals Cyanide	·	<u>-</u>	None None							
WF018	All	Lead	•	-	None							
WF019	All	Lead	-	-	None							
WF020	All	Lead	-	-	None							

Notes:

r = correlation coefficient for initial calibrations

%R = percent recovery for continuing calibrations

- the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample because QC criteria were not met (validation "J").
- the analyte was not detected above the reported sample IDL However, the reported sample is approximate; UJ = the analyte concentration may not reliably be presumed to be less than the IDL value.
- R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Table XIII Summary of Method Blank Contamination Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

	,	Inorganic Analytes	
SDG	Analyte	Concentration	Associated Samples
WF016	Barium Iron Sodium Zinc	1.760 ug/L 31.120 ug/L 88.880 ug/L 16.920 ug/L	All water samples in SDG WF016
	Aluminum Calcium Copper Iron Sodium Thallium Zinc	3.309 mg/Kg 11.435 mg/Kg 0.249 mg/Kg 1.650 mg/Kg 5.214 mg/Kg 0.001 mg/Kg 1.342 mg/Kg	All soil samples in SDG WF016
	Cyanide	ND .	All samples in SDG WF016
WF017	Barium Iron Sodium Zinc	1.760 ug/L 31.120 ug/L 88.880 ug/L 16.920 ug/L	All water samples in SDG WF017
	Aluminum Calcium Cobalt Copper Sodium Zinc	3.309 mg/Kg 11.435 mg/Kg 0.249 mg/Kg 1.650 mg/Kg 5.214 mg/Kg 1.342 mg/Kg	All soil samples in SDG WF017
·	Cyanide	ND	All samples in SDG WF017
WF018	Lead	ND	All samples in SDG WF018
WF019	Lead	2.260 ug/L	All water samples in SDG WF019
WF020	Lead	ND	All samples in SDG WF020

Table XIV Summary of Field Blank Contamination Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		Inorganic	Analytes	
SDG	Parameter		Concentration	Qualifier
WF016	Client ID: Laboratory ID: Collection Date: Type:	BKR00201 RB583008 5/20/96 Rinsate		
	Barium Iron Lead Sodium Zinc Cyanide		1.8 ug/L 5.6 ug/L 2.3 ug/L 57.5 ug/L 3.0 ug/L 1.8 ug/L	1.7U ug/L' 5.6U ug/L' None 57.5U ug/L' 3.0U ug/L' None
WF016	Client ID: Laboratory ID: Collection Date: Type:	BKF00101 RB583009 5/20/96 Source Blank		
	Iron Sodium Zinc		6.4 ug/L 52.9 ug/L 3.8 ug/L	6.4U ug/L' 52.9U ug/L' 3.8U ug/L'
	Cyanide		ND	None
WF017	Client ID: Laboratory ID: Collection Date: Type:	31R00101 RB592020 5/22/96 Rinsate		
	Aluminum Barium Calcium Chromium Copper Iron Lead Magnesium Manganese Sodium Zinc Cyanide		86.5 ug/L 2.3 ug/L 503 ug/L 11.3 ug/L 1.4 ug/L 132 ug/L 0.60 ug/L 66.2 ug/L 3.8 ug/L 264 ug/L 7.8 ug/L ND	None 2.3U ug/L¹ None None None 132U ug/L¹ None None None None None None 7.8U ug/L¹ None
WF017	Client ID: Laboratory ID: Collection Date: Type:	12R00101 RB592022 5/21/96 Rinsate	·	
	Aluminum Barium Calcium Iron Lead Magnesium Sodium Zinc Cyanide		19.1 ug/L 1.8 ug/L 86.5 ug/L 15.6 ug/L 0.60 ug/L 30.5 ug/L 59.8 ug/L ND	None 1.8U ug/L' None 15.6U ug/L' None None None 3.8U ug/L' None

Table XIV Summary of Field Blank Contamination Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG	Parameter		Concentration	Qualifier
WF018	Client ID: Laboratory ID: Collection Date: Type:	30R00101 RB602010 5/23/96 Rinsate		The second secon
	Lead		ND	None
WF019	Client ID: Laboratory ID: Collection Date: Type:	30R00201 MB047010 6/4/96 Rinsate		
	Lead		ND	None
WF019	Client ID: Laboratory ID: Collection Date: Type:	30R00301 MB068001 6/5/96 Rinsate		
	Lead		ND	None
WF019	Client ID: Laboratory ID: Collection Date: Type:	30F00101 MB068003 6/5/96 Source Blank		
	Lead		2.1 ug/L	2.1U ug/L'
WF020	Client ID: Laboratory ID: Collection Date: Type:	33R00101 MB080016 6/6/96 Rinsate		
	Lead		1.6 ug/L	None
¹ = sa	imple result was modifie	ed based on an associated method b	lank concentration.	
Note: s∈		on report for the discrete qualifiers.		

The state of the s

Table XV Sample Event PARCC Summary Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton, Florida

SDG	Fraction	Precision'	Accuracy ²	Representativeness	Completeness (%)	Comparability
WF016	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metais	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF017	Volatiles	Acceptable	Acceptable	Acceptable	100 ³	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF018	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Lead	Acceptable	Acceptable	Acceptable	100	Acceptable
		<u> </u>				
WF019	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100 ³	Acceptable
	Lead	Acceptable	Acceptable	Acceptable	100	Acceptable
WF020	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
· 0 . .0	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Lead	Acceptable	Acceptable	Acceptable	100	Acceptable
		1				· ·

¹Cumulative of sampling and analytical components.

Notes:

All completeness is expressed as the ratio of number of sample results considered usable (i.e., not qualified as rejected) to the total number of sample results.

% = percent

²Analytical component.

³Samples results rejected for database purposes were not used in the completeness calculation.

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2C, Carlsbad, CA 92009 Phone: 619 634-0437 Fax: 619 634-0439

APPENDIX A

Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida PARCC Summary Tables

Final Version

5/1/96

APPENDIX A

Table of Contents

Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton, Florida

Table	Title	Page No.
 	Sample Delivery Group Versus Sample Identification	A-16
<u>Organi</u>	i <u>cs</u>	
IV V VI VII VIII IX	Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples Summary of Surrogate Recoveries Summary of Compounds Exceeding Instrument Calibration Summary of Method Blank Contamination Summary of Field Blank Contamination	A-21 A-25 A-29 A-33
Inorga	<u>nics</u>	
X XI XII XIII XIV	Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike and Laboatory Duplicate Samples Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples	A-42 A-50 A-51
ΧV	Sample Event PARCC Summary	A-58

¶e i

SDG#: WF006

Sample Delivery Group Versus Sample Identification

LDC#: 1779A

Project Name: NAS Whiting Field

Parameters/Analytical Method

1 Toject Haine.	MAS Writing Field			· · · · · · · · · · · · · · · · · · ·	i didilibleis/Al	Talylical Melliou			JOD#: 8532-20		
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide	TRPH	
01T00101	G8864001	ТВ	water	12-5-95	X						
01S00101	G8864002		soil	12-5-95	Х	Х	х	Х	x		
01500201	G8864003		soil	12-5-95	X	Х	х	X	×		
01800301	G8864004		soil	12-5-95	X	х	X	Х	×		
01S00401	G8864005		soil	12-5-95	X	Х	x	X	×		
01\$00501	G8864006		soil	12-5-95	X	Х	х	Х	×		
02S00401	G8864007	FD	soil	12-5-95	Х	Х	x	Х	×		
02\$00401D	G8864008	FD	soil	12-5-95	Х	Х	x	Х	×		
02\$00401DDL	G8864008DL		soil	12-5-95		Х					
02T00101	G8876001	ТВ	water	12-6-95	Х						
02\$00101	G8876002		soil	12-6-95	Х	Х	x	Х	×		
02\$00201	G8876003		soil	12-6-95	X	x	x	x	×		
02800301	G8876004		soil	12-6-95	Х	Х	X	Х	×		
02800501	G8876005		soil	12-6-95	Х	Х	x	Х	×		
09\$00101	G8876006		soil	12-6-95	X	. <u>х</u>	х	Х	×	Х	
09\$00201	G8876007		soil	12-6-95	Х	х	х	x	×	х	
09\$00401	G8876008		soil	12-6-95	Х	Х	X	X	x	Х	
09\$00501	G8876009		soil	12-6-95	Х	х	X	Х	×	х	
09800301	G8876010	FD	soil	12-6-95	Х	Х	х	Х	х	х	
09S00301D	G8876011	FD	soil	12-6-95	X	х	х	х	X	х	
01R00101	G8876012	R	water	12-6-95	Х	Х	x	Х	X	X .	
01F00101	G8876013	SB	water	12-6-95	Х	Х	х	X	. X	Х	
02S00401MS	G8864007MS	MS	soil	12-5-95	Х	х	х	Х	х		

		·····		·	Ta	ble I				
SDG#: WF006			S	ample Deli	LDC#: 1779A					
Project Name:		Parameters/Analytical Method							Job#: 8532-20	
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide	TRPH
02S00401MSD	G8864007MSD	MSD	soil	12-5-95	Х	х	X	Х	X	
09S00101MS	G8876006MS	MS	soil	12-6-95						х
09S00101DUP	G8876006MSD	DUP	soil	12-6-95						×

e I

SDG#: WF007 Sample Delivery Group Versus Sample Identification LDC#: 1779B

Project Name: NAS Whiting Field Parameters/Analytical Method Job#: 8532-20

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide	TRPH
10T00101	G8889001	TB	water	12-7-95	X	3104	, colleges/FCDs	INCIAIS	Cyaniue	INFR
10\$00101	G8889002	FD	soil	12-7-95	^x	X	x	X	X	
10S00101R	G8889002R	1	soil	12-7-95	^	^x	1 -	^		X
10S00101D	G8889003	FD	soil	12-7-95	X	x	x	X	x	
10S00401	G8889004			12-7-95	^ x	X				X
			soil 	 		† 	X	<u> </u>	X	X
10S00601	G8889005		soil	12-7-95	X	X	X	X	X	X
12\$00301	G8889006		soil	12-7-95	X	X	X	X	X	X
12500101	G8889007		soil	12-7-95	Х	×	х	x	x	×
12S00601	G8889008		soil	12-7-95	X	x	x	X	x	x
10R00101	G8889009	R	water	12-7-95	X	×	X	x	X	×
13T00101	G8895001	ТВ	water	12-8-95	Х					
13S00101	G8895002		soil	12-8-95	X	х	x	X	х	
13S00201	G8895003		soil	12-8-95	X	Х	х	Х	х	
13800301	G8895004		soil	12-8-95	Х	Х	x	Х	х	
13\$00401	G8895005		soil	12-8-95	Х	Х	Х	X	х	
13S00501	G8895006		soil	12-8-95	Х	X	x	Х	х	
14800101	G8895007	FD	soil	12-8-95	· X	X	х	Х	х	
14S00101D	G8895008	FD	soil	12-8-95	Х	Х	X	Х	х	
14S00201	G8895009		soil	12-8-95	Х	Х	х	Х	х	
14S00301	G8895010		soil	12-8-95	Х	х	×	X	Х	
10S00101MS	G8889002MS	MS	soil	12-7-95	Х		x	Х	х	Х
10S00101MSD	G8889002MSD	MSD	soil	12-7-95	х		x	Х	Х	Х
10S00101RMS	G8889002RMS	MS	soil	12-7-95		х				

					Ta	aule I				
SDG#: WF007			Sample Delivery Group Versus Sample Identification							
Project Name:	1	Parameters/Analytical Method							Job#: 8532-20	
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide	TRPH
10S00101RMSD	G8889002RMSD	MSD	soil	12-7-95		x		•		

SDG#: WF008

Sample Delivery Group Versus Sample Identification

LDC#: 1779C

Project Name: NAS Whiting Field

Parameters/Analytical Method

	1 11 11 11 11 11 11 11 11 11 11 11 11 1	· · · · · · · · · · · · · · · · · · ·	T	T			1 00011.00011.0001			
Cilent ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide	
15T00101	G8913001	ТВ	water	12-9-95	X					
15S02001	G8913002	FD	soil	12-9-95	x	x	· X	х	×	
15S02001D	G8913003	FD	soil	12-9-95	x	x	x	x	x	
15\$02101	G8913004		soil	12-9-95	X	x	x	x	x	
15S02201	G8913005		soil	12-9-95	X	x	x	x	x	
15802301	G8913006		soil	12-9-95	<u> </u>	X	x	x	. x	
15S02401	G8913007		soil	12-9-95	X	X	x	x	×	
15\$02501	G8913008		soil	12-9-95	X	x	x	x	x	
15801501	G8913009		soil	12-9-95	X	x	x	x	x	
15\$01401	G8913010		soil	12-9-95	X	x	x	x	x	
15801301	G8913011		soil	12-9-95	X	X	x	x	х	
15\$01601	G8913012		soil	12-10-95	x	X	x	×	х	
15801701	G8913013	FD	soil	12-10-95	X	x	x	x	X:	
15S01701D	G8913014	FD	soil	12-10-95	хх	x	×	X	×	
15\$01801	G8913015		soil	12-10-95	X	X	x	×	х	
15801901	G8913016		soil	12-10-95	: X	x	x	X	х	
15\$00901	G8913017		soil	12-11-95	x	X :	x	X	X	
15S00901RE	G8913017RE		soil	12-11-95		X		:	1.	
15R00101	G8913020	R	water	12-11-95	x	х	х	X	х	
15S02001MS	G8913002MS	MS	soil	12-9-95	x	x	х	x	х	
15S02001MSD	G8913002MSD	MSD	soil	12-9-95	X	х	X	х .	X	

SDG#: WF009

Sample Delivery Group Versus Sample Identification

LDC#: 1779D

Project Name: NAS Whiting Field

Parameters/Analytical Method

		1	T	1			T		1
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide
15T00201	G8914001	тв	water	12-11-95	x ·				·
15S00101	G8914002	FD	soil	12-11-95	x	х	х	X	х
15S00101R	G8914002R		soil	12-11-95		х			
15S00101D	G8914003	FD	soil	12-11-95	x	х	x	x	x
15S00201	G8914004		soil	12-11-95	X	Х	X	x	х
15S00301	G8914005		soil	12-11-95	x	Х	х	X	x
15S00501	G8914006		soil	12-11-95	X	х	X	X	х
15S00401	G8914007		soil	12-11-95	x	×	x	. X	x .
15S00601	G8914008		soil	12-11-95	X	Х	X	x	х
15S00701	G8914009		soil	12-11-95	X	х	х	x	x
15\$00801	G8914010		soil	12-11-95	x	Х	x	х	x
15S01201	G8914011		soil	12-11-95	Χ.	Х	×	X	x
15R00201	G8914012	R	water	12-11-95	x	X	х	x	х
15S01101	G8914013		soil	12-10-95	x	х	x	x	x
15\$01001	G8914014		soil	12-10-95	x	X	x	X	x
15S00101MS	G8914002MS	MS	soil	12-11-95	x	х	×	x	X
15S00101MSD	G8914002MSD	MSD	soil	12-11-95	x	х	x	X	x
15S00101RMS	G8914002RMS	мѕ	soil	12-11-95		×			
15S00101RMSD	G8914002RMSD	MSD	soil	12-11-95		х			

19

SDG#: WF010 Sample Delivery Group Versus Sample Identification

LDC#: 1779E

Project Name: NAS Whiting Field Parameters/Analytical Method Job#: 8532-20

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide
31500101	G8924001		soil	12-12-95	X	X	x	x	×
31\$00201	G8924002		soil	12-12-95	X	x	x	X	x
31500301	G8924003		soil	12-12-95	x	х	x	x	х
31\$00401	G8924004		soil	12-12-95	Х	X	x	X	×
31T00101	G8924005	TB	water	12-12-95	Х				
31R00101	G8924006	R	water	12-12-95	х	x	х	х	x
31T00201	G8938001	TB	water	12-13-95	Х				
31801501	G8938002	FD	soil	12-13-95	x	· x	х	X	x
31S01501D	G8938003	FD	soil	12-13-95	х	x	x	X	x
31\$01601	G8938004		soil	12-13-95	X	x	x	X	×
31S01701	G8938005		soil	12-13-95	X	X	x	Χ.	×
31S01801	G8938006		soil	12-13-95	X	x	x	x	×
31\$01901	G8938007		soil	12-13-95	X	X	X	x	x
31S01501MS	G8938002MS	MS	soil	12-13-95	X	х	х	X	×
31S01501MSD	G8938002MSD	MSD	soil	12-13-95	X	х	x	X	X

-		
	ie	

SDG#: WF11A Sample Delivery Group Versus Sample Identification LDC#: 1777A

Project Name: NAS Whiting Field Parameters/Analytical Method Job#: 8532-20

<u> </u>			Γ	T	···········		····	r			
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide	TRPH	
09W00101	RA903001	FD	water	1-5-96	Х	x	х	Х	X	x	
09W00101D	RA903002	FD	water	1-5-96	х	х	x	Х	X	x	
16W00101	RA903003		water	1-5-96	Х	х	x	х	х		
09W00101MS	RA903001MS	MS	water	1-5-96	Х	x	х	Х	x	x	
09W00101MSD	RA903001MSD	MSD	water	1-5-96	X	X	X	X	x	x	

*)*le 1

SDG#: WF11B Sample Delivery Group Versus Sample Identification

LDC#: 1777B

Project Name: NAS Whiting Field

Parameters/Analytical Method

		QC		Date						
Client ID #	Lab ID #	Type	Matrix	Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide	TRPH
12T00101	RA847001	ТВ	water	1-5-96	X					
10\$00201	RA847002	FD	soil	1-5-96	X	Х	x	X	х	x
10S00201DL	RA847002DL		soil	1-5-96		x				
10\$00201D	RA847003	FD	soil	1-5-96	X	x	x	X	×	×
10S00301	RA847004		soil	1-5-96	X	X	x	X	×	x
10S00301R	RA847004R		soil	1-5-96		x				
10S00501	RA847005		soil	1-5-96	X	X	x	X	×	×
12S00201	RA847006		soil	1-5-96	Х	X	x	Х	x	x (
12S00401	RA847007		soil	1-5-96	X	X	x	X	x	x
12S00501	RA847008		soil	1-5-96	Х	x	x	Х	x	x
12R00101	RA847012	R	water	1-5-96	X	X	х	Х	x	x
11T00101	RA847013	тв	water	1-6-96	X					·
11S00101	RA847014		soil	1-6-96	X	X	x	X	x	x
11S00201 .	RA847015		soil	1-6-96	X	X	x	X	×	x
11S00201DL	RA847015DL		soil	1-6-96			x			
11S00201R	RA847015R		soil	1-6-96	X					
11\$00501	RA847016		soil	1-6-96	X	Х	X	X	x	х
11800401	RA847017		soil	1-7-96	X	X	х	· X	х	х
11800301	RA847018		soil	1-7-96	X	Х	х	Х	х	x
10S00201MS	RA847002MS	мѕ	soil	1-5-96	х	X	х	X	Х	х
10S00201MSD	RA847002MSD	MSD	soil	1-5-96	X	х	х	Х	X	X

Table I

SDG#: WF012

Sample Delivery Group Versus Sample Identification

LDC#: 1777C Job#: 8532-20

Project Name: NAS Whiting Field

Parameters/Analytical Method

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/ PCBs	Metals	Cyanide	Lead	TCLP Metals
11S00601	RA855001	FD	soil	1-7-96						X	moture
11S00601D	RA855002	FD	soil	1-7-96						X	
11S00701	RA855003	1	soil	1-7-96						x	
11S00801	RA855004		soil	1-7-96						x	
11\$00901	RA855005		soil	1-7-96						X	
11\$01001	RA855006		soil	1-7-96	· · · · · · · · · · · · · · · · · · ·					Х	
11S01101	RA855007		soil	1-7-96						х	
11S01201	RA855008	1	soil	1-7-96						х	
11S01301	RA855009		soil	1-7-96						х	
31S00401	RA855010		soil	1-7-96	х	х	х	X	х		
31 S 00501	RA855011	FD	soil	1-7-96	Х	Х	х	х	х		
31S00501D	RA855012	FD	soil	1-7-96	X	Х	X	x	х		
31S00601	RA855013		soil	1-7-96	Х	Х	х	х	х		
31800701	RA855014		soil	1-7-96	X	х	х	X	х		
31S01001	RA855015		soil	1-7-96	X	X	Х	X	х		
31S01101	RA855016		soil	1-7-96	X	Х	х	X	x		
31S00901	RA855017		soil	1-7-96	Х	х	х	X	х		·
31S00801	RA855018		soil	1-7-96	х	х	х	X	. x		
31S01201	RA855019		soil	1-8-96	х	х	х	Х	X		
31S01201R	RA855019R		soil	1-8-96	х						
31S01301	RA855020		soil	1-8-96	х	х	Х	X	х		:
31R00201	RA855021	R	water	1-8-96	х	х	х	X	х		
31S00401	RA857001		soil	1-7-96							х

le ef

SDG#: WF012

Sample Delivery Group Versus Sample Identification

LDC#: 1777C

Project Name: NAS Whiting Field

Parameters/Analytical Method

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/ PCBs	Metals	Cyanide	Lead	TCLP Metals
31S00501	RA857002	FD	soil	1-7-96							X
31S00501D	RA857003	FD	soil	1-7-96							x
31S00601	RA857004		soil	1-7-96							x
31\$00701	RA847005		soil	1-7-96							х
31S01001	RA857006		soil	1-7-96							X
31801101	RA857007		soil	1-7-96							x
31S00901	RA857008		soil	1-7-96							х
31S00801	RA857009		soil	1-7-96							χ.Χ .
31\$01201	RA857010		soil	1-8-96							.X
31\$01301	RA857011		soil	1-8-96							. Wheels , it is an eigh
31S00501MS	RA855011MS	MS	soil	1-7-96	. X	х	x	X	x		
31S00501MSD	RA855011MSD	MSD	soil	1-7-96	х	х	x	х	х		X.44 × 5
31S00501MS	RA857002MS	MS	soil	1-7-96							x
31S00501MSD	RA857002MSD	MSD	soil	1-7-96							х

ichie I

SDG#: WF013 Sample Delivery Group Versus Sample Identification LDC#: 1777D

Project Name: NAS Whiting Field Parameters/Analytical Method Job#: 8532-20

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/ PCBs	Metals	Oue mide
	 	 				· · · · · · · · · · · · · · · · · · ·			Cyanide
16S00101	RA856001	FD	soil	1-8-96	X	X	X	X	X
16S00501	RA856002		soil	1-8-96	Х	X	X	X	X
16S00401	RA856003		soil	1-8-96	X	X	X	X	Х
16S00901	RA856004		soil	1-8-96	X	X	X	X	x
16S00901R	RA856004R		soil	1-8-96		X			
16S01501	RA856005		soil	1-8-96	x	x	x	X	x
16S00201	RA856006		soil	1-9-96	X	х	х	X	×
16\$00301	RA856007		soil	1-9-96	X	х	х	Х	х
16S00801	RA856008		soil	1-9-96	X	X	х	X	X
16S00801RE	RA856008RE		soil	1-9-96		X			
16S00601	RA856009		soil	1-9-96	X	X	x	X	x
16S00601DL	RA856009DL		soil	1-9-96		X			
16S01201	RA856010		soil	1-9-96	X	x	x	x *	х
16S01301	RA856011		soil	1-9-96	<u> </u>	x	x	X	x
BKS00301	RA856012		soil	1-9-96	x	X	х	X	×
BKS00101	RA856013		soil	1-9-96	X	x	х	X	x
16S01001	RA856014	FD	soil	1-9-96	X	Х	х	х	x
16S01001D	RA856015	FD	soil	1-9-96	x 👯	x	X	X	х
16T00101	RA856016	тв	water	1-9-96	x) take a		
16R00101	RA856017	R	water	1-9-96	X	X	X	X	x
16S00101D	RA856018	FD	soil	1-9-96	x	X	X	X	x
24T00101	RA871001	TB	water	1-10-96	x				
24\$00101	RA871002		soil	1-10-96	х	X	Х	X	х

bΙ

SDG#: WF013

Sample Delivery Group Versus Sample Identification

LDC#: 1777D

Project Name: NAS Whiting Field

Parameters/Analytical Method

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/ PCBs	Metals	Cyanide
16S01001MS	RA856014MS	мѕ	soil	1-9-96	Х	×	x	X	×
16S01001MSD	RA856014MSD	MSD	soil	1-9-96	x	х	×	x	х
24S00101MS	RA871002MS	MS	soil	1-10-96					×
24S00101MSD	RA871002MSD	MSD	soil	1-10-96					Х

Julie I

SDG#: WF014 Sample Delivery Group Versus Sample Identification

LDC#: 1777E

Project Name: NAS Whiting Field	Parameters/Analytical Method	Job#: 8532-20
---------------------------------	------------------------------	---------------

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide
BKR00101	RA870001	R	water	1-10-96	x	. x	×	X	×
BKT00101	RA870002	тв	water	1-10-96	X				
16S01401	RA870003		soil	1-10-96	Х	X	×	x	x
16S00701	RA870004		soil	1-10-96	х	х	x	×	×
16801101	RA870005		soil	1-10-96	Х	х	х	x	x
16S01701	RA870006		soil	1-10-96	х	х	х	х	х
16S01601	RA870007		soil	1-10-96	х	x	x	×	X
BKS00201	RA870008	FD	soil	1-10-96	X	х	X	x	x
BKS00201D	RA870009	FD	soil	1-10-96	, X	X	x	x	x
BKS00501	RA870010		soil	1-10-96	Х	X	X	×	х
BKS00401	RA870011		soil	1-10-96	х	X	х	х	х
31B00401	RA870012		soil	1-11-96	Х	X	х	x	х
31B00301	RA870013		soil	1-11-96	х	X	X	X	х
31B00201	RA870014	FD	soil	1-11-96	х	X	Х	X	. х
31B00201D	RA870015	FD	soil	1-11-96	X	x	X	X	x
31B00101	RA870016		soil	1-11-96	X	х	х	X	х
31B00501	RA870017		soil	1-11-96	x	x	×	X	X
31T00201	RA870018	ТВ	water	1-11-96	x			,	
BKS00201MS	RA870008MS	мѕ	soil	1-10-96	х	х	x	x	х
BKS00201MSD	RA870008MSD	MSD	soil	1-10-96	Х	X	х	X	х

ye l

SDG#: WF015 Sample Delivery Group Versus Sample Identification

LDC#: 1777F

Project Name: NAS Whiting Field

Parameters/Analytical Method

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides/PCBs	Metals	Cyanide
COR00101	RA908001	· R	water	1-18-96	X	×	X	x	x
COF00101	RA908002	SB	water	1-18-96	X	x	X	x	x
COT00101	RA908003	TB	water	1-18-96	X				
COS00101	RA908004	FD	soil	1-18-96	×	x	X	x	X
COS00101D	RA908005	FD	soil	1-18-96	Х	x	X	X	х
EOS00101	RA908006		soil	1-18-96	X	x	x	<u> </u>	х
POS00101	RA908007		soil	1-18-96	X	x	X	X	X
YOS00101	RA908008		soil	1-18-96	x	x	x	X	х
SOS00101	RA908009		soil	1-18-96	X	x	x	X	х
WOS00101	RA908010		soil	1-18-96	X	x	X	x	x
AOS00101	RA908011		soil	1-18-96	; · · ·X	x	x	x	x
COS00101MS	RA908004MS	MS	soil	1-18-96	x	x	х	x	χ
COS00101MSD	RA908004MSD	MSD	soil	1-18-96	Х	x	x	x	X

Table II Summary of Rejected Data (Organics) Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds SDG Fraction Sample Reason Compound No rejected results WF006 Volatiles All samples Semivolatiles All samples No rejected results Pesticides & PCBS All samples No rejected results Volatiles All samples No rejected results WF007 Semivolatiles All samples No rejected results Pesticides & PCBs Ail samples No rejected results Ali samples Volatiles No rejected results WF008 Semivolatiles All samples No rejected results Pesticides & PCBs All samples No rejected results WF009 Volatiles All samples No rejected results Semivolatiles 15S00201 1,4-Dichlorobenzene Low MS/MSD recoveries 1,2,4-Trichlorobenzene Low MS/MSD recoveries Acenaphthene Low MS/MSD recoveries Pyrene MS/MSD recoveries Pesticides & PCBs All samples No rejected results WF010 Volatiles All samples No rejected results Semivolatiles All samples No rejected results Pesticides & PCBs All samples No rejected results WF11A Volatiles All samples No rejected results Semivolatiles All samples No rejected results Pesticides & PCBs All samples No rejected results WF11B Volatiles All samples No rejected results Semivolatiles All samples No rejected results Pesticides & PCBs All samples No rejected results WF012 Volatiles Ali samples No rejected results Semivolatiles All samples No rejected results Pesticides & PCBs All samples No rejected results Volatiles WF013 All samples No rejected results Semivolatiles 16S00801 All compounds Low Surrogate recoveries Pesticides & PCBs All samples No rejected results WF014 Volatiles All samples No rejected results Semivolatiles All samples No rejected results Pesticides & PCBs All samples No rejected results WF015 Volatiles All samples No rejected results Semivolatiles All samples No rejected results Pesticides & PCBs COS00101 All compounds Low Surrogate recoveries SOS00101 All compounds Low Surrogate recoveries

Table III Summary of Rejected Data (Inorganics) Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		Inorganic An	alytes	
SDG	Fraction	Sample	Analyte	Reason
WF006	All metals Cyanide TRPH	All samples All samples All samples	No rejected results No rejected results No rejected results	
WF007	All metals Cyanide TRPH	Ali samples Ali samples Ali samples	No rejected results No rejected results No rejected results	-
WF008	All metals Cyanide	All samples All samples	No rejected results No rejected results	-
WF009	All metals Cyanide	All samples All samples	No rejected results No rejected results	:
WF010	All metals Cyanide	All samples All samples	No rejected results No rejected results	-
WF11A	All metals Cyanide TRPH	Ali samples Ali samples Ali samples	No rejected results No rejected results No rejected results	-
WF11B	All metals Cyanide TRPH	Ali samples Ali samples Ali samples	No rejected results No rejected results No rejected results	-
WF012	All metals All TCLP metals Cyanide	Ali samples Ali samples Ali samples	No rejected results No rejected results No rejected results	:
WF013	All metals Cyanide	All samples All samples	No rejected results No rejected results	-
WF014	Mercury	31B00301	Mercury	Low LCS % Recovery
	Cyanide	All samples	No rejected results	-
WF015	All metals	All samples	No rejected results	•
	Cyanide	All samples	No rejected results	

Table IV
Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates
Surface Soil Investigation, Phase IIB
NAS Whiting Field, Milton Florida

Organic	Compounds

			Crite	Criteria		covery		
SDG	Client ID	Compound	% Recovery	RPD	MS	MSD	RPD	Qualifier
WF006	02S00401	Volatiles	-	-	-	-	-	None
		Phenol	26-90	-	_	92	-	None
		4-Chloro-3-methylphenol	26-103	· •	-	104		None
	1	2,4-Dinitrotoluene	28-89		-	100	•	None
		Pyrene	35-142	-	29	30	-	None
	<u> </u>	Pesticides & PCBs	-	-	-		-	None
WF007	10S00101	Volatiles	-	-	-	-	•	None
		4-Chioro-3-methylphenol	26-103	-	111	-	- .	None
		Pesticides & PCBs	-	-	-	-	-	None
WF008	15\$02001	Volatiles	-	•	-	-	•	None
		1,4-Dichlorobenzene	28-104	≤27	-	14	142	None
		1,2,4-Trichlorobenzene	38-107	≤23	-	12	149	None
		Acenaphthene	-	≤19	-	-	96	None
		2,4-Dinitrotoluene	28-89	-	100	94	-	None
		Pyrene	35-142	≤36		6	67	None
		Pesticides & PCBs	-	-			<u>-</u>	None
VF009	15S00101	Volatiles	-	-	-	-	-	None
		2-Chlorophenol	25-102	≤50	16		110	None
		1,4-Dichlorobenzene	28-104	•	0	0	. -	R
		1,2,4-Trichlorobenzene	38-107	≤23	0	3	200	R
		Acenaphthene	31-137	≤19	0	9	200	R
		Pentachlorophenol	17-109	≤47	10	-	127	None
		Pyrene	35-142	-	0	0	-	Ř
		Pesticides & PCBs	I	•	-	-		None
VF009	15S00101R	2,4-Dinitrotoluene	28-89	-		95	•	UJ

T. 11V

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic	Compou	nds

		···		·				
			Crite	Criteria % Recovery				
SDG	Client ID	Compound	% Recovery	RPD	MS	MSD	RPD	Qualifier
WF010	31S01501	Volatiles		-	-	-	-	-
		4-Chloro-3-methylphenol . 2,4-Dinitrotoluene	26-103 28-89	- -	104 94	-		None None
		Pesticides & PCBs	-	-	-	-	-	-
WF11A	09W00101	Volatiles		-		-	-	None
		4-Chloro-3-methylphenol 4-Nitrophenol 2,4-Dinitrophenol Pentachlorophenol	23-97 10-80 24-96 96-103	- - -	104 117 106 120	107 119 107 119		None None None None
		Pesticides & PCBs	•	-		<u> </u>	•	None
WF11B	10S00201	Volatiles		-	-	-	. •	None
		Pyrene	.	≤36	! .	-	39	None
		Pesticides & PCBs		-		-		None
WF012	31S00501	Volatiles	•	_	-	_	-	None
		4-Nitrophenol	11-114	-	120	115	- .	None
		Pesticides & PCBs		_	. -	<u>.</u>	-	None
WF013	16S01001	Volatiles	-	•	_	-	•	None
		Phenol 2-Chlorophenol Pentachlorophenol	26-90 25-102 17-109	• •	• •	96 103 110	 -	U U U
		Pesticides & PCBs	<u> </u>	-	-	-	-	None
WF014	BKS00201	Volatiles	- 1	-	-	-	-	None
		Pentachlorophenol 4-Nitrophenol	17-109 11-114	•	133 -	136 132	- -	None None
		Pesticides & PCBs	1 . 1	-		-		None

Table IV

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic	Comp	pounds
---------	------	--------

			= 10 = 111				A CONTRACTOR OF THE STATE OF TH	4,4
			Criteria % Recove		% Recovery			
SDG	Client ID	Compound	% Recovery	RPD	MS	MSD	RPD	Qualifier
WF015	COS00101	Volatiles	-	-	-	-	•	None
		Semivolatiles		•	-	-	•	None
		Pesticides & PCBs	· ·	-	-	-	<u>-</u>	None

SDG		Organic Compounds		RPD
WF006	Client ID Laboratory ID Collection Date	02S00401 G8864007 12/5/95	02S00401D G8864008 12/5/95	
	Volatiles	ND	ND	-
	Semivolatiles	ND	ND	• .
	Dieldrin Alpha-chlordane Gamma-chlordane	8.3 5.6 3.5	8.0 5.1 2.9	4 9 19
WF006	Client ID Laboratory ID Collection Date	09S00301 G8876010 12/6/96	09S00301D G8876011 12/6/96	
	Acetone	ND	5 ug/Kg	Not calculable
	Semivolatiles	ND	ND	. -
	Pesticides & PCBs	ND	ND	•
WF007	Client ID Laboratory ID Collection Date	10S00101 G8889002 12/7/95	10S00101D G8889003 12/7/95	
	Volatiles	ND	ND	- -
	Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Bis(2-ethylhexyl)phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene Anthracene Carbazole Dibenz(a,h)anthracene Pesticides & PCBs	280 ug/Kg 660 ug/Kg 580 ug/Kg 340 ug/Kg 500 ug/Kg 200 ug/Kg 480 ug/Kg 360 ug/Kg 400 ug/Kg 180 ug/Kg 180 ug/Kg 370U ug/Kg 370U ug/Kg	1200 ug/Kg 2300 ug/Kg 1600 ug/Kg 1600 ug/Kg 1200 ug/Kg 1400 ug/Kg 1300 ug/Kg 900 ug/Kg 1000 ug/Kg 360 ug/Kg 340 ug/Kg 270 ug/Kg 170 ug/Kg	124 111 94 112 120 Not calculable 92 86 86 67 62 Not calculable Not calculable Not calculable
WF007	Client ID Laboratory ID Collection Date	14S00101 G8895007 12/8/95	14S00101D G8895008 12/8/95	
•	Acetone Methylene chloride	8 ug/Kg 6 ug/Kg	ND ND	Not calculable Not calculable
	Semivolatiles	ND	ND	-
	Pesticides & PCBs	ND	ND	

SDG	0	rganic Compounds		RPD
WF008	Client ID Laboratory ID Collection Date	15S02001 G8913002 12/9/95	15S02001D G8913003 12/9/95	
	Acetone Methylene chloride	5 ug/Kg ND	ND 5 ug/Kg	Not calculable Not calculable
	Semivolatiles	ND	ND	•
	Pesticides & PCBs	ND	ND	•
WF008	Client ID Laboratory ID Collection Date	15S01701 G8913013 12/10/95	15S01701D G8913014 12/10/95	
	Acetone	6 ug/Kg	4 ug/Kg	40
	Semivolatiles	ND	ND	-
	Pesticides & PCBs	ND	ND	-
WF009	Client ID Laboratory ID Collection Date	15S00101 G8914002 12/11/95	15S00101D G8914003 12/11/95	
	Acetone	6 ug/Kg	7 ug/Kg	15
	Bis(2-ethylhexyl)phthalate	ND	1700 ug/Kg	Not calculable
	Pesticides & PCBs	ND	ND	-
WF010	Client ID Laboratory ID Collection Date	31S01501 G8938002 12/13/95	31S01501D G8938003 12/13/95	
	Acetone	ND	5 ug/Kg	Not calculable
	Semivolatiles	ND	ND	•
	Pesticides & PCBs	ND	ND	<u> </u>
WF11A	Client ID Laboratory ID Collection Date	09W00101 RA903001 1/5/96	09W00101D RA903002 1/5/96	
	Toluene	10U ug/L	1 ug/L	Not calculable
	Semivolatiles	ND	ND	-
	Pesticides & PCBs	ND	ND	-
				L

SDG	C	RPD		
WF11B	Client ID Laboratory ID Collection Date	10S00201 RA847002 1/5/96	10S00201D RA847003 1/5/96	
	Acetone	29 ug/Kg	20 ug/Kg	37
	2-Hexanone	11U ug/Kg	4 ug/Kg	Not calculable
	Phenanthrene	68 ug/Kg	310 ug/Kg	128
	Di-n-butylphthalate	46 ug/Kg	380U ug/Kg	Not calculable
	Fluoranthene	160 ug/Kg	420 ug/Kg	90
	Pyrene	170 ug/Kg	290 ug/Kg	52
	Butylbenzylphthalate	57 ug/Kg	380U ug/Kg	Not calculable
	Benzo(a)anthracene	87 ug/Kg	190 ug/Kg	74
	Chrysene	120 ug/Kg	220 ug/Kg	59
	Bis(2-ethylhexyl)phthalate	3200 ug/Kg	140 ug/Kg	183
	Benzo(a)fluoranthene	150 ug/Kg	200 ug/Kg	28
	Benzo(k)fluoranthene	110 ug/Kg	210 ug/Kg	62
	Benzo(a)pyrene	95 ug/Kg	150 ug/Kg	45 4
	Indeno(1,2,3-cd)pyrene	58 ug/Kg 380U ug/Kg	56 ug/Kg 40 ug/Kg	Not calculable
	Acenaphthene Anthracene	380U ug/Kg	40 ug/Kg 54 ug/Kg	Not calculable
		380U ug/Kg	84 ug/Kg	Not calculable
	Carbazole	3800 tg/Rg	54 dg/1(g	Not calculable
•	4,4'-DDT	7.0 ug/Kg	8.9 ug/Kg	24
	Arocior 1254	340 ug/Kg	390 ug/Kg	14
WF012	Client ID	31\$00501	31S00501D	
	Laboratory ID	RA855011	RA855012	
	Collection Date	1/7/96	1/7/96	
	Acetone	9 ug/Kg	8 ug/Kg	12
	Semivolatiles	ND	ND	-
	Pesticides & PCBs	ND	ND	-
WF013	Client ID	16S00101	16S00101D	
WF013		RA856001	RA856018	
	Laboratory ID Collection Date	1/8/96	1/8/96	
	Collection Date	1/0/90	1/6/90	
	Acetone	4 ug/Kg	9 ug/Kg	77
	Bis(2-ethylhexyl)phthalate	45 ug/Kg	380U ug/Kg	Not calculable
	4,4'-DDE	3.2 ug/Kg	2.0 ug/Kg	46
	4,4'-DDT	3.8 ug/Kg	2.7 ug/Kg	34
WF013	Client ID	16S01001	16S01001D	
41013	Laboratory ID	RA856014	RA856015	
	Collection Date	1/9/96	1/9/96	
	Conscion Date	, ,		
	Acetone	14 ug/Kg	4 ug/Kg	111
	Bis(2-ethylhexyl)phthalate	60 ug/Kg	58 ug/Kg	3
	Dieldrin	33 ug/Kg	60 ug/Kg	58
	4,4'-DDE	13 ug/Kg	22 ug/Kg	51
	4,4'-DDT	6.4 ug/Kg	9.0 ug/Kg	34
	Alpha-chlordane	6.8 ug/Kg	12 ug/Kg	55
	Gamma-chlordane	4.0 ug/Kg	7.9 ug/Kg	66
	Aroclor 1260	48 ug/Kg	110 ug/Kg	78

SDG		Organic Compounds		RPD
WF014	Client ID Laboratory ID Collection Date	BKS00201 RA870008 1/10/96	BKS00201D RA870009 1/10/96	
	Acetone	8 ug/Kg	4 ug/Kg	67
	Bis(2-ethylhexyl)phthalate	370U ug/Kg	45 ug/Kg	Not calculable
	Pesticides & PCBs	ND	ND	-
WF014	Client ID Laboratory ID Collection Date	31B00201 RA870014 1/11/96	31B00201D RA870015 1/11/96	
	Acetone	3 ug/Kg	11U ug/Kg	Not calculable
	Bis(2-ethylhexyl)phthalate	370U ug/Kg	48 ug/Kg	Not calculable
	Pesticides & PCBs	ND	ND	-
WF015	Client ID Laboratory ID Collection Date	COS00101 RA908004 1/18/96	COS00101D RA908005 1/18/96	
	Acetone	22 ug/Kg	12U ug/Kg	Not calculable
	Semivolatiles	ND	ND	
	Pesticides & PCBs	ND	ND	•

Table VI Summary of Surrogate Recoveries Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		Organ	nic Compounds			
SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier
WF006	All samples	Volatiles	All within QC limits	-	-	None
	All samples	Semivolatiles	All within QC limits	<u>-</u> ·		None
	All samples	Pesticides & PCBs	All within QC limits	-		None
WF007	All samples	Volatiles	All within QC limits	-	-	None
	All samples	Semivolatiles	All within QC limits	-	-	None
	10R00101	Pesticides & PCBs Decachlorobiphenyl	54	60-150	11	UJ (all compounds)
WF008	All samples	Volatiles	All within QC limits	_	-	None
	All samples	Semivolatiles	All within QC limits	•	-	None
	15\$02501	Pesticides & PCBs Decachlorobiphenyl	54	60-150	1	UJ (all compounds)
WF009	All samples	Volatiles	All within QC limits	·		None
	All samples	Semivolatiles	All within QC limits			None
	All samples	Pesticides & PCBs	All within QC limits	-		None
WF010	All samples	Volatiles	All within QC limits	-		None
	All samples	Semivolatiles	All within QC limits		-	None
	31500101	Pesticides & PCBs Tetrachloro-m-xylene Tetrachloro-m-xylene	57 56	60-150 60-150	1	UJ/J (all compounds)

Table VI Summary of Surrogate Recoveries Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Who Winding Fleid, Mintol Florida							
Organic Compounds							
SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier	
WF11A	All samples	Volatiles	All within QC limits	· •	-	None	
	All samples	Semivolatiles	All within QC limits	•		None	
	09W00101	Pesticides & PCBs Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl	56 50 58	60-150 60-150 60-150	3	UJ (all compounds) UJ (all compounds)	
	16W00101	Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl	51 45 40	60-150 60-150 60-150		UJ (all compounds)	
WF11B	All samples	Volatiles	All within QC limits	•	-	None	
,	All samples	Semivolatiles	All within QC limits	-	-	None	
·	12R00101 10S00201 10S00301 11S00201	Pesticides & PCBs Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl	33 29 56 55 45 42 50	60-150 60-150 60-150 60-150 60-150 60-150	4	UJ (all compounds) UJ/J (all compounds) UJ/J (all compounds) UJ/J (all compounds)	
WF012	All samples	Volatiles	All within QC limits	<u>-</u>	-	None	
	All samples	Semivolatiles	All within QC limits	-	-	None	
	31R00201 31S00901 31S01201	Pesticides & PCBs Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl	54 43 45 40 48 50	60-150 60-150 60-150 60-150 60-150 60-150	4	UJ (all compounds) UJ/J (all compounds) UJ/J (all compounds)	
* -	31S01301	Decachlorobiphenyl	46	60-150	L	UJ (all compounds)	

Table VI

Summary of Surrogate Recoveries Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds

SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier
WF013	All samples	Volatiles	All within QC limits	-	-	None
		Semivolatiles				
	16S00801	Nitrobenzene-d5	3	23-120	1	l a
		2-Fluorobiphenyl	3	30-115	ļ	1
		Terphenyl-d14	4	18-137	1	i
		Phenol-d5	2	24-113		
	į	2-Fluorophenol	2	25-121		1
		2,4,6-Tribromophenol	3	19-122		
	1	2-Chlorophenol-d4	3	20-130		<u> </u>
		1,2-Dichlorobenzene-d4	2	20-130		
		Pesticides & PCBs				
	16R00101	Decachlorobiphenyl	58	60-150	8	UJ (all compounds)
	16S00101D	Tetrachloro-m-xylene	22	60-150		UJ/J (all compounds)
		Tetrachloro-m-xylene	21	60-150		
	16S00301	Tetrachloro-m-xylene	57	60-150		UJ/J (all compounds)
		Decachlorobiphenyl	57	60-150		1
	1	Decachlorobiphenyl	54	60-150		j
	16S01001	Decachlorobiphenyl	44	60-150		UJ/J (all compounds)
	ł	Decachlorobiphenyl	41	60-150		
	16S01201	Tetrachloro-m-xylene	55	60-150		UJ/J (all compounds)
	16S01301	Decachlorobiphenyl	55	60-150	1	UJ/J (all compounds)
		Decachlorobiphenyl	55	60-150	1	1
	24S00101	Tetrachloro-m-xylene	48	60-150		UJ (all compounds)
		Tetrachloro-m-xylene	46	60-150	1	
	i	Decachlorobiphenyl	41	60-150		
	4	Decachlorobiphenyl	43	60-150		
	BKS00101	Tetrachloro-m-xylene	56	60-150		UJ (all compounds)
WF014	All samples	Volatiles	All within QC limits	-		None
	All samples	Semivolatiles	All within QC limits	•	-	None
		Pesticides & PCBs				
	BKR00101	Decachlorobiphenyl	43	60-150	1 1	UJ (all compounds)
	514100101	Decachlorobiphenyl	39	60-150	1	(an compositos)

Table VI Summary of Surrogate Recoveries Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds

SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier
WF015	All samples	Volatiles	All within QC limits	-	-	None
	All samples	Semivolatiles	All within QC limits	-	-	None
		Pesticides & PCBs			1	
	COR00101	Decachlorobiphenyl	55	60-150	5	UJ (all compounds)
	AOS00101	Tetrachloro-m-xylene	55	60-150		UJ/J (all compounds)
		Decachlorobiphenyl	51	60-150		
		Decachlorobiphenyl	48	60-150		UJ (all compounds
	COS00101D	Tetrachloro-m-xylene	26	60-150	1	
		Tetrachloro-m-xylene	24	60-150		UJ/J (all compounds)
	WOS00101	Tetrachloro-m-xylene	39	60-150		
		Tetrachloro-m-xylene	37	60-150		
		Decachlorobiphenyl	41	60-150		
		Decachlorobiphenyl	43	60-150		
	YOS00101	Tetrachloro-m-xylene	37	60-150		UJ (all compounds)
:		Tetrachloro-m-xylene	36	60-150		
	COS00101	Tetrachloro-m-xylene	7	60-150	2	R (ND compounds)
		Tetrachloro-m-xylene	7	60-150		
	SOS00101	Tetrachloro-m-xylene	2	60-150		R (ND compounds)
	4	Tetrachloro-m-xylene	1	60-150		1
		Decachlorobiphenyl	15	60-150		
		Decachlorobiphenyl	16	60-150		

Notes: J = estimated value

UJ = undetected, but number that is reported as the quantification limit is an estimated value.

		Orga 	nic Compounds			
SDG	Date	Compound	Crite	eria	Qualifier	
			Initial Calibration %RSD	Continuing Calibration %D		
WF006	All	Volatiles	-	-	None	
	12/7/96	2,4-Dinitrophenol	-	33.1	w	
	12/8/96	2,4-Dinitrophenol		27.0	ΩJ	
	12/11/96	Diethylphthalate	•	30.1	UJ	
	12/12/96	Diethylphthalate	-	27.1	UJ	
	11/30/95	Alpha-BHC	21.7	-	เม	
	11/30/95	Alpha-BHC	20.3	-	W	
WF007	Ail	Volatiles	-	-	None	
	12/12/96	Dimethylphthalate	-	27.1	ບນ	
	12/15/96	Nitrobenzene Pentachiorophenol	-	25.6 29.6	ນ ນ	
	12/15/96	Nitrobenzene 2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol Pentachiorophenol Benzo(k)fluoranthene	- - - -	30.8 41.8 30.1 29.8 26.5	77/7 77 73 73	
	All	Pesticides & PCBs	<u>-</u>	-	None	
WF008	All	Volatiles	-	•	None	
	12/15/95	Nitrobenzene Pentachlorophenol	<u>-</u>	25.6 29.6	nn nn	
	12/31/95	2.4-Dinitrophenol 4-Nitrophenol Pentachlorophenol 3,3'-Dichlorobenzidine Benzo(b)fluoranthene	- · · · · · · · · · · · · · · · · · · ·	42.0 27.3 34.8 25.9 27.7	กา กา กา กา	
	11/30/95	Alpha-BHC	21.7	-	υJ	
	11/30/95	Alpha-BHC	20.3	-	UJ	
WF009	All	Volatiles	-	-	None	
	12/15/95	Nitrobenzene Pentachlorophenol	-	25.6 29.6	UJ UJ	
	12/31/95	2,4-Dinitrophenol 4-Nitrophenol Pentachlorophenol 3,3'-Dichlorobenzidine Benzo(b)fluoranthene	- - - -	42.0 27.3 34.8 25.9 27.7	m m m	
	All	Pesticides & PCBs	-	•	None	

Organic	Compounds

SDG	Date	Compound	Crite	eri a	Qualifier	
			Initial Calibration %RSD	Continuing Calibration %D		
WF010	All	Volatiles	-	-	None	
	12/27/95	4-Nitrophenol		28.1	UJ	
		Benzo(b)fluoranthene	•	31.4	UJ	
		indeno(1,2,3-cd)pyrene	•	32.8	w	
	11/30/95	Alpha-BHC	21.7	-	UJ	
	11/30/95	Alpha-BHC	20.3	-	UJ	
WF11A	All	Volatiles	-	-	None	
	All	Semivolatiles	-	-	None	
	1/10/96	Endosulfan I	22	-	UJ	
WF11B	1/10/96	Acetone	+	40.0	UJ/J	
–		2-Butanone		37.3	บม	
		4-Methyl-2-pentanone	-	37.7	UJ	
		2-Hexanone	- !	41.0	UJ/J	
	1/11/96	Trichloroethene	•	27.7	UJ	
	1	2-Hexanone	•	50.9	UJ/J	
		1,1,2,2-Tetrachloroethane	•	34.2	ບນ	
	1/12/96	2-Hexanone	-	48.4	UJ/J	
	1/10/96	Endosulfan I	22	• •	บม	
WF012	1/11/96	Trichloroethene	-	27.7	บม	
		2-Hexanone	-	50.9	M	
		1,1,2,2-Tetrachloroethane	-	34.2	υJ	
	1/12/96	2-Hexanone	-	48.4	UJ	
	1/13/96	Chioromethane		27.2	UJ	
		Vinyl chloride	•	27.2	UJ	
		Acetone		68.1	UJ/J	
		2-Butanone	•	69.9	UJ	
	1	1,2-Dichloroethane		29.6	UJ.	
		4-Methyl-2-pentanone	-	31.4	ບJ	
	1/15/96	Chloroethane	· -	26.3	ບນ	
		Acetone	-	51.7	UJ/J	
	1	2-Butanone	•	40.8	UJ	
		1,2-Dichloroethane	-	35.4	UJ	
	All	Semivolatiles	-		None	
	1/17/96	Endosulfan sulfate	24.0	1	UJ	

Organi	ic Com	pounds
--------	--------	--------

SDG	Date	Compound	Crit	eria	Qualifier
			initial Calibration %RSD	Continuing Calibration %D	
WF013	1/15/96	1,1-Dichloroethene	33.9	<u>-</u>	UJ
		Carbon disulfide	32.8	-	UJ -
	1/17/96	2-Hexanone	41.7	-	UJ
	1/13/96	Chioromethane	-	27.2	UJ
		Vinyl chloride	-	27.2	UJ
		Acetone	•	68.1	UJ/J
		2-Butanone	-	69.9	UJ
		1,2-Dichloroethane	-	29.6	UJ
		4-Methyl-2-pentanone	-	31.4	UJ
	1/15/96	Chloroethane	-	26.3	IJ
		Acetone	•	51.7	UJ/J
	1	2-Butanone	-	40.8	UJ
		1,2-Dichloroethane	•	35.4	บม
	1/18/96	2-Hexanone	-	27.5	UJ
	1/22/96	Chloromethane	-	41.8	UJ
		Vinyl chloride	-	37.1	UJ
	ļ	Chloroethane	-	41.7	UJ
		Acetone	•	31.7	UJ/J
		Carbon disulfide	•	25.8	UJ
		2-Hexanone	-	38.4	υJ
	1/19/96	Benzo(g,h,i)perylene	•	29.0	ΩΊ/J
	1/17/96	Endosulfan sulfate	24.0	-	UJ
WF014	1/15/96	1,1-Dichloroethene	33.9	+	นม
		Carbon disulfide	32.8	•	nı
	1/14/96	Acetone	31.3	-	UJ/J
	1/16/96	Acetone	-	46.7	UJ/J
		Methylene chloride	-	32.3	UJ
		2-Butanone	-	54.2	UJ
		4-Methyl-2-pentanone		31.9	UJ
		2-Hexanone	-	60.0	UJ
	1/12/96	Acetone	-	36.7	na\n
	1/20/96	Benzo(k)fluoranthene	•	30.7	UJ/J
	1/31/96	4-Nitrophenol	-	38.2	J. J. J. UJ
	J	4-Nitroaniline	-	27.9	UJ
	1	Pentachlorophenol	-	29.4	UJ
		Benzo(g,h,i)perylene	-	35.3	Ω 1 /J
	1/17/96	Endosulfan sulfate	24.0		υJ

Organic Compounds

SDG	Date	Compound	Crite	eria	Qualifier
			Initial Calibration %RSD	Continuing Calibration %D	
WF015	1/17/96	2-Hexanone	41.7	•	บง
	1/19/96	Chloromethane	-	47.1	UJ
	I	Vinyl chloride	-	39.0	UJ
		Chloroethane	•	54.7	UJ
		Acetone	-	25.8	UJ/J
		Carbon disulfide	-	45.5	· UJ
	1/31/96	4-Nitroaniline		27.9	ບຸງ
		Pentachiorophenol	•	29.4	UJ
		Benzo(g,h,i)perylene	<u>-</u>	35.3	w
	2/2/96	2-Chiorophenol	•	26.6	UJ
		2-Nitroaniline	-	25.1	UJ
		2,4-Dinitrophenol	•	25.7	UJ
	1	4-Bromophenyl-phenylether	•	27.2	UJ
		Hexachlorobenzene	-	35.4	UJ
	2/1/96	4-Bromophenyl-phenylether		28.4	UJ
		Hexachiorobenzene		35.0	UJ
	1/30/96	Endosulfan sulfate	21.0	-	UJ

Notes:

%RSD = percent Relative Standard Deviation for initial calibrations

%D = percent Difference for continuing calibrations

J = the compound was positively identified; the associated numerical value is the approximate concentration of the compound in the sample, either because its concentration was lower than the QL (laboratory "J" flag), or because QC criteria were not met (validation "J").

UJ = the compound was not detected above the reported sample QL However, the reported sample QL is approximate; the compound concentration may not reliably be presumed to be less than the QL value.

R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the compound cannot be verified.

Table VIII

A STATE OF THE STA

Summary of Method Blank Contamination Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

	Or	ganic Compounds	
SDG	Compound	Concentration	Associated Samples
WF006	Volatiles	ND	All samples in SDG WF006
	Pesticides & PCBs	ND	All samples in SDG WF006
	Diethylphthalate	4 ug/L	01R00101 01F00101
	Diethylphthalate	150 ug/Kg	02S00101 02S00201 02S00301 02S00501 09S00101 09S00201 09S00401 09S00501
WF007	Volatiles	ND	All samples in SDG WF007
	Pesticides & PCBs	ND	All samples in SDG WF007
	Diethylphthalate	2 ug/L	10R00101
	Di-n-octylphthalate	230 ug/Kg	13S00101 13S00301 13S00401 13S00501 14S00101D 14S00301
	Di-n-octylphthalate	180 ug/Kg	13S00201 14S00101
WF008	Volatiles	ND	All samples in SDG WF008
	Pesticides & PCBs	ND	All samples in SDG WF008
	Di-n-butylphthalate	280 ug/Kg	15S02001D 15S02101 15S02201 15S01701 15S01701D
WF009	Volatiles	ND	All samples in SDG WF009
	Semivolatiles	ND	All samples in SDG WF009
	Pesticides & PCBs	ND	All samples in SDG WF009
WF010	Volatiles	ND	All samples in SDG WF010
	Di-n-butylphthalate	320 ug/Kg	31S00101 31S00201 31S00301 31S01401 31S01501 31S01501D 31S01601 31S01701 31S01801 31S01901
	Postinidas & PCPs	ND	All complex in CDC MEGGO

ND

All samples in SDG WF010

Pesticides & PCBs

		rganic Compounds	
SDG	Compound	Concentration	Associated Samples
WF11A	Volatiles	ND	All samples in SDG WF11A
	Bis(2-ethylhexyl)phthalate	3 ug/L	09W00101
			09W00101D
			16W00101
	Pesticides & PCBs	ND	All samples in SDG WF11A
/F11B	Styrene	1 ug/L	11T00101
	Xylenes (total)	2 ug/L	
	•		·
	Acetone	7 ug/Kg	10S00301
			10S00501 11S00101
			11S00201
			12S00201
			12S00401 12S00501
			12300301
		A = 0.4 =	44000040
	Acetone	4 ug/Kg	11S00201R 11S00301
			11S00401
			11S00501
	Bis(2-ethylhexyl)phthalate	3 ug/L	12R00101
	Di-n-butylphthalate	69 ug/Kg	10S00301
	Bis(2-ethylhexyl)phthalate	37 ug/Kg	10S00501
			12S00201
	Di-n-butylphthalate	100 ug/Kg	10S00201
			10S00201DL
			10S00201D
			10S00301R 12S00401
			12S00501
			11S00101
	Pesticides & PCBs	ND	All samples in SDG WF11B
VF012	Xylenes (total)	2 ug/L	31R00201
	Styrene	1 ug/L	
	Acetone	7.ug/Kg	31S00801
			31S01201
	·		
	Acetone	4 ug/Kg	31S00401
			31S00501
		[31S00501D
			L 31S01201B
		·	31S01201R
	Semiyolatiles	ND	
	Semivolatiles Pesticides & PCBs	ND ND	All samples in SDG WF12 All samples in SDG WF12
WF013	Pesticides & PCBs	ND	All samples in SDG WF12 All samples in SDG WF12
WF013			All samples in SDG WF12

Table VIII Summary of Method Blank Contamination Surface Soil Investigation, Phase IIB

NAS Whiting Field, Milton Florida

	Organic Compounds					
SDG	Compound	Concentration	Associated Samples			
WF013	Bis(2-ethylhexyl)phthalate	34 ug/Kg	16S00101 16S00501 16S00401 16S00901			
	Bis(2-ethylhexyl)phthalate	46 ug/Kg	16S00901R 16S00201			
	Bis(2-ethylhexyl)phthalate	76 ug/Kg	16S00301 16S00801 16S00601 16S00601DL 16S01201 16S01301 BKS00301 16S01001			
	Pesticides & PCBs	ND	All samples in SDG WF13			
WF014	Toluene	1 ug/Kg	31B00301			
	Bis(2-ethylhexyl)phthalate	38 ug/Kg	31B00501			
	Pesticides & PCBs	ND	All samples in SDG WF14			
WF015	Volatiles	ND	All samples in SDG WF15			
	Pesticides & PCBs	ND	All samples in SDG WF15			
	Bis(2-ethylhexyl)phthalate	1 ug/L	COR00101 COF00101			

		Organic Co	mpounas	Organic Compounds					
SDG	Parameter		Concentration	Qualifier					
WF006	Client ID: Laboratory ID: Collection Date: Type:	01T00101 G8864001 12/5/95 Trip Blank							
	Acetone		9 ug/L	None					
WF006	Client ID: Laboratory ID: Collection Date: Type:	02T00101 G8876001 12/6/95 Trip Blank							
	Acetone		7 ug/L	None					
WF006	Client ID: Laboratory ID: Collection Date: Type:	01R00101 G8876012 12/6/95 Rinsate							
	Acetone		11 ug/L	None					
	Di-n-butylphthalate Bis(2-ethyhexyl)phth	nalate	8 ug/L 2 ug/L	None None					
	Pesticides & PCBs		ND ND	None					
WF006	Client ID: Laboratory ID: Collection Date: Type:	01F00101 G8776013 12/6/95 Source Blank							
	Acetone		12 ug/L	None					
`	2-Butanone Di-n-butylphthalate		2 ug/L 15 ug/L	None None					
	Pesticides & PCBs		ND	None					
WF007	Client ID: Laboratory ID: Collection Date: Type:	10T00101 G8889001 12/7/95 Trip Blank							
	Acetone		8 ug/L	None					
WF007	Client ID: Laboratory ID: Collection Date: Type:	13T00101 G8895001 12/8/95 Trip Blank							
	Acetone		4 ug/L	None					
WF007	Client ID: Laboratory ID: Collection Date: Type:	10R00101 G8889009 12/7/95 Rinsate							
	Volatiles		ND	None					
	Di-n-butylphthalate		15 ug/L	10U ug/L¹					
	Pesticides & PCBs		ND	None					

Company of the second s

	<u> </u>	Organic Co	mpounds	
SDG	Parameter		Concentration	Qualifier
WF008	Client ID: Laboratory ID: Collection Date: Type:	15T00101 G8913001 12/9/95 Trip Blank		
	Acetone		8 ug/L	None
WF008	Client ID: Laboratory ID: Collection Date: Type:	15R00101 G8913020 12/11/95 Rinsate		
	Volatiles		ND	None
	Di-n-butylphthalate	•	3 ug/L	10U ug/L'
	Pesticides & PCBs		ND	None
WF009	Client ID: Laboratory ID: Collection Date: Trip Blank:	15T00201 G8914001 12/11/95 Trip Blank		
	Acetone		19 ug/L	None
WF009	Client ID: Laboratory ID: Collection Date: Type:	15R00201 G8914012 12/11/95 Rinsate		
	Acetone		12 ug/L	None
	Di-n-butylphthalate		4 ug/L	10U ug/L¹
	Pesticides & PCBs		ND	None
WF010	Client ID: Laboratory ID: Collection Date: Type:	31T00101 G8924005 12/12/95 Trip Blank		
	Acetone		10 ug/L	None
WF010	Client ID: Laboratory ID: Collection Date: Type:	31T00201 G8938001 12/13/95 Trip Blank		
	Acetone		12 ug/L	None
WF010	Client ID: Laboratory ID: Collection Date: Type:	31R00101 G8924006 12/12/965 Rinsate		
	Volatiles		ND	None
	Di-n-butylphthalate		7 ug/L	10U ug/L¹
	Pesticides & PCBs		ND	None

		Organic C	Compounds	
SDG	Parameter		Concentration	Qualifier
WF11B	Client ID: Laboratory ID: Collection Date: Type:	12R00101 RA847012 1/5/96 Rinsate	·	
	Volatiles		ND	None
	Di-n-butylphthalate		4 ug/L	None
	Pesticides &PCBs		ND	None
WF11B	Client ID: Laboratory ID: Collection Date: Type:	12T00101 RA847001 1/5/96 Trip Blank		
	Volatiles		ND	None
WF11B	Client ID: Laboratory ID: Collection Date: Type:	11T00101 RA847013 1/6/96 Trip Blank		
	Volatiles		ND	None
WF012	Client ID: Laboratory ID: Collection Date: Type:	31R00201 RA855021 1/8/96 Rinsate		
	Volatiles		ND	None
	Semivolatiles		ND .	None
	Pesticides & PCBs		ND	None
WF013	Client ID: Laboratory ID: Collection Date: Type:	16T00101 RA856016 1/9/96 Trip Blank		
	Volatiles		ND	None
WF013	Client ID: Laboratory ID: Collection Date: Type:	24T00101 RA871001 1/10/96 Trip Blank		
	Volatiles		ND	None
WF013	Client ID: Laboratory ID: Collection Date: Type:	16R00101 RA856017 1/9/96 Rinsate		
	Volatiles		ND	None
	Di-n-butylphthalate		5 ug/L	10U ug/L¹
	Pesticides & PCBs		ND	None

SDG	Parameter		Concentration	Qualifier
WF014	Client ID: Laboratory ID: Collection Date: Type:	BKT00101 RA870002 1/10/96 Trip Blank		
	Volatiles		ND	None
WF014	Client ID: Laboratory ID: Collection Date: Type:	31T00201 RA870018 1/11/96 Trip Blank		
	Volatiles		ND	None
WF014	Client ID: Laboratory ID: Collection Date: Type:	BKR00101 RA870001 - 1/10/96 Rinsate		
	Volatiles		ND	None
	Di-n-butylphthalate		5 ug/L	10U ug/L¹
	Pesticides & PCBs		ND	None
WF015	Client ID: Laboratory ID: Collection Date: Type:	COT00101 RA908003 1/18/96 Trip Blank		
	Volatiles		ND	None
WF015	Client ID: Laboratory ID: Collection Date: Type:	COR00101 RA908001 1/18/96 Rinsate		
	Volatiles		ND	None
	Di-n-butylphthalate		5 ug/L	10U ug/L¹
	Pesticides & PCBs		ND	None
WF015	Client ID: Laboratory ID: Collection Date: Type:	COF00101 RA908002 1/18/96 Source Blank		
	Volatiles		ND	None
	Di-n-butylphthalate		7 ug/L	None
	Pesticides & PCBs		ND	None

Table X

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike and Laboratory Duplicate Samples Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes

	1		Cri	teria	% Red	covery		
SDG	Client ID	Analyte	% Recovery	RPD	MS	MSD	RPD	Qualifier
WF006 02\$00401	Calcium Nickel Antimony Manganese	75-125 75-125	±2205 mg/Kg ±17.6 mg/Kg - -	- 73.8 73.8	- - -	9780 mg/Kg 40.8 mg/Kg - - -	J J	
		Cyanide TRPH		-	•	- -	-	None None
WF007	10S00101	Antimony Barium Manganese Lead Selenium	75-125 75-125 75-125 75-125 75-125	±88.10 mg/Kg ±6.6 mg/Kg -	65.6 171.0 130.0 128.7 56.1	- - - -	- 1221 mg/Kg 34.30 mg/Kg - -	7 7 7
		Cyanide TRPH	-	- -	-	-	-	None None
WF008	15S02001	Antimony Mercury	75-125 75-125	-	68.2 125.3	-	-	J
- 1.1 AL		Cyanide	-		_	-	<u>.</u>	None
WF009	15S00101	Antimony	75-125	-	53.5	-	•	J
WF010	31S01501	Antimony	75-125	-	73.8	•	•	None
		Cyanide	<u> </u>	-	•	-	<u> </u>	None
WF11A	09W00101	All metals	-	-	-	•	-	None
		Cyanide TRPH		-		- -	-	None None
WF11B	10800201	All metals	-	-	-		-	None
		Cyanide TRPH	:	-	<u>.</u>	•	-	None None

ěΧ

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike and Laboratory Duplicate Samples Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes

	· · · · · · · · · · · · · · · · · · ·				,	· · · · · · · · · · · · · · · · · · ·		
			Crit	eria	% Red	covery		
SDG	Client ID	Analyte	% Recovery	RPD	MS	MSD	RPD	Qualifier
WF012	31S00501	All metals	-	-	-	-	·	None
		All TCLP metals	-	-	-	_		None
		Cyanide		•	-	-	-	None
WF013	16S01001	Aluminum Iron Lead	- - 75-125	≤35 ≤35 -	- - 127	- - -	71.0 42.3 -	J J
		Cyanide		-	-		-	None
WF014	BKS00201	Aluminum	-	≤35	-		35.6	J
		Cyanide	-	-	-	-	-	None
WF015	COS00101	Lead	75-125	-	-46.5	-	-	J
		Cyanide	-	•), Å 186 T	-	- 1	None

SDG		RPD		
WF006	Client ID	02\$00401	02S00401D	
	Laboratory ID	G8864007	G8864008	
	Collection Date	12/5/95	12/5/95	
	Aluminum	9580 mg/Kg	7580 mg/Kg	23
	Arsenic	3.9 mg/Kg	4.0 mg/Kg	3
	Barium	27.7 mg/Kg	15.9 mg/Kg	54
	Beryllium	0.31 mg/Kg	0.13 mg/Kg	81
	Calcium	14900 mg/Kg	9900 mg/Kg	40
	Chromium	13.6 mg/Kg	14.0 mg/Kg	3
	Cobalt	0.53 mg/Kg	ND	Not calculable
	Copper	4.3 mg/Kg	3.8 mg/Kg	12
	Iron	4010 mg/Kg	3880 mg/Kg	3
	Lead	10.9 mg/Kg	11.6 mg/Kg	6
	Magnesium	926 mg/Kg	403 mg/Kg	79
	Manganese	188 mg/Kg	164 mg/Kg	14
	Mercury	0.03 mg/Kg	0.05 mg/Kg	50
	Nickel	3.9 mg/Kg	3.8 mg/Kg	1
	Potassium	377 mg/Kg	142 mg/Kg	91
	Sodium	104 mg/Kg	70.2 mg/Kg	38
	Vanadium	12.9 mg/Kg	11.7 mg/Kg	10
	Zinc	13.1 mg/Kg	12.5 mg/Kg	5
	Cyanide	0.15 mg/Kg	ND	Not calculable
WF006	Client ID	09800301	09S00301D	
	Laboratory ID	G8876010	G8876011	
	Collection Date	12/6/96	12/6/96	
	Aluminum	25200 mg/Kg	33100 mg/Kg	27
	Arsenic	8.5 mg/Kg	7.1 mg/Kg	18
				. 00
	Barium	1 8.9 ma/Ka	1 21./ mg/kg	1 63
	Barium	8.9 mg/Kg 0.12 mg/Kg	21.7 mg/Kg 0.22 ma/Ka	83 59
	Beryllium	0.12 mg/Kg	0.22 mg/Kg	
		0.12 mg/Kg 176 mg/Kg	0.22 mg/Kg 384 mg/Kg	59
	Beryllium Calcium	0.12 mg/Kg	0.22 mg/Kg	59 74
	Beryllium Calcium Chromium	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg	59 74 30
	Beryllium Calcium Chromium Cobalt	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg	59 74 30 6
	Beryllium Calcium Chromium Cobalt Copper	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg	59 74 30 6 28
	Beryllium Calcium Chromium Cobalt Copper Iron	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg 17800 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg 26500 mg/Kg	59 74 30 6 28 40
	Beryllium Calcium Chromium Cobalt Copper Iron Lead	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg 17800 mg/Kg 11.2 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg 26500 mg/Kg 6.6 mg/Kg	59 74 30 6 28 40 52
	Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg 17800 mg/Kg 11.2 mg/Kg 143 mg/Kg 28.2 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg 26500 mg/Kg 6.6 mg/Kg 227 mg/Kg	59 74 30 6 28 40 52 45
	Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg 17800 mg/Kg 11.2 mg/Kg 143 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg 26500 mg/Kg 6.6 mg/Kg 227 mg/Kg 52.9 mg/Kg	59 74 30 6 28 40 52 45 61
	Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg 17800 mg/Kg 11.2 mg/Kg 143 mg/Kg 28.2 mg/Kg 0.01 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg 26500 mg/Kg 6.6 mg/Kg 227 mg/Kg 52.9 mg/Kg 0.01 mg/Kg 6.1 mg/Kg	59 74 30 6 28 40 52 45 61 0 Not calculable
	Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg 17800 mg/Kg 11.2 mg/Kg 143 mg/Kg 28.2 mg/Kg 0.01 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg 26500 mg/Kg 6.6 mg/Kg 227 mg/Kg 52.9 mg/Kg	59 74 30 6 28 40 52 45 61
	Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg 17800 mg/Kg 11.2 mg/Kg 143 mg/Kg 28.2 mg/Kg 0.01 mg/Kg ND ND 0.33 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg 26500 mg/Kg 6.6 mg/Kg 227 mg/Kg 52.9 mg/Kg 0.01 mg/Kg 6.1 mg/Kg 212 mg/Kg ND	59 74 30 6 28 40 52 45 61 0 Not calculable Not calculable
	Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg 17800 mg/Kg 11.2 mg/Kg 143 mg/Kg 28.2 mg/Kg ND ND 0.33 mg/Kg 8.4 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg 26500 mg/Kg 6.6 mg/Kg 227 mg/Kg 52.9 mg/Kg 0.01 mg/Kg 6.1 mg/Kg 212 mg/Kg ND 10.4 mg/Kg	59 74 30 6 28 40 52 45 61 0 Not calculable Not calculable
	Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Sodium	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg 17800 mg/Kg 11.2 mg/Kg 143 mg/Kg 28.2 mg/Kg 0.01 mg/Kg ND ND 0.33 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg 26500 mg/Kg 6.6 mg/Kg 227 mg/Kg 52.9 mg/Kg 0.01 mg/Kg 6.1 mg/Kg 212 mg/Kg ND	59 74 30 6 28 40 52 45 61 0 Not calculable Not calculable Not calculable 21
	Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Sodium Vanadium	0.12 mg/Kg 176 mg/Kg 21.7 mg/Kg 0.52 mg/Kg 6.8 mg/Kg 17800 mg/Kg 11.2 mg/Kg 143 mg/Kg 28.2 mg/Kg 0.01 mg/Kg ND ND 0.33 mg/Kg 8.4 mg/Kg 43.5 mg/Kg	0.22 mg/Kg 384 mg/Kg 29.5 mg/Kg 0.55 mg/Kg 9.0 mg/Kg 26500 mg/Kg 6.6 mg/Kg 227 mg/Kg 52.9 mg/Kg 0.01 mg/Kg 6.1 mg/Kg 212 mg/Kg ND 10.4 mg/Kg 65.1 mg/Kg	59 74 30 6 28 40 52 45 61 0 Not calculable Not calculable Not calculable 21 40

SDG		norganic Analytes		RPD
WF007	Client ID	10S00101	10S00101D	
	Laboratory ID	G8889002	G8889003	
	Collection Date	12/7/95	12/7/95	
	Aluminum	8760 mg/Kg	8920 mg/Kg	2
	Arsenic	2.5 mg/Kg	2.6 mg/Kg	4
	Barium	361 mg/Kg	1320 mg/Kg	114
	Beryllium	0.13 mg/Kg	0.13 mg/Kg	О
	Cadmium	0.91 mg/Kg	ND	Not calculable
	Calcium	23200 mg/Kg	17800 mg/Kg	26
	Chromium	18.2 mg/Kg	16.8 mg/Kg	8
	Cobalt	0.83 mg/Kg	2.0 mg/Kg	82
	Copper	7.9 mg/Kg	7.9 mg/Kg	0
	Iron	6520 mg/Kg	6780 mg/Kg	4
	Lead	38.0 mg/Kg	33.1 mg/Kg	14
	Magnesium	5910 mg/Kg	5600 mg/Kg	5
	Manganese	56.6 mg/Kg	66.0 mg/Kg	15
	Mercury	0.07 mg/Kg	0.07 mg/Kg	0
	Nickel	6.8 mg/Kg	3.0 mg/Kg	77
	Potassium	219 mg/Kg	ND ND	Not calculable
	Sodium	35.6 mg/Kg	46.2 mg/Kg	26
	Vanadium	18.9 mg/Kg	18.7 mg/Kg	1
	Zinc	37.7 mg/Kg	34.1 mg/Kg	5
	Zinc	or.r mg/kg	34.1 mg/kg	
	Cyanide	0.10 mg/Kg	0.20 mg/Kg	67
	TRPH	240 mg/Kg	180 mg/Kg	29
WF007	Client ID	14S00101	14S00101D	
	Laboratory ID	G8895007	G8895008	
	Collection Date	12/8/95	12/8/95	•
	Aluminum	11600 mg/Kg	11500 mg/Kg	1
	Arsenic	1.5 mg/Kg	1.9 mg/Kg	23
	Barium	23.3 mg/Kg	26.6 mg/Kg	13
	Beryllium	0.15 mg/Kg	0.16 mg/Kg	6
	Calcium	120 mg/Kg	183 mg/Kg	6
	Chromium	7.8 mg/Kg	7.8 mg/Kg	0
	Cobalt	1.8 mg/Kg	1.6 mg/Kg	12
	Copper	3.8 mg/Kg	4.3 mg/Kg	12
	Iron	6310 mg/Kg	6630 mg/Kg	5
	Lead	7.7 mg/Kg	11.9 mg/Kg	42
	Magnesium	177 mg/Kg	162 mg/Kg	9
	Manganese	521 mg/Kg	597 mg/Kg	14
	Mercury	0.04 mg/Kg	0.04 mg/Kg	0
	Nickel	4.1 mg/Kg	4.6 mg/Kg	12
	Potassium	144 mg/Kg	ND	Not calculable
	Sodium	16.4 mg/Kg	14.0 mg/Kg	16
	Vanadium	16.8 mg/Kg	17.4 mg/Kg	6
	Zinc	6.0 mg/Kg	6.6 mg/Kg	10
	Cyanida			Not enloyleble
	Cyanide	0.07 mg/Kg	ND	Not calculable

SDG		Inorganic Analytes		RPD
WF008	Client ID Laboratory ID Collection Date	15S02001 G8913002 12/9/95	15S02001D G8913003 12/9/95	
	Aluminum	4630 mg/Kg	5470 mg/Kg	17
	Arsenic	1.2 mg/Kg	1.1 mg/Kg	9
	Barium	5.6 mg/Kg	6.6 mg/Kg	16
	Bervilium	0.13 mg/Kg	0.13 mg/Kg	0
	Calcium	22.2 mg/Kg	25.2 mg/Kg	13
	Chromium	3.0 mg/Kg	3.7 mg/Kg	21
	Copper	1.9 mg/Kg	2.4 mg/Kg	23
	iron	2500 mg/Kg	2950 mg/Kg	17
	Lead	5.9 mg/Kg	5.9 mg/Kg	0
	Magnesium	85.0 mg/Kg	107 mg/Kg	23
	Manganese	75.2 mg/Kg	87.1 mg/Kg	15
	Mercury	0.02 mg/Kg	0.02 mg/Kg	l 0
	Nickel	2.4 mg/Kg	9.1 mg/Kg	117
	Selenium	0.26 mg/Kg	l ND	Not calculable
	Vanadium	5.7 mg/Kg	7.1 mg/Kg	22
	Zinc	3.0 mg/Kg	4.1 mg/Kg	31
	Cyanide	ND	ND	-
WF008	Client ID	15\$01701	15S01701D	
000	Laboratory ID	G8913013	G8913014	
	Collection Date	12/10/95	12/10/95	
	Aluminum	13700 mg/Kg	9290 mg/Kg	38
	Arsenic	3.7 mg/Kg	4.3 mg/Kg	15
	Barium	4.4 mg/Kg	3.8 mg/Kg	15
	Beryllium	0.11 mg/Kg	0.11 mg/Kg	1 6
	Calcium	23.7 mg/Kg	20.4 mg/Kg	15
	Chromium	14.8 mg/Kg	14.0 mg/Kg	1 6
	Copper	2.6 mg/Kg	2.5 mg/Kg	4
	Iron	11900 mg/Kg	10400 mg/Kg	13
	Lead	4.7 mg/Kg	4.1 mg/Kg	14
	Magnesium	51.2 mg/Kg	41.8 mg/Kg	20
	Manganese	10.8 mg/Kg	6.8 mg/Kg	45
	Nickel	ND	3.0 mg/Kg	Not calculable
	Selenium	ND	0.25 mg/Kg	Not calculable
	Vanadium	35.9 mg/Kg	31.8 mg/Kg	12
	Zinc	1.5 mg/Kg	1.1 mg/Kg	31
	200	, and a second	1	

SDG		Inorganic Analytes		RPD
WF009	Client ID	15800101	15S00101D	
003	Laboratory ID	G8914002	G8914003	
	Collection Date	12/11/95	12/11/95	
	Aluminum	9280 mg/Kg	10800 mg/Kg	15
	Arsenic	2.0 mg/Kg	1.9 mg/Kg	5
	Barium	6.6 mg/Kg	7.8 mg/Kg	17
	Beryllium	0.12 mg/Kg	0.13 mg/Kg	8
	Calcium	21.6 mg/Kg	23.9 mg/Kg	10
	Chromium	8.4 mg/Kg	8.0 mg/Kg	5
	Copper	3.4 mg/Kg	3.9 mg/Kg	14
	Iron	5120 mg/Kg	5700 mg/Kg	11
	Lead	4.7 mg/Kg	3.6 mg/Kg	26
	Magnesium	109 mg/Kg	132 mg/Kg	19
	Manganese	36.4 mg/Kg	39.9 mg/Kg	9
	Mercury	0.02 mg/Kg	0.02 mg/Kg	0
	Nickel	5.0 mg/Kg	2.4 mg/Kg	70
	Potassium	169 mg/Kg	ND	Not calculable
	Vanadium	13.3 mg/Kg	15.1 mg/Kg	13
	Zinc	4.1 mg/Kg	5.0 mg/Kg	22
				22
	Cyanide	ND	ND	-
WF010	Client ID	31S01501	31S01501D	
	Laboratory ID	G8938002	G8938003	
	Collection Date	12/13/95	12/13/95	
	Aluminum	9620 mg/Kg	8270 mg/Kg	15
	Arsenic	1.4 mg/Kg	1.9 mg/Kg	30
	Barium	14.6 mg/Kg	12.2 mg/Kg	18
	Beryllium	0.17 mg/Kg	0.15 mg/Kg	13
	Calcium	112 mg/Kg	103 mg/Kg	8
	Chromium	6.7 mg/Kg	6.0 mg/Kg	11
	Cobalt	0.80 mg/Kg	1.2 mg/Kg	40
	Copper	5.5 mg/Kg	4.2 mg/Kg	27
	Iron	4730 mg/Kg	4380 mg/Kg	8
	Lead	5.3 mg/Kg	5.4 mg/Kg	2
	Magnesium	154 mg/Kg	114 mg/Kg	30
	Manganese	183 mg/Kg	172 mg/Kg	6
	Mercury	0.01 mg/Kg	0.01 mg/Kg	0
	Nickel	3.9 mg/Kg	3.4 mg/Kg	13
	Potassium	ND S.9 Mg/Kg	197 mg/Kg	Not calculable
	Vanadium	12.8 mg/Kg	11.3 mg/Kg	12
	Zinc	6.8 mg/Kg	5.0 mg/Kg	30
				""
	Cyanide	ND	ND	
WF11A	Client ID	09W00101	09W00101D	
	Laboratory ID	RA903001	RA903002	
	Collection Date	1/5/96	1/5/96	
	Aluminum	123 mg/L	129 mg/L	5
	Arsenic	0.60 mg/L	ND	Not calculable
	Barium	1.1 mg/L	1.3 mg/L	17
	Calcium	760 mg/L	726 mg/L	5
	Iron	118 mg/L	105 mg/L	12
	Magnesium	234 mg/L	236 mg/L	1
	Manganese	12.2 mg/L	12.0 mg/L	2
	Potassium	313 mg/L	298 mg/L	2
	Sodium	904 mg/L	893 mg/L	1
	Zinc	5.4 mg/L	3.8 mg/L	34
	Cyanide	l ND	ND	
	TRPH	ND	ND	1

SDG		RPD:		
WF11B	Client ID	10S00201	10S00201D	
	Laboratory ID	RA847002	RA847003	
	Collection Date	1/5/96	1/5/96	
	Aluminum	8960 mg/Kg	5800 ma/Ka	44
	Arsenic	,	5890 mg/Kg	41
	1	3.6 mg/Kg	2.4 mg/Kg	40
	Barium	9.2 mg/Kg	8.1 mg/Kg	13
	Beryllium	0.10 mg/Kg	0.06 mg/Kg	50
	Cadmium	1.4 mg/Kg	1.3 mg/Kg	7
	Calcium	1320 mg/Kg	779 mg/Kg	51
	Chromium	16.0 mg/Kg	12.2 mg/Kg	27
	Cobalt	0.79 mg/Kg	0.82 mg/Kg	4
	Copper	10.8 mg/Kg	11.5 mg/Kg	6
	Iron	9660 mg/Kg	8650 mg/Kg] 11
	Lead	32.5 mg/Kg	29.0 mg/Kg	11
	Magnesium	200 mg/Kg	100 mg/Kg	66
	Manganese	39.3 mg/Kg	36.4 mg/Kg	8
	Nickel	2.0 mg/Kg	ND	Not calculable
	Potassium	69.4 mg/Kg	ND	Not calculable
	Sodium	181 mg/Kg	192 mg/Kg	6
	Vanadium	24.5 mg/Kg	20.8 mg/Kg	16
	Zinc	50.0 mg/Kg	42.9 mg/Kg	15
	Cyanide	0.20 mg/Kg	0.13 mg/Kg	40
	TRPH	105 mg/Kg	66.1 mg/Kg	42 46
				+
WF012	Client ID	31S00501	31S00501D	1
	Laboratory ID	RA855011	RA855012	
	Collection Date	1/7/96	1/7/96	
	Aluminum	4500 mg/Kg	6050 mg/Kg	29
	Arsenic	1.3 mg/Kg	1.2 mg/Kg	8
	Barium	6.6 mg/Kg	8.6 mg/Kg	26
	Calcium	143 mg/Kg	146 mg/Kg	2
	Chromium	2.8 mg/Kg	3.8 mg/Kg	30
	Cobalt	ND	1.2 mg/Kg	Not calculable
	Copper	2.2 mg/Kg	3.0 mg/Kg	31
	iron	2470 mg/Kg	2840 mg/Kg	14
	Lead	3.2 mg/Kg	2.9 mg/Kg	10
	Magnesium	80.1 mg/Kg	1	1
	Manganese	87.0 mg/Kg	138 mg/Kg	53
	Nickel		95.3 mg/Kg	9
		1.9 mg/Kg	2.2 mg/Kg	15
	Potassium	81.9 mg/Kg	115 mg/Kg	34
	Selenium	0.18 mg/Kg	ND	Not calculable
	Sodium	192 mg/Kg	175 mg/Kg	9
	Vanadium	5.9 mg/Kg	7.2 mg/Kg	20
	Zinc	3.9 mg/Kg	5.2 mg/Kg	28
	Barium, TCLP	0.393 mg/L	0.574 mg/L	. 37
	Chromium, TCLP	0.0017U mg/L	0.0018 mg/L	Not calculable
	Selenium, TCLP	0.0217U mg/L	0.2351 mg/L	Not calculable
· .	Cyanide	0.09 mg/Kg	ND	Not calculable
WF012	Client ID	11500601	11S00601D	
	Laboratory ID	RA855001	RA855002	
	Collection Date	1/7/96	11/7/96	1
•	Lead	19.3 mg/Kg	25.0 mg/Kg	26

SDG		Inorganic Analytes		RPD
WF013	Client ID Laboratory ID Collection Date	16S00101 RA856001 1/8/96	16S00101D RA856018 1/8/96	
	Aluminum	4250 mg/Kg	5480 mg/Kg	25
	Arsenic	0.94 mg/Kg	1.2 mg/Kg	23 24
	Barium	13.2 mg/Kg	13.6 mg/Kg	3
	Beryllium	0.09 mg/Kg	ND ND	Not calculable
	Cadmium	0.28 mg/Kg	0.30 mg/Kg	7
	Calcium	210 mg/Kg	173 mg/Kg	19
	Chromium	4.0 mg/Kg	5.8 mg/Kg	37
	Copper	4.8 mg/Kg	3.0 mg/Kg	46
	Iron	2340 mg/Kg	2910 mg/Kg	22
	Lead	7.8 mg/Kg	7.5 mg/Kg	4
	Magnesium	103 mg/Kg		37
	"	, ,	150 mg/Kg	20
	Manganese	185 mg/Kg ND	151 mg/Kg	Not calculable
	Nickel		1.9 mg/Kg	Not calculable
	Potassium	99.6 mg/Kg	141 mg/Kg	<u> </u>
	Selenium	0.19 mg/Kg	ND	Not calculable
	Sodium	129 mg/Kg	108 mg/Kg	18
	Vanadium	6.8 mg/Kg	8.6 mg/Kg	23
	Zinc	6.4 mg/Kg	6.9 mg/Kg	8
	Cyanide	0.12 mg/Kg	0.12 mg/Kg	0
WF013	Client ID	16S01001	16S01001D	
	Laboratory ID	RA856014	RA856015	
	Collection Date	1/9/96	1/9/96	
	Aluminum	2000 mg/Kg	1780 mg/Kg	12
	Arsenic	0.76 mg/Kg	0.64 mg/Kg	17
	Barium	4.9 mg/Kg	4.0 mg/Kg	20
	Cadmium	ND	0.23 mg/Kg	Not calculable
	Calcium	101 mg/Kg	99.8 mg/Kg	1
	Chromium	3.9 mg/Kg	3.3 mg/Kg	16
	Copper	10.2 mg/Kg	8.6 mg/Kg	17
	Iron	1470 mg/Kg	1310 mg/Kg	12
	Lead	13.5 mg/Kg	12.4 mg/Kg	9
	Magnesium	38.5 mg/Kg	29.9 mg/Kg	25
	Manganese	5.6 mg/Kg	4.9 mg/Kg	13
	Mercury	0.20 mg/Kg	0.17 mg/Kg	16
	Potassium	ND ND	77.6 mg/Kg	Not calculable
	Selenium	0.13 mg/Kg	ND ND	Not calculable
	Silver	4.1 mg/Kg	3.6 mg/Kg	13
	Sodium	139 mg/Kg	118 mg/Kg	16
	Vanadium	3.4 mg/Kg	3.2 mg/Kg	6
	Zinc	4.1 mg/Kg	3.4 mg/Kg	19
	Cyanide	0.10 mg/Kg	0.17 mg/Kg	52

SDG		RPD		
WF014	Client ID Laboratory ID Collection Date	BKS00201 RA870008 1/10/96	BKS00201D RA870009 1/10/96	
	Aluminum	6640 mg/Kg	4020 mal/a	44
		6640 mg/Kg	4230 mg/Kg	1
	Arsenic	1.6 mg/Kg	0.99 mg/Kg	47
	Barium	11.4 mg/Kg	8.9 mg/Kg	34
	Beryllium	0.05 mg/Kg	ND	Not calculable
	Cadmium	0.21 mg/Kg	ND ##	Not calculable
	Calcium	132 mg/Kg	215 mg/Kg	48
	Chromium	3.4 mg/Kg	2.0 mg/Kg	52
	Cobalt	1.0 mg/Kg	ND	Not calculable
	Copper	3.4 mg/Kg	2.3 mg/Kg	39
	Iron	3340 mg/Kg	2220 mg/Kg	40
	Lead	5.9 mg/Kg	5.1 mg/Kg	15
	Magnesium	124 mg/Kg	72.5 mg/Kg	52
	Manganese	249 mg/Kg	217 mg/Kg	14
	Mercury	0.04 mg/Kg	0.05 mg/Kg	1
	Nickel	2.6 mg/Kg	ND	Not calculable
	Potassium	96.8 mg/Kg	65.8 mg/Kg	38
	Selenium	0.16 mg/Kg	0.14 mg/Kg	13
	Sodium	184 mg/Kg	346 mg/Kg	61
	Thallium	0.16 mg/Kg	ND	Not calculable
	Vanadium	8.1 mg/Kg	5.0 mg/Kg	47
	Zinc	5.6 mg/Kg	3.2 mg/Kg	55
	Cyanide	0.11 mg/Kg	ND	Not calculable
WF014	Client ID	31B00201	31B00201D	
	Laboratory ID	RA870014	RA870015	
	Collection Date	1/11/96	1/11/96	
	Aluminum	4360 mg/Kg	4050 mg/Kg	7
	Arsenic	1.0 mg/Kg	1.2 mg/Kg	18
	Barium	4.7 mg/Kg	4.3 mg/Kg	9
	Beryllium	0.05 mg/Kg	ND	Not calculable
	Cadmium	0.21 mg/Kg	0.34 mg/Kg	47
	Calcium	107 mg/Kg	121 mg/Kg	12
	Chromium	2.6 mg/Kg	2.1 mg/Kg	21
	Cobalt	0.76 mg/Kg	ND	Not calculable
	Copper	8.5 mg/Kg	8.4 mg/Kg	1
	Iron	2960 mg/Kg	2750 mg/Kg	7
	Lead	2.9 mg/Kg	2.9 mg/Kg	1 6
	Magnesium	81.1 mg/Kg	72.0 mg/Kg	12
	Manganese	8.0 mg/Kg	7.5 mg/Kg	7
	Mercury	0.04 mg/Kg	0.04 mg/Kg	6
	Nickel	1.8 mg/Kg	1.6 mg/Kg	l .
	Potassium			12
		88.8 mg/Kg	114 mg/Kg	25
	Sodium	175 mg/Kg	183 mg/Kg	5
	Vanadium	6.0 mg/Kg	5.3 mg/Kg	12
	Zinc	7.1 mg/Kg	6.4 mg/Kg	10

SDG		Inorganic Analytes				
WF015	Client ID Laboratory ID Collection Date	COS00101 RA908004 1/18/96	COS00101D RA908005 1/18/96			
	Aluminum	1770 mg/Kg	1620 mg/Kg	9		
	Arsenic	0.57 mg/Kg	0.29 mg/Kg	65		
	Barium	17.3 mg/Kg	11.6 mg/Kg	39		
	Beryllium	0.07 mg/Kg	0.10 mg/Kg	35		
	Calcium	521 mg/Kg	200 mg/Kg	89		
	Chromium	2.0 mg/Kg	1.5 mg/Kg	29		
	Copper	5.1 mg/Kg	5.0 mg/Kg	2		
	iron	906 mg/Kg	919 mg/Kg	1.4		
	Lead	19.4 mg/Kg	8.9 mg/Kg	74		
	Magnesium	142 mg/Kg	51.4 mg/Kg	94		
	Manganese	4.9 mg/Kg	5.6 mg/Kg	13		
	Sodium	120 mg/Kg	95.6 mg/Kg	23		
	Vanadium	2.6 mg/Kg	2.8 mg/Kg	7		
	Zinc	11.5 mg/Kg	3.3 mg/Kg	111		
	Cyanide	0.12 mg/Kg	0.20 mg/Kg	50		

Table XII

Summary of Analytes Exceeding Instrument Calibration Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes

SDG	Date	Analyte	Crite	eria	Qualifier
			Initial Calibration r	Continuing Calibration %R	
WF006	All All All	All metals Cyanide TRPH	-	-	None None None
WF007	All All	All metals Cyanide TRPH	-	- - -	None None None
WF008	Ali Ali	All metals Cyanide	-	- -	None None
WF009	All All	All metals Cyanide	-	- -	None None
WF010	Ail All	All metals Cyanide	-	-	None None
WF11A	All All All	All metals Cyanide TRPH	-	- -	None None None
WF11B	All All	All metals Cyanide TRPH	-	-	None None None
WF012	All All	All metals All TCLP metals Cyanide		- - -	None None None
WF013	All All	All metals Cyanide	·	-	None None
WF014	All All	All metals Cyanide	-	-	None None
WF015	All All	All metals Cyanide	-	•	None None

Notes:

r = correlation coefficient for initial calibrations

%R = percent recovery for continuing calibrations

- J = the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample because QC criteria were not met (validation "J").
- UJ = the analyte was not detected above the reported sample IDL. However, the reported sample is approximate; the analyte concentration may not reliably be presumed to be less than the IDL value.
- R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Acres de la constante de la co

NAS Whiting Field, Milton Florida								
		Inorganic Analytes						
SDG	Analyte	Concentration	Associated Samples					
WF006	Aluminum	-5.056 mg/Kg	All soil samples in SDG WF006					
	Calcium	-5.002 mg/Kg						
	Copper	0.482 mg/Kg						
	Iron	-1.408 mg/Kg						
	Magnesium	-5.504 mg/Kg						
	Selenium	0.660 mg/Kg						
	Sodium	2.840 mg/Kg						
	Zinc	0.344 mg/Kg						
	Aluminum	-7.772 mg/Kg	All soil samples in SDG WF006					
	Cobalt	-0.518 mg/Kg						
	Iron	-1.702 mg/Kg						
	Magnesium	-5.232 mg/Kg						
	Copper	2 600 110/1	All water camples in SDC WECCS					
	Copper	2.690 ug/L	All water samples in SDG WF006					
	Iron	-5.220 ug/L						
	Magnesium	-37.720 ug/L	i					
	Mercury	-0.029 ug/L						
*	Selenium	2.300 ug/L						
	Sodium	51.840 ug/L						
	Cyanide	ND ND	All samples in SDG WF006					
	TRPH	ND	All samples in SDG WF006					
WF007	Barium	0.174 mg/Kg	All soil camples in SDC WEGGZ					
¥¥FUU/	1	, -	All soil samples in SDG WF007					
	Calcium	6.280 mg/Kg						
	iron	1.776 mg/Kg						
	Sodium	6.856 mg/Kg						
	Aluminum	47.800 ug/L	All water samples in SDG WF007					
	Beryllium	0.250 ug/L	The tracer durings of the operation					
	Calcium		1					
		38.580 ug/L	1					
	Cobalt	-2.750 ug/L						
	Copper	6.560 ug/L	•					
	Iron	15.910 ug/L						
	Nickel	12.410 ug/L						
	Sodium	-320.390 ug/L						
	Zinc	2.210 ug/L						
	Cyanida	NID	All campion in SDC MECCZ					
	Cyanide TRPH	ND ND	All samples in SDG WF007 All samples in SDG WF007					
			7 sumples in obd 44 007					
WF008	Aluminum	10.014 mg/Kg	All soil samples in SDG WF008					
	Beryllium	0.068 mg/Kg						
	Copper	0.454 mg/Kg						
	Iron	3.440 mg/Kg						
	Sodium	-72.604 mg/Kg	1					
	;							
	Aluminum	5.768 mg/Kg	All soil samples in SDG WF008					
	Beryllium	0.060 mg/Kg						
	Cobalt	-0.428 mg/Kg						
	Copper	0.728 mg/Kg						
	Iron	1.184 mg/Kg						
	Nickel	2.284 mg/Kg						
	Sodium		1					
	i 200ium	i -74.238 ma/Ka	1					

-74.238 mg/Kg -0.470 mg/Kg

Sodium Thallium

	•	inorganic Analytes	
SDG	Analyte	Concentration	Associated Samples
WF008	Aluminum	47.800 ug/L	All water samples in SDG WF008
	Beryllium	0.250 ug/L	
	Calcium	38.580 ug/L	
	Cobalt	-2.750 ug/L	
	Copper	6.560 ug/L	
	iron	15.910 ug/L	
	Nickel	12.410 ug/L	
	Sodium	-320.390 ug/L	
	Zinc	2.210 ug/L	
	Cyanide	ND	All samples in SDG WF008
	Cyaride	No	All samples in 3DG W 000
WF009	Aluminum	10.014 mg/Kg	All soil samples in SDG WF009
	Beryllium	0.068 mg/Kg	
	Copper	0.454 mg/Kg	
	Iron	3.440 mg/Kg	· ·
	Sodium	-72.604 mg/Kg	
1,	Aluminum	5.768 mg/Kg	All soil samples in SDG WF009
	Beryllium	0.068 mg/Kg	
	Cobalt	-0.428 mg/Kg	
	Copper	0.728 mg/Kg	
	Iron	1.184 mg/Kg	·
	Nickel	2.284 mg/Kg	
	Sodium	-74.238 mg/Kg	
	Thallium	-0.470 mg/Kg	İ
	Aluminum	47.800(1	All water complete in SDC M/F000
		47.800 ug/L	All water samples in SDG WF009
	Beryllium	0.250 ug/L	
	Calcium	38.580 ug/L	
	Cobalt	-2.750 ug/L	
	Copper	6.560 ug/L	
	Iron	15.910 ug/L	
	Nickel	12.410 ug/L	
	Sodium	-320.390 ug/L	
	Zinc	2.210 ug/L	
	Cyanide	ND	All samples in SDG WF009
WF010	Aluminum	6.602 mg/Kg	All soil samples in SDG WF010
	Beryllium	0.066 mg/Kg	
	Copper	0.482 mg/Kg	
	Iron		
	1	1.828 mg/Kg	
	Mercury	-0.008 mg/Kg	
	Sodium	-74.902 mg/Kg	
	Socium	-/4.902 mg/kg	

47.800 ug/L

0.250 ug/L 38.580 ug/L

-2.750 ug/L

6.560 ug/L 15.910 ug/L

12.410 ug/L

-320.390 ug/L

2.210 ug/L ND All water samples in SDG WF010

All samples in SDG WF010

Aluminum

Beryllium

Calcium

Cobalt Copper

Iron

Nickel Sodium

Zinc

Cyanide

		norganic Analytes	·
SDG	Analyte	Concentration	Associated Samples
WF11A	Iron Nickel Sodium Zinc	14.610 ug/L 11.200 ug/L 22.840 ug/L 2.170 ug/L	All samples in SDG WF11A
	Cyanide TRPH	ND ND	All samples in SDG WF11A All samples in SDG WF11A
WF11B	Iron Nickel Sodium Zinc	14.610 ug/L 11.200 ug/L 22.840 ug/L 2.170 ug/L	All water samples in SDG WF11B
	Aluminum Calcium Iron Sodium Zinc	2.922 mg/Kg 10.253 mg/Kg 1.620 mg/Kg 11.866 mg/Kg 0.512 mg/Kg	All soil samples in SDG WF11B
	Cyanide TRPH	ND ND	All samples in SDG WF11B All samples in SDG WF11B
WF012	Iron Nickel Sodium Zinc	14.610 ug/L 11.200 ug/L 22.840 ug/L 2.170 ug/L	All water samples in SDG WF12
	Barium Calcium Iron Sodium Zinc	0.081 mg/Kg 6.408 mg/Kg 0.684 mg/Kg 9.938 mg/Kg 0.321 mg/Kg	All soil samples in SDG WF12
	Arsenic, TCLP Barium, TCLP Lead, TCLP Silver, TCLP	-0.01539 mg/L 0.00054 mg/L -0.02157 mg/L -0.00215 mg/L	All samples in SDG WF12
WF013	tron Nickel Sodium Zinc	14.610 ug/L 11.200 ug/L 22.840 ug/L 2.170 ug/L	All water samples in SDG WF13
	Barium Calcium Iron Lead Magnesium Potassium Sodium Zinc	0.082 mg/Kg 9.329 mg/Kg 0.799 mg/Kg 0.120 mg/Kg 4.111 mg/Kg 56.814 mg/Kg 8.614 mg/Kg 0.240 mg/Kg	All soil samples in SDG WF13

		Inorganic Analytes	•
SDG	Analyte	Concentration	Associated Samples
WF014	Iron Nickel Sodiurn Zinc	14.610 ug/L 11.200 ug/L 22.840 ug/L 2.170 ug/L	All water samples in SDG WF14
	Cyanide Beryllium Calcium Iron Manganese Sodium Zinc	2.034 ug/L -0.049 mg/Kg 15.945 mg/Kg 0.701 mg/Kg 0.103 mg/Kg 14.786 mg/Kg 0.601 mg/Kg	All water samples in SDG WF14 All soil samples in SDG WF14
NF015	Iron Sodium Thallium Zinc Cyanide Aluminum Barium Beryllium Calcium Iron Sodium Zinc	4.210 ug/L 30.690 ug/L 0.700 ug/L 1.400 ug/L 2.034 ug/L 2.553 mg/Kg 0.093 mg/Kg 0.043 mg/Kg 6.248 mg/Kg 0.759 mg/Kg 4.452 mg/Kg 0.365 mg/Kg	All water samples in SDG WF15 All soil samples in SDG WF15

			: Analytes	
SDG	Parameter		Concentration	Qualifier
WF006	Client ID: Laboratory ID: Collection Date: Type:	01R00101 G8876012 12/6/95 Rinsate		
	Calcium Sodium Zinc		178 ug/L 60.6 ug/L 2.9 ug/L	J M J
	Cyanide TRPH		ND ND	None None
WF006	Client ID: Laboratory ID: Collection Date: Type:	01F00101 G8776013 12/6/95 Source Blank		
	Copper Sodium		3.3 ug/L 113 ug/L	nn nn
	Cyanide TRPH		ND ND	None None
WF007	Client ID: Laboratory ID: Collection Date: Type:	10R00101 G8889009 12/7/95 Rinsate		
	Aluminum Barium Beryllium Calcium Copper Iron Zinc		52.3 ug/L 0.70 ug/L 0.25 ug/L 23.0 ug/L 7.1 ug/L 67.3 ug/L 17.6 ug/L	7 07 07 07 1
	Cyanide TRPH		ND ND	None None
WF008	Client ID: Laboratory ID: Collection Date: Type:	15R00101 G8913020 12/11/95 Rinsate		
	Aluminum Barium Beryllium Calcium Copper Iron Zinc		54.6 ug/L 1.0 ug/L 0.21 ug/L 22.6 ug/L 5.0 ug/L 45.4 ug/L 1.5 ug/L	n) n) n) n) n)
	Cyanide		ND	None

		inoras	nic Analytes	
SDG	Parameter	#IOIGA:	Concentration	Qualifier
WF009	Client ID: Laboratory ID: Collection Date: Type:	15R00201 G8914012 12/11/95 Rinsate	Concentiation	
	Aluminum Barium Beryllium Calcium Copper Iron Nickel Zinc Cyanide		69.8 ug/L 1.0 ug/L 0.29 ug/L 58.5 ug/L 6.5 ug/L 29.2 ug/L 48.7 ug/L ND	UJ UJ UJ UJ U J None
WF010	Client ID: Laboratory ID: Collection Date: Type: Aluminum Barium Beryllium Calcium Copper Iron Zinc	31R00101 G8924006 12/12/965 Rinsate	56.5 ug/L 0.86 ug/L 0.42 ug/L 18.7 ug/L 5.2 ug/L 35.6 ug/L 3.2 ug/L	n) n) n) n) n)
WF11B	Client ID: Laboratory ID: Collection Date: Type: Barium Calcium Iron Sodium Zinc	12R00101 RA847012 1/5/96 Rinsate	0.30 ug/L 42.3 ug/L 11.6 ug/L 24.6 ug/L 2.2 ug/L	U U U U
WF012	Cyanide TRPH Client ID: Laboratory ID: Collection Date: Type: Copper Iron Sodium Zinc	31R00201	ND ND 1.3 ug/L 21.2 ug/L 40.3 ug/L 3.0 ug/L	None None UJ UJ UJ UJ
WF013	Client ID: Laboratory ID: Collection Date: Type: Iron Sodium Zinc	16R00101 RA856017 1/9/96 Rinsate	7.0 ug/L 30.0 ug/L 3.4ug/L	ພ ພ ພ

Inorganic Analytes										
SDG	Parameter		Concentration	Qualifier						
WF014	Client ID: Laboratory ID: Collection Date: Type:	BKR00101 RA870001 1/10/96 Rinsate								
	Calcium Iron Sodium Zinc		42.3 ug/L 7.8 ug/L 31.9 ug/L 1.8 ug/L	nn nn nn						
	Cyanide		2.0 ug/L	UJ						
WF015	Client ID: Laboratory ID: Collection Date: Type:	COR00101 RA908001 1/18/96 Rinsate								
	Iron Lead Sodium Thallium Zinc		9.1 ug/L 0.60 ug/L 58.6 ug/L 0.70 ug/L 2.2 ug/L	n1 n1 n1						
	Cyanide		2.0 ug/L	UJ						
WF015	Client ID: Laboratory ID: Collection Date: Type:	COF00101 RA908002 1/18/96 Source Blank								
	Iron Sodium Zinc		8.9 ug/L 55.0 ug/L 2.0 ug/L	nn nn nn						

Table XV Sample Event PARCC Summary Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton, Florida

SDG	Fraction	Precision'	Accuracy	Representativeness	Completeness (%)	Comparability
WF006	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metais	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
	TRPH	Acceptable	Acceptable	Acceptable	100	Acceptable
		Ассериаль	7,000,000	, coopiusio		7.000-paid-10
WF007	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivotatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
	TRPH	Acceptable	Acceptable	Acceptable	100	Acceptable
WF008	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
	 					
WF009	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	99.5³	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metais	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
		1			1	
WF010	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
		 	1			
WF11A	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pésticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
	TRPH	Acceptable	Acceptable	Acceptable	100	Acceptable
	\		<u> </u>			
WF11B	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
	TRPH	Acceptable	Acceptable	Acceptable	100	Acceptable
	<u> </u>		 	I .	1	<u> </u>
WF012	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
	\			 	<u> </u>	<u> </u>
WF013	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	94.43	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
		1		 		+
41504 1	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
WF014		Acceptable	Acceptable	Acceptable	100	Acceptable
WF014	Semivolatiles	,	1	1	B .	
WF014	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
WF014	li .	,	1	1	B .	

Table XV Sample Event PARCC Summary Surface Soil Investigation, Phase IIB NAS Whiting Field, Milton, Florida

The state of the s

SDG Fraction Precision' Accuracy Representativeness Completeness (%) Comparability										
WF015	Volatiles Semivolatiles Pesticides/PCBs Metals Cyanide	Acceptable Acceptable Acceptable Acceptable Acceptable	Acceptable Acceptable Acceptable Acceptable Acceptable	Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable	100 100 80.0 ³ 100 100	Acceptable Acceptable Acceptable Acceptable				

¹Cumulative of sampling and analytical components.

Notes:

All completeness is expressed as the ratio of number of sample results considered usable (i.e., not qualified as rejected) to the total number of sample results.

% = percent

TRPH = Total Recoverable Petroleum Hydrocarbons

²Analytical component.

³A few samples have results whose concentrations were rejected.

APPENDIX A

Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida PARCC Summary Tables

Draft Version

12/12/97

APPENDIX A

Table of Contents

Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton, Florida

Table	Title						
 	Sample Delivery Group Versus Sample Identification	A-42					
Organ	ics						
IV V VI VIII VIII	Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples Summary of Surrogate Recoveries Summary of Compounds Exceeding Instrument Calibration Summary of Method Blank Contamination Summary of Field Blank Contamination	A-52 A-60 A-68 A-76					
Inorga	<u>nics</u>						
X XI XII XIII XIV	Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike and Laboratory Duplicate Samples Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples Summary of Analytes Exceeding Instrument Calibration Summary of Method Blank Contamination Summary of Field Blank Contamination	A-102 A-112 A-114					
ΧV	Sample Event PARCC Summary	A-135					

Ála 1

SDG#: WF022 VALIDATION SAMPLE TABLE LDC#: 1932A

Project Name: NAS Whiting Field Parameters/Analytical Method Job#: 8532-20

1,0,001,1,1,10		·	·		r drameter of mary	7			00b#. 0332-20
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides /PCBs	Metals	Cyanide
BKT01001	RB858001	тв	water	7-16-96	×				
BKR01001	RB858002	R	water	7-16-96	x	X	x	x	×
BKG00101	RB858003		water	7-16-96	. X	x	x	x	x
BKG00101D	RB858004	FD	water	7-16-96	X	×	x	×	x
BKG00102	RB858005		water	7-16-96	· X	· x	X	x	×
BKG00102F	RB858006		water	7-16-96				X	
BKG00103	RB858007	¥	water	7-16-96	X	X	×	X	×
BKG00202	RB858008		water	7-17-96	x	X	×	x	x
BKG00201	RB858009		water	7-17-96	x	x	×	Х	×
BKF01001	RB858010	SB	water	7-17-96	Х	X	X	X	×
17T01101	RB873001	TB	water	7-18-96	X				
17G00102	RB873002		water	7-18-96	X	×	×	X	x
17G00101	RB873003		water	7-18-96	X	×	X	X	×
17G00201	RB873004		water	7-18-96	X	x	×	X	×
17G00301	RB873005		water	7-18-96	X	x	x	X	×
17G00201F	RB873006		water	7-18-96		·		х	
01G00101	RB873007		water	7-19-96	X	Х	X	х	x
01G00102	RB873008		water	7-19-96	X	х	х	x	×
01G00102D	RB873009		water	7-19-96	х	х	х	×	х
BKG00101MS	RB858003MS	MS	water	7-16-96	х	x	×	×	X
BKG00101MSD	RB858003MSD	MSD	water	7-16-96	х	Х	Х	Х	×

Table 1

SDG#: WF023 VALIDATION SAMPLE TABLE

LDC#: 1942A

Project Name: NAS Whiting Field Parameters/Analytical Method Job#: 8532-20

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides /PCBs	Metals	Cyanide
01T01201	RB887001	ТВ	water	7-22-96	x			·	
01G00401	RB887002		water	7-22-96	X	х	x	x	×
01G00201	RB887003		water	7-22-96	X	х	х	x	· x
01G00201F	RB887004		water	7-22-96				×	
01R01101	RB887005	R	water	7-23-96	Х	х	×	×	×
01G00301	RB887006		water	7-23-96	X	X -	×	×	×
BKG00301	RB887007		water	7-23-96	X	×	×	X	x ·
02G00201	RB887008		water	7-23-96	X	Х	X	×	x
02G00101	RB887009		water	7-23-96	x	X	X	x	×
02G00101F	RB887010		water	7-23-96				x	
18G00301	RB887011		water	7-24-96	×	х	×	×	× ·
02G00301	RB887012		water	7-24-96	x	x .	×	X	×
02G00301D	RB887013	FD	water	7-24-96	X	X	x	X	x
16T01301	RB887014		water	7-25-96	X				
16G00701	RB887015		water	7-25-96	X	х	×	×	×
16G00702	RB887016		water	7-25-96	X	х	×	×	×
16G00702DL	RB887016DL		water	7-25-96	X				
16G00703	RB887017		water	7-25-96	X	X	×	×	×
16G00703DL	RB887017DL		water	7-25-96	x				
18G00201	RB887018		water	7-26-96	X	x	x	×	x
02G00301MS	RB887012MS	MS	water	7-24-96	Χ	x	×	×	X
02G00301MSD	RB887012MSD	MSD	water	7-24-96	X	x	x	X	X

le 1

SDG#: WF024

VALIDATION SAMPLE TABLE

LDC#: 1943A

Project Name: NAS Whiting Field

Parameters/Analytical Method

Job#: 8532-20

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides /PCBs	Metals	Cyanide
18T01401	RB920001	тв	water	7-29-96	x				
18G00101	RB920002		water	7-29-96	X	×	X	x	х
15G00401	RB920003		water	7-30-96	X	X	x	X	×
BKG00203	RB920004		water	7-30-96	x	x	X	X	×
15R01201	RB920005	R	water	7-31-96	x	×	x	X	×
BKG00203F	RB920006		water	7-30-96				x	
15G00702	RB920007		water	7-31-96	x	×	x	x	×
15G00702F	RB920008		water	7-31-96				X	
15G00701	RB920009		water	7-31-96	, x	×	x	x	X * ·
15G00701D	RB920010	FD.	water	7-31-96	x	×	X	×	X **
15G00701MS	RB920009MS	MS	water	7-31-96	x	Х	X	x	X
15G00701MSD	RB920009MSD	MSD	water	7-31-96	x	Х	Х	X	X-x

18	b	е	1	

SDG#: WF025 **VALIDATION SAMPLE TABLE** LDC#: 1956A Project Name: NAS Whiting Field Parameters/Analytical Method Job#: 8532-20 QC Date Pesticides Client ID # Lab ID # Matrix Collected VOA SVOA Туре /PCBs Metals Cyanide 15T01501 RB956001 TB water 8-5-96 Х 15G00703 RB956002 water 8-5-96 Х Х Х Х Х 15G00503 RB956003 Х Х water 8-6-96 Х Х Х 15G00503DL RB956003DL water 8-6-96 Х

15G00502 RB956004 Х Х Х Х water 8-6-96 Х Χ Х 15G00501 RB956005 8-6-96 Χ Χ water Х RB956006 8-7-96 Χ Х 15G00601 Х Х water Х RB956007 8-7-96 Х Х Χ 15G00603 water Χ Х 15G00601D RB956008 FD 8-7-96 Х Х Х Χ Х water 15G00503F RB956009 8-6-96 Х water 15G00501F RB956010 8-6-96 Х water R Χ Х Х Х 15R01301 RB956011 8-7-96 Х water Χ TB 15T01601 RB956012 water 8-8-96 Х Χ Х 15G00301 RB956013 water 8-8-96 Χ Х Х Х Х 15G00302 RB956014 8-8-96 Х water Х Х Χ Х Х 15G00303 RB956015 8-9-96 Х water 15G00101 RB956016 8-8-96 Х Х Χ Χ X water Х Х X Х 15G00203 RB956017 8-9-96 Х water X 15G00301F RB956018 8-8-96 water Х 15G00203F RB956019 water 8-9-96 Х Х Х Х MS 8-7-96 15G00601MS RB956006MS water Χ RB956006MSD MSD 8-7-96 Х 15G00601MSD water

SDG#: WF026 **VALIDATION SAMPLE TABLE**

LDC#: 1957A

Project Name: NAS	Whiting Field		·	·		Job#: 8532-20			
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides /PCBs	Metals	Cyanide
15T01701	RB980001	тв	water	8-12-96	X				
15G00202	RB980002		water	8-12-96	X	×	x	х	×
15G00201	RB980003		water	8-13-96	×	×	x	X	×
15G00802	RB980004		water	8-13-96	×	×	x	X	x
15G00802R	RB980004R		water	8-13-96		X			
15G00801	RB980005		water	8-13-96	×	X	x	x	x
16G00201	RB980006		water	8-14-96	×	X	x	x	X
15G00803	RB980007	1	water	8-14-96	x	×	x	×	х
16G00803D	RB980008	FD	water	8-14-96	x	, x	x	×	x
15G00202F	RB980009	<u> </u>	water	8-12-96				X	3
15G00201F	RB980010		water	8-13-96				×	
15G00802F	RB980011	<u>'</u>	water	8-13-96				X	
15R01401	RB980012	R	water	8-14-96	Χ.	X	x	X	X
15G00803F	RB980013		water	8-14-96				X	
16G00201F	RB980014	<u> </u>	water	8-14-96				X	·
16T01801	RB980015	тв	water	8-15-96	X			,	
16G00202	RB980016	<u> </u>	water	8-15-96	X	Х	×	X	x
16G00202DL	RB980016DL		water	8-15-96	X				
16G00203	RB980017	1	water	8-15-96	X	х	×	X	X
16G00602	RB980018		water	8-15-96	Χ .	х	X	X	×
16G00601	RB980019		water	8-16-96	X	Х	X	X	X
16G00403	RB980020		water	8-16-96	×	х	X	x	×
16G00403DL	RB980020DL		water	8-16-96	x				
16G00403D	RB980021		water	8-16-96	х	х	X	×	х

					Table	e 1			
SDG#: WF026		<u> </u>	VALIDATION SAMPLE TABLE Parameters/Analytical Method						
Project Name: NAS	Whiting Field	· 							
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides /PCBs	Metals	Cyanide
16G00403DDL	RB980021DL		water	8-16-96	×				
16G00601F	RB980022		water	8-16-96			·	x	
16G00403F	RB980023		water	8-16-96				x	·
15G00803MS	RB980007MS	MS	water	8-14-96	x	х	×	x	x
15G00803MSD	RB980007MSD	MSD	water	8-14-96	X	X	X	X	х

- Variable Park					Table 1	ýg	
SDG#: WF025 VALIDATION SAMPLE TABLE						LDC#: 1970A	
Project Name: NAS	Whiting Field	-	1		Parameters/Analytical Method		Job#: 8532-20
Client ID #	Lab ID #	QC Type	Matrix	Date Collected		Pesticides/PCBs	
15G00502RE	RB956004RE		water	8-6-96		x	

Table 1

SDG#: WF027

VALIDATION SAMPLE TABLE

LDC#: 1970B Job#: 8532-20

Project Name: NAS Whiting Field

Parameters/Analytical Method

Project Name: NAS				Parameters/Anal	Job#: 8532-20				
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides /PCBs	Metals	Cyanide
16T01901	RC016001	тв	water	8-19-96	×				
16G00401	RC016002		water	8-19-96	X	×	х	x	х
16G00402	RC016003		water	8-19-96	x	×	х	x	х
16G00101	RC016004		water	8-19-96	x	X	х	x	X
16G00301	RC016005		water	8-20-96	X	. x	Χ	x	х
16G00302	RC016006		water	8-20-96	×	×	X	x	х
16G00304	RC016007		water	8-20-96	х	Х	. X	x	х
16G00303	RC016008		water	8-21-96	X	×	х	×	х
16G00501	RC016009		water	8-21-96	x	х	x	×	х
16G00303F	RC016010		water	8-21-96		·		x	
16G00501F	RC016011		water	8-21-96				x	
16R01501	RC016012	R	water	8-21-96	×	×	X	X	×
16G00501D	RC016013	FD	water	8-21-96	X ·	×	x	×	X
66T02001	RC016014	ТВ	water	8-22-96	x				
66G02101	RC016015		water	8-22-96	×	X	x	x	×
66G02103	RC016016		water	8-22-96	×	×	х	x	X
66G02102	RC016017		water	8-22-96	×	X	X	x	. x
09G00101	RC016018	1111	water	8-23-96	x	X	X	X	x
09G00301	RC016019		water	8-23-96	<u> </u>	×	X ·	×	×
09G00301D	RC016020	FD	water	8-23-96	x	x	x	×	x · ······
66G02102F	RC016021		water	8-23-96				X	
09G00301F	RC016022		water	8-23-96				x	
16G00501MS	RC016009MS	MS	water	8-21-96	X	×	X	x	×
16G00501MSD	RC016009MSD	MSD	water	8-21-96	X	X	. X	X	X

- 1		
- 8	ı _	4

SDG#: WF028		,,,-,-,			VALIDATION SA	MPLE TABLE			LDC#: 1974A
Project Name: NA	S Whiting Field				Parameters/Anal	ytical Method			Job#: 8532-20
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides /PCBs	Metals	Cyanide
10T02101	RC044001	тв	water	8-26-96	X				
09G00201	RC044002		water	8-26-96	X	x	x	×	Х
10G00101	RC044003		water	8-26-96	X	X	х	×	х .
10G00201	RC044004		water	8-26-96	×	Х	×	х	x
11G00402	RC044005		water	8-26-96	×	х	х	x	х
11G00102	RC044006		water	8-27-96	Х	х	x	×	×
11G00401	RC044007		water	8-27-96	x	х	×	×	×
11T02201	RC044008	ТВ	water	8-28-96	х				
11G00301	RC044009		water	8-28-96	. X	Х	x	х	×
11G00101	RC044010		water	8-28-96	x	×	x	x	X
11G00201	RC044011		water	8-28-96	. X	X	×	x	X
12G00101	RC044012		water	8-27-96	х.	Х	×	x	х
12G00201	RC044013		water	8-27-96	x	X	×	x	X
11G00201F	RC044014		water	8-28-96				x	
11G00301F	RC044015		water	8-28-96				x	
11R01601	RC044016		water	8-28-96	<u> </u>	X	x	×	x
12G00101D	RC044017	FD	water	8-27-96	×	×	x	x	x
11G00201D	RC044018	FD	water	8-28-96	×	x	×	. x	x
12G00101MS	RC044012MS	MS	water	8-27-96	×	×	×	×	x
12G00101MSD	RC044012MSD	MSD	water	8-27-96	X	x	×	x	x

	#	lable 1	
- 1	SDG#: WF029	VALIDATION SAMPLE TABLE	LDC#: 1989A

Project Name: NAS	Whiting Field		γ	1	Parameters/Analy	Job#: 8532-20			
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides /PCBs	Metals	Cyanide
13T02301	RC092001	ТВ	water	9-9-96	X	·			
13G00101	RC092002		water	9-9-96	X	x	x	x	х .
13G00102	RC092003		water	9-9-96	X	х	x	x	×
13G00201	RC092004		water	9-10-96	Х	х	X	x	×
13G00103	RC092005		water	9-10-96	X	Х	x	х	x
14G00201	RC092006		water	9-10-96	х	х	x	х	×
14G00101	RC092007		water	9-11-96	x	Х	x	X	×
13R01701	RC092008	R	water	9-11-96	X	Х	X	X	×
14G00101D	RC092009	FD	water	9-11-96	X	Х	X	х	х
13G00103F	RC092010		water	9-10-96				x	
66T02401	RC092011	тв	water	9-12-96	x				
66G00901	RC092012		water	9-12-96	X	X	X	X	×
66G00904	RC092013		water	9-12-96	×	x	x	x	×
66G00902	RC092014		water	9-13-96	X	, X	x	x	×
66G00903	RC092015		water	9-13-96	×	x	X	X	х
66G00903F	RC092016		water	9-13-96				. X	
14G00101MS	RC092007MS	MS	water	9-11-96	X	x	x	х	×
14G00101MSD	RC092007MSD	MSD	water	9-11-96	x	х	X	X	х

vie 1

SDG#: WF030

VALIDATION SAMPLE TABLE

LDC#: 2000A

Project Name: NAS Whiting Field

Parameters/Analytical Method

Job#: 8532-20

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides /PCBs	Metals	Cyanide
66T02501	RC121001	ТВ	water	9-16-96	X				
66G00801	RC121002		water	9-16-96	x	х	Х	×	х
66G00802	RC121003		water	9-16-96	Х	х	х	x	х
66G00803	RC121004		water	9-17-96	×	X	x	x	Х
66G00804	RC121005		water	9-17-96	X	Х	X	X	×
66G00602	RC121006		water	9-17-96	X	X	X	· x	×
66G00601	RC121007		water	9-18-96	X	Х	x	x	×
66G00603	RC121008		water	9-18-96	X	Х	x	X	×
66G00804F	RC121009		water	9-17-96				x	
66R01801	RC121010		water	9-18-96	x	Х	x	x	×
66G00601D	RC121011	FD	water	9-18-96	X	· x	X	x	×
66T02601	RC121012	тв	water	9-19-96	X				vic
66G00604	RC121013		water	9-19-96	X	×	X	X	×
66G02201	RC121014		water	9-19-96	X	X	x	x	*X
66G02202	RC121015		water	9-19-96	X	×	х	x	×
66G02203	RC121016		water	9-20-96	X	X	х	x	×
66G02203D	RC121017	FD	water	9-20-96	X	X	X	X	χ .
66G00601MS	RC121007MS	MS	water	9-18-96	X	x	x	Х	Х
66G00601MSD	RC121007MSD	MSD	water	9-18-96	Х	x	×	х	x

70	h	1

SDG#: WF031	VALIDATION SAMPLE TABLE	LDC#: 2031A

Project Name: NAS		·	· · · · · · · · · · · · · · · · · · ·	Parameters/Analy	tical Method			Job#: 8532-20	
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA	SVOA	Pesticides /PCBs	Metals	Cyanide
05T02701	MB928001	тв	water	9-23-96	X				
05G00801	MB928002		water	9-23-96	Χ .	×	×	x	X
05G00802	MB928003		water	9-23-96	×	x	x	×	×
05G00901	MB928004		water	9-24-96	x	×	x	x	×
05G00902	MB928005		water	9-24-96	X	x	×	×	X
05G01002	MB928006		water	9-24-96	x	х	x	x	X
05G01001	MB928007		water	9-25-96	×	×	×	x	×
05G00301	MB928008		water	9-25-96	X	x	x	×	X
05G00301RE	MB928008RE		water	9-25-96		x			
05G00801F	MB928009		water	9-23-96				<u> </u>	
05G00902F	MB928010		water	9-24-96				×	
05R01901	MB928011	R	water	9-25-96	x	×	X	x	×
05G01001D	MB928012	FD	water	9-25-96	X	x	X .	X	×
33T02801	MB958001	тв	water	9-26-96	X				
05G00101	MB958002		water	9-26-96	X	X	×	x	×
33G00501	MB958003		water	9-26-96	X	×	×	x	x
33G00201	MB958004		water	9-26-96	x	×	X	X	×
33G00101	MB958005		water	9-27-96	x	×	×	×	X
33G00301	MB958006		water	9-27-96	x	x	x	X	х
33G00301D	MB958007	FD	water	9-27-96	×	×	×	X	х
05G01001MS	MB928007MS	MS	water	9-25-96	×	×	×	X	×
05G01001MSD	MB928007MSD	MSD	water	9-25-96	×	×	×		
05G01001DUP	MB928007DUP	DUP	water	9-25-96				×	X

-									-)	
SDG#: WF031B			·		VALIDATION SAM	**			LDC#: 2121A	
Project Name: NA	S Whiting Field					Job#: 7560-32				
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (CLP-1.9)	SVOA (CLP-1.9)	Pesticides /PCBs (CLP-1.9)	Metals (CLP-2.1)	Cyanide	
05G01002	MC447001		water	11-21-96	Х	. x	x	х	×	
16T04001	MC447002	тв	water	11-21-96	X					

					Table	1					
SDG#: WF032	2 VALIDATION SAMPLE TABLE										
Project Name: NAS Whiting Field Parameters/Analytical Method											
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (CLP-1.9)	SVOA (CLP-1.9)	Pesticides /PCBs (CLP-1.9)	Metais	Cyanide		
06T02901	MC011001	тв	water	9-30-96	x						
33G00401	MC011002		water	9-30-96	x	X	х	х	x		
06G00102	MC011003		water	10-1-96	x	х	×	х	х		
06G00101	MC011004		water	10-1-96	x	x	x	х	×		
06G00301	MC011005		water	10-2-96	x	X	x	X	х		
06R02001	MC011006	R	water	10-2-96	X	X	х	х	x		
29G00501	MC011007		water	10-2-96	×	×	×	X	×		
29G00501D	MC011008	FD	water	10-2-96	X	X	x	х	×		
29T03001	MC037001	ТВ	water	10-3-96	X						
29G00101	MC037002		water	10-3-96	x	X	X .	×	×		
66G01201	MC037003		water	10-3-96	×	×	x	x	×		
66G00102	MC037004		water	10-4-96	x	X	x	X-	×		
29G00501MS	MC011007MS	MS	water	10-2-96	x	x	Х	x	×		
29G00501MSD	MC011007MSD	MSD	water	10-2-96	×	X	X				
29G00501DUP	MC011007DUP	DUP	water	10-2-96				X	х		

l		
ч	a	1

SDG#: WF033					VALIDATION SAI	MPLE TABLE			LDC#: 2069A
Project Name: NAS	Whiting Field				Parameters/Analy	tical Method			Job#: 8532-20
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (CLP-1.9)	SVOA (CLP-1.9)	Pesticides /PCBs (CLP-1.9)	Metals	Cyanide
29T03101	MC085001	тв	water	10-7-96	×				
26G00401	MC085002		water	10-7-96	X	×	x	х	×
26G00301	MC085003		water	10-8-96	x	x	x	х	x
66G00202	MC085004		water	10-8-96	×	х	×	Х	×
29G00201	MC085005		water	10-8-96	×	x	X	Х	×
66G01901	MC085006		water	10-9-96	×	х	×	Х	×
66R02101	MC085007	R	water	10-9-96	×	x	x	X ,54	×
66T03201	MC118001	тв	water	10-10-96	×				
66G00201	MC118002		water	10-9-96	×	X	X	x	X
66G00201D	MC118003	FD	water	10-9-96	×	x	X	x	🗱 e szájá sz
07G00101	MC118004		water	10-10-96	×	X	x	х	X
30G00501	MC118005		water	10-10-96	X	x	x	х	×
66G00301	MC118006		water	10-11-96	×	x	X	X	X
66G00201MS	MC118002MS	MS	water	10-9-96	×	х	х	х	. x 🥞 .
66G00201MSD	MC118002MSD	MSD	water	10-9-96	×	X	X		
66G00201DUP	MC118002DUP	DUP	water	10-9-96				X	X

					Table	ſ			
SDG#: WF034					VALIDATION SAI	MPLE TABLE			LDC#: 2070A
Project Name: NAS	Whiting Field			Job#: 8532-20					
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (CLP-1.9)	SVOA (CLP-1.9)	Pesticides /PCBs (CLP-1.9)	Metals	Cyanide
66T03301	MC153001	TB	water	10-14-96	x				
66G02001	MC153002		water	10-14-96	x	x	x	×	x
66G00302	MC153003		water	10-15-96	×	×	X	x	×
66G01801	MC153004		water	10-16-96	x	X	X	×	×
30G00301	MC153005		water	10-16-96	. x	Х	х	×	х
30G00401	MC153006		water	10-16-96	X	×	X	×	х
66R02201	MC153007	R	water	10-16-96	X	×	X	X ·	×
30G00301D	MC153008	FD	water	10-16-96	×	×	X	×	×
66T03401	MC176001	ТВ	water	10-17-96	X				
66G01101	MC176002		water	10-17-96	Х	x	X	×	X 1
66G01301	MC176003		water	10-17-96	x	×	×	×	×
66G00501	MC176004		water	10-18-96	x	×	X	x	x
66G00501F	MC176005		water	10-18-96			ı	×	
30G00301MS	MC153005MS	MS	water	10-16-96	x	X	X	×	×
30G00301MSD	MC153005MSD	MSD	water	10-16-96	×	X	X		
30G00301DUP	MC153005DUP	DUP	water	10-16-96				X	X

le 1

SDG#: WF035

VALIDATION SAMPLE TABLE

LDC#: 2076A

Project Name: NAS Whiting Field

Parameters/Analytical Method

Job#: 8532-20

Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (CLP-1.9)	SVOA (CLP-1.9)	Pesticides /PCBs (CLP-1.9)	Metals	Cyanide
66T03501	MC214001	тв	water	10-21-96	x				
66G00401	MC214002		water	10-21-96	· x	X	x	X	x
66G01601	MC214003		water	10-22-96	×	х	x	×	x
66G01501	MC214004		water	10-22-96	X	x	×	×	x
66G01701	MC214005		water	10-23-96	x	x	x	×	x
66R02301	MC214006	R	water	10-23-96	x	X	x	×	X
66G01701D	MC214007	FD	water	10-23-96	x	х	×	×	X
66T03601	MC231001	тв	water	10-24-96	×				
66G00101	MC231002		water	10-24-96	, x	X	x ,	×	x
08G00101	MC231003		water	10-24-96	X	x	x	×	X
66G01001	MC231004		water	10-25-96	x	x	X	X	X g
66G01701MS	MC214005MS	MS	water	10-23-96	x	X	x	x	X (4.014
66G01701MSD	MC214005MSD	MSD	water	10-23-96	x	X	x		jje.
66G01701DUP	MC214005DUP	DUP	water	10-23-96				X	x

			····		Table	1			
SDG#: WF036					VALIDATION SAI	MPLE TABLE	-		LDC#: 2077A
Project Name: NAS	Whiting Field				Parameters/Analy	tical Method			Job#: 8532- 20
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (CLP-1.9)	SVOA (CLP-1.9)	Pesticides /PCBs (CLP-1.9)	Metals	Cyanide
66T03701	MC262001	тв	water	10-28-96	Х				
66G00701	MC262002		water	10-29-96	x	х	X	x	х
54G00201	MC262003		water	10-29-96	X	х	×	×	×
54G00101	MC262004		water	10-30-96	x	х	×	×	Х
31G00201	MC262005		water	10-30-96	×	x	×	×	×
31G00201F	MC262006		water	10-30-96				×	
54R02401	MC262007	R	water	10-30-96	X	Х	×	×	×
54G00101D	MC262008	FD	water	10-30-96	×	X	x	×	×
31T03801	MC284001	тв	water	10-31-96	X	-			
31G00301	MC284002		water	10-31-96	×	X	x	x	x
31G00402	MC284003		water	10-31-96	X	x	x	×	×
31G00403	MC284004		water	11-1-96	х	×	x	x	х
54G00101MS	MC262004MS	MS	water	10-30-96	×	×	x	х	х
54G00101MSD	MC262004MSD	MSD	water	10-30-96	×	х	x		
54G00101DUP	MC262004DUP	DUP	water	10-30-96				х	Х

•		
مامد	1	

SDG#: WF037					VALIDATION SAI	MPLE TABLE			LDC#: 2071A
Project Name: NAS	Whiting Field				Job#: 8532-20				
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (CLP-1.9)	SVOA (CLP-1.9)	Pesticides /PCBs (CLP-1.9)	Metals	Cyanide
15T03901	MC424001	тв	water	11-18-96	×				
15G00502	MC424002		water	11-18-96	x				
15G00503	MC424003		water	11-18-96	×				
16G00202	MC424004		water	11-19-96	X				
16G00203	MC424005		water	11-19-96	×				
15G00802	MC424006		water	11-20-96	X				
15G00803	MC424007		water	11-20-96	×				
15G00803D	MC424008	FD	water	11-20-96	×				9
15R02501	MC424009	R	water	11-20-96	×				ಚರ್ಚೆಗಳ
15F00201	MC424010		water	11-20-96	×	x	x	×	Xi. ;
16G00702	MC448001		water	11-21-96	×				(Ministration of the Control of the
16G00703	MC448002		water	11-21-96	x				(866)
16G00403	MC448003		water	11-22-96	×				in the
16T04001	MC448004	тв	water	11-21-96	×				
15G00803MS	MC424007MS	MS	water	11-20-96	×	·			
15G00803MSD	MC424007MSD	MSD	water	11-20-96	X				

					Table 1
SDG#: WF038					VALIDATION SAMPLE TABLE LDC#: 2099
Project Name: NAS	Whiting Field				Parameters/Analytical Method Job#: 7560-
Cilent ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (CLP-1.9)
36T04101	MC687001	TB	water	12-17-96	x
36BO0101	MC687002		soil	12-17-96	. x
36BO0102	MC687003		soil	12-17-96	x
36BO0103	MC687004		soil	12-17-96	x
36BO0201	MC687005		soil	12-17-96	x * * * * * * * * * * * * * * * * * * *
36BO0202	MC687006		soil	12-17-96	x
36BO0203	MC687007	ŀ	soil	12-17-96	x
36BO0301	MC687008		soil	12-17-96	×
36BO0302	MC687009		soil	12-17-96	X
36BO0303	MC687010		soil	12-17-96	×
36BO0303D	MC687011	FD	soil	12-17-96	X
36BO0401	MC687012		soil	12-18-96	X
36BO0401DL	MC687012DL		soil	12-18-96	X
36BO0402	MC687013		soil	12-18-96	x
36BO0403	MC687014		soll	12-18-96	×
36BO0403D	MC687015	FD	soil	12-18-96	. x
36RO2601	MC687016	R	water	12-18-96	×
36BO0303MS	MC687011MS	MS	soil	12-17-96	×
36BO0303MSD	MC687011MSD	MSD	soil	12-17-96	X

					Jie 1)	
SDG#: WF039					VALIDATION SAMPLE TABLE	LDC#: 2102A	
Project Name: NAS W	/hiting Field	- -	T	1	Job#: 7560-32		
Client ID #	(ab 1D #	QC Type	Mateix	Date	VOA		

1 Tojout Italiio. Tirto					r draffictory, may feel welfood	00D#. 7500-52
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (CLP-1.9)	
35TO4201	MC698001	тв	water	12-19-96	X	
35BO0101	MC698002		soil	12-20-96	X	·
35BO0102	MC698003		soil	12-20-96	X	4
35BO0102DL	MC698003DL		soil	12-20-96	X	
35BO0103	MC698004		soil	12-20-96	X	
35BO0104	MC698005		soil	12-20-96	X	
35BO0105	MC698006		soil	12-20-96	X	
35BO0106	MC698007		soil	12-21-96	X	
35BO0201	MC698008		soil	12-21-96	x	Mari
35BO0202	MC698009		soil	12-21-96	x	+ \$4 ·
35BO0203	MC698010		soil	12-21-96	X	ANGO
35RO2701	MC698011	R	water	12-21-96	X	ener 1
35BO0301	MC698012		soil	12-21-96	X	. + D#1
35BO0302	MC698013		soil	12-21-96	×	
35BO0303	MC698014		soil	12-21-96	. X	
35BO0302D	MC698015	FD	soil	12-21-96	x	
35BO0203D	MC698016	FD	soil	12-21-96	X	
35BO0203MS	MC698010MS	MS	soil	12-21-96	x	
35BO0203MSD	MC698010MSD	MSD	soil	12-21-96	X	

	*******************************				Table 1	
SDG#: WF040	MANUTA AND AND AND AND AND AND AND AND AND AN				VALIDATION SAMPLE TABLE	LDC#: 2120A
Project Name: NAS	3 Whiting Field			·	Parameters/Analytical Method	Job#: 7560-32
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (CLP-1.9)	
35TO4301	MC783001	ТВ	water	1-7-97	X	
35BO0401	MC783002		soil	1-7-97	X	
35BO0402	MC783003		soil	1-7-97	X	
35BO0403	MC783004		soil	1-7-97	×	
35BO0501	MC783005		soil	1-7-97	X	
35BO0501DL	MC783005DL		soil	1-7-97	· X	
35BO0502	MC783006		soil	1-7-97	X ·	
35BO0503	MC783007		soil	1-7-97	X	
35BO0201	MC783008		soil	1-8-97	X	
35BO0202	MC783009		soil	1-8-97	X	
35BO0203	MC783010		soil	1-8-97	X	·
35BO0101	MC783011		soil	1-8-97	X	
35BO0102	MC783012		soil	1-8-97	X	·
35BO0103	MC783013		soil	1-8-97	×	
35BO0301	MC783014		soil	1-9-97	x	
35BO0302	MC783015		soil	1-9-97	X	
35BO0303	MC783016		soil	1-9-97	x	
35R02801	MC783017	R	water	1-9-97	X	
35BO0203D	MC783018	FD	soil	1-8-97	X .	
35BO0103D	MC783019	FD	soil	1-8-97	X	
35BO0203MS	MC783010MS	мѕ	soil	1-8-97	×	
35BO0203MSD	MC783010MSD	MSD	soil	1-8-97	X	

LDC#: 2323A

SDG#:	WF041	VALIDATION SAMPLE TABLE

Project Name: NAS	Whiting				Parameters/Analytical Meth	nod		
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	SVOA (1.9)	Pesticides /PCBs (1.9)	Metals (2.1)
35T04501	MD908001	TB	water	6-11-97	×			
35F00301	MD908002		water	6-11-97	X	х	X	· X
35R03001	MD908003	R	water	6-11-97	X	X	X	×
35G00101	MD908004		water	6-11-97	X	x	x	X
35G00101D	MD908005	FD	water	6-11-97	X	x	. x	x
35G00101DRE	MD908005RE	FD	water	6-11-97		x		
35G00103	MD908006		water	6-11-97	X	×	x	X
35G00103F	MD908007		water	6-11-97				X
35G00102	MD908008		water	6-12-97	X	x	x	X
37G00102	MD908009	:	water	6-12-97	X	X	X	X
37T04601	MD926001	тв	water	6-12-97	X			to the second
36G00101	MD926002		water	6-12-97	X	X	x	X
36G00101F	MD926003		water	6-12-97				X
37G00101	MD926004		water	6-12-97	X	×	×	X
36G00102	MD926005		water	6-13-97	X	X	X	×
36G00102RE	MD926005RE		water	6-13-97		X		
36G00103	MD926006		water	6-13-97	X	X	X	x .
36G00103RE	MD926006RE		water	6-13-97		×		
35T04701	MD950001	ТВ	water	6-15-97	X			
35G00202	MD950002		water	6-15-97	X	X	X	X
35G00202D	MD950003	FD	water	6-15-97	X	X	X	X
35G00203	MD950004		water	6-15-97	X	X	X	X
35G00201	MD950005		water	6-16-97	X	X	X	×
35G00201F	MD950006		water	6-16-97				X

		······································			Table 1			· · · · · · · · · · · · · · · · · · ·	
SDG#: WF041					VALIDATION SAMPLE TAI	BLE		LDC#: 2323A	
Project Name: NAS Whiting Parameters/Analytical Method									
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	SVOA (1.9)	Pesticides /PCBs (1.9)	Metals (2.1)	
13T04801	MD985001	ТВ	water	6-16-97	X				
13G00301	MD985002		water	6-16-97	X	х	X	х .	
13G00301F	MD985003		water	6-16-97				х	
13G00401	MD985004		water	6-16-97	Х	x	×	×	
35G00101MS	MD908004MS	MS	water.	6-11-97	X	х .	x	×	
35G00101MSD	MD908004MSD	MSD	water	6-11-97	X	х	X		
35G00101DUP	MD908004DUP	DUP	water	6-11-97				X	

)					ble 1)——				
SDG#: WF042	#: WF042 VALIDATION SAMPLE TABLE									
Project Name: NAS	Project Name: NAS Whiting Parameters/Analytical Method									
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)					
05T04901	ME007001	тв	water	6-18-97	X					
05G00301	ME007002		water	6-17-97	x					
05G00901	ME007003		water	6-18-97	x					
05G00902	ME007004		water	6-19-97	×					
05G00902D	ME007005	FD	water	6-19-97	×					
05R03101	ME007006	R	water	6-17-97	x					
05T05001	ME021001		water	6-20-97	x					
05G01001	ME021002		water	6-20-97	X					
05G01002	ME021003		water	6-20-97	x					
05G00902MS	ME007004MS	MS	water	6-19-97	×					
05G00902MSD	ME007004MSD	MSD	water	6-19-97	X					

		·			Table 1	
SDG#: WF043					VALIDATION SAMPLE TABLE LDC#: 2319	5A
Project Name: NAS	Whiting		<u> </u>	_	Parameters/Analytical Method	
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	
05T05101	ME042001	тв	water	6-23-97	x	
05R03201	ME042002	R	water	6-23-97	X	
05G00801	ME042003		water	6-24-97	×	
05G00802	ME042004		water	6-24-97	x	
05G00802D	ME042005	FD	water	6-24-97	x	
33T05201	ME053001	тв	water	6-24-97	x	
33G00501	ME053002		water	6-24-97	×	
33G00101	ME053003		water	6-24-97	x	
33G00201	ME053004		water	6-25-97	x .	
33G00301	ME053005		water	6-25-97	x	
33G00301DL	ME053005DL		water	6-25-97	×	
33T05301	ME073001	тв	water	6-25-97	X	
06G00102	ME073002		water	6-26-97	×	
06G00301	ME073003		water	6-26-97	X	
33G00401	ME073004		water	6-26-97	x	
30T05401	ME087001	ТВ	water	6-26-97	×	
07G00101	ME087002		water	6-26-97	×	
07G00101D	ME087003	FD	water	6-26-97	×	
30G00501	ME087004		water	6-26-97	X	
30G00301	ME087005		water	6-27-97	×	
30G00401	ME087006		water	6-27-97	×	
05G00802MS	ME042004MS	MS	water	6-24-97	×	
05G00802MSD	ME042004MSD	MSD	water	6-24-97	X	

)					ole 1)
SDG#: WF044					VALIDATION SAMPLE TABLE	LDC#: 2322A
Project Name: NAS	Whiting				Parameters/Analytical Method	
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	
06T05501	ME100001	тв	water	6-29-97	· x	
06R03301	ME100002	R	water	6-29-97	x	
66G00201	ME100003		water	6-29-97	х	
06G00101	ME100004		water	6-29-97	×	
66G00202	ME100005		water	6-30-97	x	
66T05601	ME110001	ТВ	water	6-30-97	х	
66G01201	ME110002		water	6-30-97	X	
66G01201D	ME110003	FD	water	6-30-97	X	
66G00102	ME110004		water	7-1-97	x	*
66G01301	ME110005		waler	7-1-97	х	97
66T05701	ME133001	TB	water	7-2-97	×	
66G00401	ME133002		water	7-2-97	x	**************************************
66G02001	ME133003		water	7-2-97	×	A
66T05801	ME135001	TB	water	7-2-97	X .	र्वे.
66G00603	ME135002		water	7-2-97	x	
66G00603D	ME135003	FD	water	7-2-97	x .	
66G00604	ME135004		water	7-2-97	X	·
66G00601	ME135005		water	7-3-97	×	
66G00602	ME135006		water	7-3-97	×	
66G01201MS	ME110002MS	MS	water	6-30-97	×	
66G01201MSD	ME110002MSD	MSD	water	6-30-97	X	

		******************			Table 1		······································	·	
SDG#: WF045					VALIDATION SAMPL	E TABLE			LDC#: 2345A
Project Name: NAS	Whiting	`			Parameters/Analytica	l Method			
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	SVOA (1.9)	Pesticides /PCBs (1.9)	Metals (2.1)	Cyanide
OWT05901	ME149001	ТВ	water	7-7-97	х				
OWR03401	ME149002	R	water	7-7-97	×	×	х	х	x :
OWG00501	ME149003		water	7-8-97	×	×	х	х	×
OWG00502	ME149004		water	7-8-97	x	×	х	. x	x
OWG00502D	ME149005	FD	water	7-8-97	х	×	×	х	х
OWG00503	ME149006 ,		water	7-8-97	×	×	х	х	x
OWG00503F	ME149007		water	7-8-97				x	
OWT06001	ME159001	ТВ	water	7-8-97	x				
OWG00101	ME159002		water	7-9-97	X	x	X	x	<u> </u>
OWG00101RE	ME159002RE		water	7-9-97		×			
OWG00102	ME159003		water	7-9-97	x	×	χ .	х	x
OWG00102RE	ME159003RE		water	7-9-97		×			
OWG00103	ME159004		°water	7-9-97	X	x	X	х	х
OWG00103RE	ME159004RE		water	7-9-97		x			
66T06101	ME175001	ТВ	water	7-9-97	×				
66G02301	ME175002		water	7-9-97	×	×	×	X	×
66G02301RE	ME175002RE		water	7-9-97		x	*		
66G02302	ME175003		water	7-9-97	X	×	×	X	x
66G02303	ME175004		water	7-10-97	Χ .	x	×	x	х
OWT06201	ME190001	тв	water	7-10-97	×				
OWG00302	ME190002		water	7-10-97	×	x	x	x	Х
OWG00302D	ME190003	FD	water	7-10-97	×	×	×	×	х
OWG00303	ME190004		water	7-10-97	x	х	x	x	×

7-11-97

water

OWG00301

ME190005

Х

Х

Х

Х

le 1

SDG#: WF045

VALIDATION SAMPLE TABLE

LDC#: 2345A

Project Name: NAS Whiting

Parameters/Analytical Method

Project Name: NAS Whiting Parameters/Analytical Method											
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	SVOA (1.9)	Pesticides /PCBs (1.9)	Metals (2.1)	Cyanide		
OWG00301F	ME190006		water	7-11-97				X			
OWT06401	ME226001	ТВ	water	7-14-97	X						
OWT06401DL	ME226001DL		water	7-14-97	X			·			
OWG00401	ME226002		water	7-14-97	X	х	х	x	x		
OWG00201	ME226003		water	7-15-97	X	x	×	x	x		
OWG00502MS	ME149004MS	MS	water	7-8-97	X	x	X	X	х		
OWG00502MSD	ME149004MSD	MSD	water	7-8-97	X	x	X	·			
OWG00502DUP	ME149004DUP	DUP	water	7-8-97				x	х		

T	ah	-	1

SDG#: WF046 VALIDATION SAMPLE TABLE LDC#: 2377A

Project Name: NAS Whiting Parameters/Analytical Method Pesticides QC Date VOA SVOA /PCBs Metals Client ID # Lab ID # Matrix Collected Type (1.9)(1.9)(1.9)(4.0)Cyanide OWT06501 ME241001 TB water 7-15-97 Χ 31R03301 ME241002 R 7-15-97 Χ Χ Χ Χ Χ water 31G00101 ME241003 7-15-97 Х Х Χ Х Χ water ME241004 FD Χ Х Х 31G00101D 7-15-97 Х Χ water OWT06601 ME261001 TB 7-16-97 Χ water 31G00401 ME261002 , 7-16-97 Χ Х Χ Х Χ water 31G00402 ME261003 water 7-16-97 Х 31G00403 ME261004 water 7-16-97 Х Χ 31G00301 ME261005 water 7-16-97 TB Χ 31T06701 ME305001 water 7-21-97 31G00201 ME305002 water 7-21-97 Χ Х MS 7-15-97 Х Х 31G00101MS ME241003MS water Х Χ X Χ 31G00101MSD ME241003MSD MSD water 7-15-97

Χ

7-15-97

31G00101DUP

ME241003DUP

DUP

water

le 1

SDG#: WF047					VALIDATION SAMPLE TABLE	LDC#: 2346A
Project Name: NAS	Whiting	· ·		 	Parameters/Analytical Method	
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA OLV01.0	Metals (2.1)
39W028	ME243001		water	7-15-97	X	
39W027	ME243002		water	7-15-97	X	
39W024	ME243003		water	7-15-97	X	
39W032	ME243004		water	7-15-97	x	x
39W034	ME243005		water	7-15-97	X	×
39W034D	ME243006		water	7-15-97	×	x
39W031	ME243007		water	7-15-97	X	
STOR_BLK	ME243008		water	7-17-97	x	``\
39T10001	ME244001	тв	water	7-15-97	X	
39W001	ME244002		water	7-15-97	X	3.4
39W002	ME244003		water	7-15-97	X	X
39W003	ME244004		water	7-15-97	x	
39W004	ME244005		water	7-15-97	x	· · · · · · · · · · · · · · · · · · ·
39W005	ME244006		water	7-15-97	x	
39W006	ME244007		water	7-15-97	x	
39W007	ME244008		water	7-15-97	x	
39W008	ME244009		water	7-15-97	X	
39W014	ME267001		water	7-16-97	x	
39W015	ME267002		water	7-16-97	X	
39W016	ME267003		water	7-16-97	X	X
39W012	ME267004		water	7-16-97	х	
39W012D	ME267005	FD	water	7-16-97	Х	
39W013	ME267006		water	7-16-97	X	
39W017	ME267007		water	7-16-97	х	

Table 1									
SDG#: WF047 VALIDATION SAMPLE TABLE LD									
Project Name: NAS Whiting Parameters/Analytical Method									
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA OLV01.0	Metals (2.1)			
STOR_BLK2	ME267008		water	7-18-97	X				
39W034MS	ME243005MS	MS	water	7-15-97	X	х			
39W034MSD	ME243005MSD	MSD	water	7-15-97	х				
39W034DUP	ME243005DUP	DUP	water	7-15-97		X			

- 3			
-4.1	_	4	

· · ·	····				. Die 1				
SDG#: WF048	SDG#: WF048 VALIDATION SAMPLE TABLE								
Project Name: NAS	Whiting		···		Parameters/Analytical Method				
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)				
39D002	ME245001		soil	7-15-97	X				
39D001	ME245002		soil	7-15-97	X				
39D007	ME245003		soil	7-15-97	×				
39D023	ME264001		soil	7-16-97	X				
39D026	ME264002		soil	7-16-97	· X				
39D016	ME264003		soil	7-16-97	X				
39D013	ME264004		soil	7-16-97	7 × X	,			
39D019	ME264005		soil	7-17-97	X				
39D018	ME264006		soil	7-17-97	X				
39D018D	ME264007	FD	soil	7-17-97	X				
39D022	ME264008		soil	7-17-97	х				
39R03401	ME264009	R	water	7-16-97	· x				
39D018MS	ME264006MS	MS	soil	7-17-97	×				
39D018MSD	ME264006MSD	MSD	soil	7-17-97	x				

					Table 1	
SDG#: WF049					VALIDATION SAMPLE TABLE	LDC#: 2347A
Project Name: NAS	Whiting				Parameters/Analytical Method	
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	SVOA (1.9)
39T10201	ME262001	ТВ	water	7-15-97	X	
39W023	ME262002		water	7-16-97	X	
39W026	ME262003		water	7-16-97	X	
39W025	ME262004		water	7-16-97	x	
39W029	ME262005		water	7-16-97	x	
39W030	ME262006 .		water	7-16-97	×	
39U001	ME262007		water	7-16-97	X	×
39W018	ME263001		water	7-17-97	X	
39W019	ME263002		water	7-17-97	X	
39W020	ME263003		water	7-17-97	X	
39W021	ME263004		water	7-17-97	X	
39W021D	ME263005	FD	water	7-17-97	X	
39W022	ME263006		water	7-17-97	x	
39T10401	ME263007	тв	water	7-17-97	х	
39W021MS	ME263004MS	MS	water	7-17-97	x	
39W021MSD	ME263004MSD	MSD	water	7-17-97	. X	

ble 1	·	·
VALIDATION SAMPLE TABLE		LDC#: 2360A

SDG#: WF051 VALIDATION SAMPLE TABLE								
Project Name: NAS	Whiting			T1	Parameters/Analytical Method			
Client ID #	Lab ID #	QC Type	Matríx	Date Collected	VOA (1.9)	Metals (CLP)		
16T06801	ME306001	тв	water	7-21-97	x			
16R03501	ME306002	R	water	7-21-97	Х .			
16G00401	ME306003		water	7-22-97	X .			
16G00401D	ME306004	FD	water	7-22-97	X			
16G00402	ME306005		water	7-22-97	X			
16G00403	ME306006		water	7-22-97	Х			
16T06901	ME322001	тв	water	7-22-97	· x			
16G00302	ME322002		water	7-22-97	Х	×		
16G00303	ME322003		water	7-22-97	. X	X		
16G00202	ME322004		water	7-23-97	х	X ,		
16G00203	ME322005		water	7-23-97	x	X 55.250		
16T07001	ME340001	ТВ	water	7-23-97	X	- 149		
16G00601	ME340002		water	7-23-97	x	X 24.4		
16G00601F	ME340003		water	7-23-97		X		
16G00602	ME340004		water	7-23-97	x	х		
16R03601	MW340005	R	water	7-23-97		X		
16G00304	ME340006		water	7-24-97	x	X		
16G00304F	ME340007	i,	water	7-24-97		Х		
16G00301	ME340008		water	7-24-97	X	Х .		
16G00101	ME340009		water	7-24-97	x	Х		
16G00101D	ME340010	FD	water	7-24-97	x	x		
16T07101	ME348001	тв	water	7-25-97	x			
16G00702	ME348002		water	7-25-97	X	х		
16G00702DL	ME348002DL		water	7-25-97	x			

					able 1					
SDG#: WF051	***		VALIDATION SAMPLE TABLE							
Project Name: NAS	Whiting		Parameters/Analytical Method							
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	Metals (CLP)				
16G00703	ME348003		water	7-25-97	X	х				
16G00703DL	ME348003DL		water	7-25-97	X					
16G00701	ME348004		water	7-25-97	X	x				
16G00401MS	ME306003MS	MS	water	7-22-97	X					
16G00401MSD	ME306003MSD	MSD	water	7-22-97	· X					

					e de t)		
SDG#: WF052	SDG#: WF052 VALIDATION SAMPLE TABLE							
Project Name: NAS	Whiting				Parameters/Analytical Method	·		
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (OLV01.0)			
39018	ME346001		water	7-25-97	X			
39019	ME346002		water	7-25-97	alguer a grand			
39020	ME346003		water	7-25-97	x			
39021	ME346004		water	7-25-97	· x			
39020D	ME346005	FD	water	7-25-97	x	,		
39029	ME346006		water	7-25-97	x			
39T10501	ME346007	ТВ	water	7-25-97	×			
STORAGEBLK	ME346008		water	7-26-97	X			
39020MS	ME346003MS	MS	water	7-25-97	galago a transportation and the same and was			
39020MSD	ME346003MSD	MSD	water	7-25-97	X			

					Table 1			
SDG#: WF053					VALIDATION SAMPLE TABLE	LDC#: 2384A		
Project Name: NAS Whiting Parameters/Analytical Method								
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	Metals (2.1)		
15T07201	ME367001	тв	water	7-27-97	x			
15R03701	ME367002	R	water	7-27-97	×	X		
15G00601	ME367003		water	7-27-97	x	X		
15G00602	ME367004		water	7-27-97	x	. x		
15G00602D	ME367005	FD	water	7-27-97	х	х		
15T07301	ME377001	ТВ	water	7-28-97	X			
15G00201	ME377002		water	7-28-97	X	X		
15G00101	ME377003		water	7-28-97	x	x		
15G00202	ME377004		water	7-29-97	X	X		
15G00203	ME377005		water	7-29-97	x	x		
15T07401	ME390001	ТВ	water	7-29-97	X			
15G00301	ME390002		water	7-29-97	X	X		
15G00302	ME390003		water	7-29-97	X	X		
15G00701	ME390004		water	7-30-97	x	X		
15G00702	ME390005		water	7-30-97	X	X		
15T07501	ME404001	ТВ	water	7-30-97	X			
15G00401	ME404002		water	7-30-97	x	X		
15G00703	ME404003		water	7-30-97	X	X		
15G00703D	ME404004	FD	water	7-30-97	x	X		
15G00501	ME404005		water	7-31-97	x	X		
15G00501F	ME404006		water	7-31-97		X		
15G00502	ME404007		water	7-31-97	x	X		
15G00503	ME404008		water	7-31-97	X	×		
								

7-27-97

ME367004MS

15G00602MS

MS

water

Х

Х

)		le 1									
SDG#: WF053	VF053 VALIDATION SAMPLE TABLE L										
Project Name: NAS	Whiting	•			Parameters/Analytical Method						
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	Metals (2.1)					
15G00602MSD	ME367004MSD	MSD	water	7-27-97	x						
15G00602DUP	ME367004DUP	DUP	water	7-27-97		X					

***************************************				· · · ·	Table 1			
SDG#: WF054 VALIDATION SAMPLE TABLE								
Project Name: NAS	Whiting	· · · · · · · · · · · · · · · · · · ·	T	·	Parameters/Analytical Method			
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)	Metals (2.1)		
15T07601	ME441001	тв	water	8-4-97	×			
15G00801	ME441002		water	8-4-97	×	X		
15G00801D	ME441003	FD	water	8-4-97	×	x		
15G00802	ME441004		water	8-4-97	X	×		
15R03801	ME441005	R	water	8-5-97	X	×		
15G00803	ME441006		water	8-5-97	X	X ·		
15G00303	ME441007		water	8-5-97	×	x		
30Т07701	ME450001	тв	water	8-5-97	×			
30R03901	ME450002	R	water	8-6-97	X	x		
30G00302	ME450003		water	8-6-97	X	x		
15G00801MS	ME441002MS	MS	water	8-4-97	×	x		
15G00801MSD	ME441002MSD	MSD	water	8-4-97	x			
15G00801DUP	ME441002DUP	DUP	water	8-4-97		X		

1			
n	0	1	

					Ale 1	<u> Var</u>	
SDG#: WF055					VALIDATION SAMPLE TABLE	LDC#: 2511A	
Project Name: NAS	Whiting			***************************************	Parameters/Analytical Method		
Client ID #	Lab ID #	QC Type	Matrix	Date Collected	VOA (1.9)		
OWT08001	MF004001	ТВ	water	10-27-97	X		
OWR04101	MF004002	R	water	10-27-97	X		
OWG00401	MF004003		water	10-27-97	x		
OWG00401D	MF004004		water	10-27-97	X		
13R04201	MF004005	R	water	10-28-97	X		
13G00401	MF004006		water	10-28-97	x		
OWG00401MS	MF004003MS	MS	water	10-27-97	X		
OWG00401MSD	MF004003MSD	MSD	water	10-27-97	X	e de la companya de	

Table II Summary of Rejected Data (Organics) Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		Organic Compo	unas		
SDG	Fraction	Sample	Sample Compound		
WF022	Voiatiles	Ali sampies	No rejected results	-	
	Semivolatiles	All samples	No rejected results	•	
	Pesticides & PCBS	All samples	No rejected results		
WF023	Volatiles	All samples	No rejected results	-	
	Semivolatiles	Ali samples	No rejected results		
	Pesticides & PCBs	All samples	No rejected results		
WF024	Voiatiles	All samples	No rejected results		
	Semivolatiles	All samples	No rejected results	•	
	Pesticides & PCBs	All samples	No rejected results	· ·	
WF025	Volatiles	All samples	No rejected results	-	
	Semivolatiles	All samples	No rejected results	•	
	Pesticides & PCBs	All samples	No rejected results		
WF026	Volatiles	All samples	No rejected results		
	Semivolatiles	Ali samples	No rejected results	-	
en de la companya de	Pesticides & PCBs	All samples	No rejected results	•	
WF027	Volatiles	16G00501	2-Butanone	initial & Continuing Calibration	
		16G00501D	2-Butanone	(RRF)	
		16R01501	2-Butanone	1	
		66G02101	2-Butanone		
		66G02103	2-Butanone 2-Butanone	· ·	
		66T02001	2-Butarione		
	Semivolatiles	All samples	No rejected results		
	Pesticides & PCBs	All samples	No rejected results	-	
WF028	Voiatiles	All samples	No rejected results	-	
	Semivolatiles	All samples	No rejected results		
	Pesticides & PCBs	Ali samples	No rejected results	-	
WF029	Volatiles	All samples	No rejected results		
	Semivolatiles	All samples	No rejected results		
	Pesticiaes & PCBs	All samples	No rejected results	·	
WF030	Voiatiles	All samples	No rejected results	-	
	Semivolatiles	All samples	No rejected results	-	
	Pesticides & PCBs	All samples	No rejected results	<u> </u>	
WF031	Volatiles	All samples	No rejected results	-	
	Semivolatiles	Ali samples	No rejected results	•	
	Pesticides & PCBs	All samples	No rejected results		
WF031B	Volatiles	Ali samples	No rejected results	-	
	Semivolatiles	All samples	No rejected results	-	
	Pesticides & PCBs	All samples	No rejected results		
WF032	Volatiles	All samples	No rejected results	-	
,	Semivolatiles	All samples	No rejected results	-	
	Pesticides & PCBs	29G00501	Heptachlor epoxide	Target compound identification (RT)	
	restructes & r Obs	29G00501D	Heptachlor epoxide	Target composite identification (F1)	
VACCO22	Volatilas	All campios	No second results		
WF033	Volatiles Semivolatiles	Ali şamples -Ali samples	No rejected results No rejected results	1 :	
	Pesticides & PCBs	Ali samples	No rejected results		
WEORA	Volatiles	All campion	No receipt courts		
WF034	Volatiles Semivolatiles	Ali samples Ali samples	No rejected results No rejected results		
	Pestindes & PCBs	All samples	No rejected results	•	
WF035	Volatiles Semivolatiles	All samples All samples	No rejected results No rejected results	•	
	Pesticides & PCBs	ANI MAITINES	IND rejected results	•	

Company of the contract of the

Table II

Summary of Rejected Data (Organics) Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

WF006 Volaties All sumples No reactor results No reactor resul	Semivolatives	SDG	Fraction	Sample	Compound	Reason
Semudaties	Seminotation	WF036	Volatiles	All samples	No rejected results	
Pestodes & PCBs All samples No recited results - Volatives Semivolations All samples No recited results - Pestodes & PCBs All samples No recited results - Volatives All samples No recited results - Volatives All samples No recited results - WF009 Volatives All samples No recited results - WF001 Volatives All samples No recited results - WF004 Volatives All samples No recited re	Pestiodes & PCBs			All samples	No rejected results	
Semivolative All semples All semples No refected results	Servivolatiles			Ali samples	No rejected results	•
Semi-volatiles	Semivolatiles	WE037	Vojatries	All samples	No rejected results	
Pesticides & PCBs	MF038 Voisities All samples No rejected results MF039 Voisities All samples No rejected results MF040 Volatiles All samples No rejected results MF041 Volatiles All samples No rejected results Semivolaties All samples No rejected results Festioles & PCBs All samples No rejected results MF042 Volatiles All samples No rejected results MF043 Volatiles All samples No rejected results MF044 Volatiles All samples No rejected results MF045 Volatiles All samples No rejected results MF046 Volatiles All samples No rejected results MF047 Volatiles All samples No rejected results MF048 Volatiles All samples No rejected results MF049 Volatiles All samples No rejected results MF041 Volatiles All samples No rejected results MF045 Volatiles<	771 007		1	•	_
Volatiles	WF040 Volatiles All samples No rejected results WF041 Volatiles All samples No rejected results WF041 Volatiles All samples No rejected results WF042 Volatiles All samples No rejected results WF043 Volatiles All samples No rejected results WF044 Volatiles All samples No rejected results WF045 Volatiles All samples No rejected results WF046 Volatiles All samples No rejected results WF047 Volatiles All samples No rejected results WF048 Volatiles All samples No rejected results WF049 Volatiles All samples No rejected results WF040 Volatiles All samples No rejected results WF041 Volatiles All samples No rejected results WF041 Volatiles All samples No rejected results WF042 Volatiles All samples No rejected results WF043 Volatiles All samples No rejected results WF044 Volatiles All samples No rejected results WF045 Volatiles All samples No rejected results WF046 Volatiles All samples No rejected results WF047 Volatiles All samples No rejected results WF048 All samples No rejected results WF048 All samples No rejected results WF049 All samples No rejected results No rejected results WF049 Al				1	· ·
WF040 Volatiles All samples No rejected results - WF041 Volatiles All samples No rejected results - WF042 Volatiles All samples No rejected results - WF043 Volatiles All samples No rejected results - WF044 Volatiles All samples No rejected results - WF045 Volatiles All samples No rejected results - WF046 Volatiles All samples No rejected results - WF047 Volatiles All samples No rejected results - WF048 Volatiles All samples No rejected results - WF049 Volatiles All samples No rejected results - WF040 Volatiles All samples No rejected results - WF040 Volatiles All samples No rejected results - WF040 Volatiles All samples No rejected results - WF041 Volatiles All samples No rejected results - WF041 Volatiles All samples No rejected results - WF042 Volatiles All samples No rejected results - WF044 Volatiles All samples No rejected results - WF045 Volatiles All samples No rejected results - WF046 Volatiles All samples No rejected results - WF047 Volatiles All samples No rejected results - WF048 Volatiles All samples No rejected results - WF049 Volatiles All samples No rejected result	WF040 Volatiles All samples No rejected results WF041 Volatiles All samples No rejected results Pestionce & PCBS All samples No rejected results WF042 Volatiles All samples No rejected results WF043 Volatiles All samples No rejected results WF044 Volatiles All samples No rejected results WF045 Volatiles All samples No rejected results WF046 Volatiles All samples No rejected results WF047 Volatiles All samples No rejected results WF048 Volatiles All samples No rejected results WF049 Volatiles All samples No rejected results WF040 Volatiles All samples No rejected results WF041 Volatiles All samples No rejected results WF042 Volatiles All samples No rejected results WF043 Volatiles All samples No rejected results WF044	WF038	Volatiles	All samples	No rejected results	
WF041 Volatiles All samples No relected results No relected results - No relected result	WF041 Volatiles AP Dis All samples No rejected results No rejected results - No rejected	WF039	Volatiles	All samples	No rejected results	
Semivolatiles All samples No rejected results	Semivolatiles Pesticues & PCBs Ail samples No rejected results	WF040	Volatiles	All samples	No rejected results	
Semivolatiles All samples No rejected results	Semivolatiles Pesticues & PCBs Ail samples No rejected results	MEOAA	Volatiles	All complete	No rejected our its	
Pesticules & PCBs All samples No rejected results	WF042 Volatiles All samples No rejected results WF043 Volatiles All samples No rejected results WF044 Volatiles All samples No rejected results WF045 Volatiles All samples No rejected results WF046 Volatiles All samples No rejected results WF047 Volatiles All samples No rejected results WF048 Volatiles All samples No rejected results All samples No rejected results No rejected results	** FU41	i	1		1
WF042 Volables All samples No rejected results WF043 Volables All samples No rejected results WF044 Volables All samples No rejected results WF045 Volables All samples No rejected results All samples No rejected results - Verbicoles & PCBs All samples No rejected results - Verbicoles & PCBs All samples No rejected results - No rejected results - - Volatiles 39T1C01 Acetone & 2-Butanone All samples No rejected results -	WF042 Volatiles All samples No rejected results WF044 Volatiles All samples No rejected results WF045 Volatiles All samples No rejected results WF046 Volatiles All samples No rejected results Sernivolatiles All samples No rejected results Pesticides & PCBs All samples No rejected results Sernivolatiles All samples No rejected results Sernivolatiles All samples No rejected results Sernivolatiles All samples No rejected results Pesticides & PCBs All samples No rejected results Sernivolatiles Sernivolatiles All samples No rejected results Sernivolatiles Sernivolatiles All samples No rejected results Sernivolatiles Sern		1	1		•
WF044 Volatiles All samples No rejected results WF045 Volatiles All samples No rejected results WF046 Volatiles All samples No rejected results Semivolatiles Pesticides & PCBs All samples No rejected results Pesticides & PCBs All samples No rejected results Semivolatiles All samples No rejected results Pesticides & PCBs All samples No rejected results Semivolatiles All samples No rejected results Semivolatiles All samples No rejected results Semivolatiles Semivolatiles All samples No rejected results Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivolatiles Semivo	WF044 Volatiles All samples No rejected results WF045 Volatiles All samples No rejected results Sernivolatiles All samples No rejected results Pesticides & PCBs All samples No rejected results Pesticides & PCBs All samples No rejected results Pesticides & PCBs All samples No rejected results Sernivolatiles All samples No rejected results Pesticides & PCBs PCBs All samples No rejected results Pesticides & PCBs PCBs PCBs PCBs PCBs PCBs PCBs PCBs		Pesticides & PCBs	All samples	No relected results	
WF044 Volatiles All samples No rejected results WF045 Volatiles Semivolatiles Pesticides & PCBs All samples All sa	WF044 Volatiles All samples No rejected results WF045 Volatiles All samples No rejected results - Semvolatiles All samples No rejected results - Volatiles All samples No rejected results - Semvolatiles All samples No rejected results - Semvolatiles All samples No rejected results - Volatiles 39110001 Acetone & 2-Butanone Initial & Continuing Calibra delete 39W002 Acetone & 2-Butanone Acetone & 2-Butanone (RRF) 39W003 Acetone & 2-Butanone Acetone & 2-Butanone Acetone & 2-Butanone 39W004 Acetone & 2-Butanone Acetone & 2-Butanone Acetone & 2-Butanone 39W005 Acetone & 2-Butanone Acetone & 2-Butanone Acetone & 2-Butanone 39W012 Acetone & 2-Butanone Acetone & 2-Butanone Acetone & 2-Butanone 39W014 Acetone & 2-Butanone Acetone & 2-Butanone Acetone & 2-Butanone 39W015 Acetone & 2-Butanone Acetone & 2-Butanone Acetone & 2	WF042	Volatiles	Ali samples	No rejected results	
WF045 Volatiles All samples All samples No rejected results No rejected resu	WF045 Volatiles All samples All samples No rejected results	WF043	Volatiles	All samples	No rejected results	<u>-</u>
Sernivolatiles	Semivolatiles	WF044	Volatiles	All samples	No rejected results	-
Semivolatiles Pestindes & PCBs	Semivolatiles	WF045	Volatiles	All samples	No rejected results	
Pesticides & PCBs	Pesticides & PCBs	5-15	l .	I	1 *	
Volatiles All samples No rejected results No rejected resu	Volatiles Semivolatiles All samples No rejected results					
Semivolatiles	Semivolatiles			1		
Pesticides & PCBs	Pesticides & PCBs	WF046	Volatiles	Ali samples	No rejected results	•
Volatiles	Volatiles 39T10c01			All samples	No rejected results	-
39W001 Acetone & 2-Butanone 39W002 Acetone & 2-Butanone 39W003 Acetone & 2-Butanone 39W004 Acetone & 2-Butanone 39W005 Acetone & 2-Butanone 39W006 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W013 Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W021 2-Butanone 39W021 2-Butanone 39W021 2-Butanone 39W023 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone	Acetone & 2-Butanone (RRF)		Pesticides & PCBs	All samples	No rejected results	<u> </u>
39W001 Acetone & 2-Butanone (RRF)	Acetone & 2-Butanone (RRF)	-047	Volatiles	39T10001	Acetone & 2-Butanone	Initial & Continuing Calibration
39W002 Acetone & 2-Butanone 39W004 Acetone & 2-Butanone 39W005 Acetone & 2-Butanone 39W005 Acetone & 2-Butanone 39W006 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W006 2-Butanone 39W012 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W013 Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W027 2-Butanone 39W027 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 39W034 Acetone & 2-Butanone 39W034 39W034 39W0340 Acetone & 2-Butanone 39W0340 39W0340 Acetone & 2-Butanone 39W0340	39W002 Acetone & 2-Butanone Acetone & 2			39W001	Acetone & 2-Butanone	
39W003 Acetone & 2-Butanone 39W004 Acetone & 2-Butanone 39W005 Acetone & 2-Butanone 39W006 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W013 Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 39W024 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W0340 Acetone & 2-Butanone 39W0340 Acetone	39W003 Acetone & 2-Butanone 39W005 Acetone & 2-Butanone 39W005 Acetone & 2-Butanone 39W006 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W013 Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W024 2-Butanone 39W024 2-Butanone 39W027 2-Butanone 39W027 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W0340 Acetone & 30W0340 Acetone & 30W0340 Acetone & 30W0340 Acetone &			39W002	,	,
39W004 Acetone & 2-Butanone 39W005 Acetone & 2-Butanone 39W006 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W006 2-Butanone 39W012 Acetone & 2-Butanone 39W012D Acetone & 2-Butanone 39W013D Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W027 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 3-Butanone 39W034D Acetone & 3	39W004 Acetone & 2-Butanone 39W005 Acetone & 2-Butanone 39W006 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W012D Acetone & 2-Butanone 39W013D Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W027 2-Butanone 39W027 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone			1	•	
39W006 Acetone & 2-Butanone	39W005 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W007 Acetone & 2-Butanone 39W008 2-Butanone 39W012 Acetone & 2-Butanone 39W012D Acetone & 2-Butanone 39W013 Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W024 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone 39W034D			1		
39W006 Acetone & 2-Butanone Acetone & 2-Butanone 2-Butanone 2-Butanone 39W012 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone Acetone & 2-Butanone 39W013 Acetone & 2-Butanone Acet	39W006 Acetone & 2-Butanone 39W005 2-Butanone 2-Butanone 39W012 Acetone & 2-Butanone 39W012 Acetone & 2-Butanone 39W012D Acetone & 2-Butanone 39W013 Acetone & 2-Butanone Acetone & 2-Butanone 39W014 Acetone & 2-Butanone Acetone & 2-Butanone 39W015 Acetone & 2-Butanone Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 2-Butanone 39W024 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone 39W034D 39W034			1	3	
39W007 39W006 2-Butanone 39W012 Acetone & 2-Butanone 39W012D Acetone & 2-Butanone 39W013 Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W024 2-Butanone 39W027 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 39W034 Acetone & 2-Butanone 2-Butanone 39W034 39W034 2-Butanone 39W034	39W007 Acetone & 2-Butanone 2-Butanone 2-Butanone 2-Butanone 39W012 Acetone & 2-Butanone Acetone & 2-Butanone 39W012D Acetone & 2-Butanone 39W013 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone Acetone & 2-Butanone 39W024 2-Butanone 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone 39W034D Acetone & 2-Butanone 39W034D Acetone & 2-Butanone 39W034D Acetone & 2-Butanone 39W034D 39W034D Acetone & 2-Butanone 39W034D Acetone & 2-Butanone 39W034D Acetone & 2-Butanone 39W034D 39				•	
39W012 Acetone & 2-Butanone 39W012D Acetone & 2-Butanone 39W013D Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W024 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 Acetone & 2-Butanone 5TOR_BLK 5TOR_BLK 2-Butanone	39W008 2-Butanone 39W012 Acetone & 2-Butanone 39W012D Acetone & 2-Butanone 39W013 Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W024 2-Butanone 39W027 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone 39W034D Aceton			l .	•	
39W012 39W012D 39W013 Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W024 2-Butanone 39W027 2-Butanone 39W028 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 39W034 39W034D Acetone & 2-Butanone 2-Butanone 39W034D STOR_BLK 2-Butanone 2-Butanone 2-Butanone 3-Butanone 3-Butanone 3-Butanone 3-Butanone 3-Butanone 3-Butanone 3-Butanone	39W012 Acetone & 2-Butanone 39W013 Acetone & 2-Butanone 39W013 Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W024 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W0340 Acetone & 2-Butanone 39W034D Acetone & 2-Butanone					
39W012D Acetone & 2-Butanone 39W013 Acetone & 2-Butanone A	39W012D 39W013 Acetone & 2-Butanone 39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone 39W016 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W024 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone 39W034D STOR_BLK 2-Butanone 39W034D STOR_BLK 2-Butanone			t e	l .	
39W013	39W013		· ·	1	l '	
39W014 Acetone & 2-Butanone 39W015 Acetone & 2-Butanone Acetone & 2-Butanone Acetone & 2-Butanone 39W017 Acetone & 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone 39W034D 39W034D Acetone & 2-Butanone 39W034D 39	39W014 39W015 Acetone & 2-Butanone 39W027 39W024 2-Butanone 39W027 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 39W034 39W034 2-Butanone 4-Butanone 39W034D Acetone & 2-Butanone 39W034D STOR_BLK 2-Butanone 4-Butanone			1		
39W015 39W016 39W017 Acetone & 2-Butanone 39W024 39W027 39W028 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 39W034 2-Butanone 39W034 39W034 2-Butanone 39W034 39W	39W015		*	F .		
39W016 39W017 Acetone & 2-Butanone 39W024 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 39W034D Acetone & 2-Butanone 2-Butanone 35TOR_BLK 2-Butanone 2-Butanone 2-Butanone 2-Butanone 2-Butanone 3-Butanone 3-Butanone 3-Butanone	39W016					
39W017 39W024 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone 39W034D STOR_BLK 2-Butanone 3-Butanone 3-Butanone 3-Butanone 3-Butanone 3-Butanone 3-Butanone 3-Butanone 3-Butanone	39W017				•	
39W024 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone 2-Butanone STOR_BLK 2-Butanone	39W024 2-Butanone 39W027 2-Butanone 39W028 2-Butanone 39W031 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W0340 Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK 2-Butanone STOR_BLK2 2-Butanone STOR_BLK2 2-Butanone STOR_BLK2 2-Butanone STOR_BLK2 2-Butanone STOR_BLK2 2-Butanone STOR_BLK2 3-Butanone STOR_BLK2 3-Butanone STOR_BLK2 3-Butanone			l control of the cont	1	
39W027 39W028 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK 2-Butanone	39W027 39W028 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK 2-Butanone STOR_BLK 2-Butanone			N Company of the Comp	•	1
39W028 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK 2-Butanone STOR_BLK2 2-Butanone	39W028 2-Butanone 39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK 2-Butanone STOR_BLK2 2-Butanone STOR_BLK2 2-Butanone STOR_BLK3 3-Butanone STOR_BLK4 3-Butanone STOR_BLK5 3-Butanone STOR_BLK5 3-Butanone STOR_BLK5 3-Butanone STOR_BLK5 3-Butanone STOR_BLK5 3-Butanone 3-Buta					
39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK2 2-Butanone 2-Butanone 39W034D 39W	39W031 2-Butanone 39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK2 2-Butanone 39W034					
39W032 Acetone & 2-Butanone 39W034 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK2 2-Butanone 2-Butanone 3-Butanone	39W032 Acetone & 2-Butanone 2-Butanone 39W0340 Acetone & 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone 2-Butanone STOR_BLK2 2-Butanone				i	
39W034 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK2 2-Butanone	39W034 2-Butanone 39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK2 2-Butanone WEQAB. Volation					
39W034D Acetone & 2-Butanone STOR_BLK 2-Butanone STOR_BLK2 2-Butanone	39W034D Acetone & 2-Butanone 2-Butanon					
STOR_BLK 2-Butanone STOR_BLK2 2-Butanone	STOR_BLK STOR_BLK2 2-Butanone 2-Butanone 2-Butanone 2-Butanone					
STOR_BLK2 2-Butanone	STOR_BLK2 2-Butanone WEGGR Valence All semples All semples				l l	
	WEORS Volation All semples					
	WF048 Volatiles All samples No rejected results					

Table II

Summary of Rejected Data (Organics) Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG	Fraction	Sample	Compound	Reason
WF049	Volaties	39T13201 39T13201 39W016 39W019 39W021 39W021 39W021 39W022 39W023 39W023 39W025 39W025 39W025 39W025	Acetone & 2-Butanone Acetone & 2-Butanone Acetone 2-Butanone Acetone & 2-Butanone 2-Butanone 2-Butanone 2-Butanone	Initial & Continuing cameration (BAF)
WF049	Semivolatiles	Ail samples	No rejected results	·
WF051	Volatiles	Al: samples	No rejected results	
WF052	Volatiles	39G016 39G019 39G020 39G020D 39G021 39G029 39R10501 STORAGE BLK	Acetone & 2-Butanone Acetone	Initial & Continuing Calibration (ARF)
WF053	Volatiles	All samples	No rejected results	-
WF054	Volatiles	All samples	No rejected results	
WF055	Volatiles	Ali sampies	No rejected results	-

and the same and t

Table III Summary of Rejected Data (Inorganics) Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		Inorganic Analytes	· · · · · · · · · · · · · · · · · · ·	
SDG	Fraction	Sample	Analyte	Reason
WF022	All metals Cyanide	All samples All samples	No rejected results No rejected results	-
WF023	All metals Cyanide	Ali samples Ali samples	No rejected results No rejected results	÷
WF024	All metals Cyanide	All samples All samples	No rejected results No rejected results	
WF025	All metals Cyanide	All samples All samples	No rejected results No rejected results	-
WF026	All metals Cyanide	All samples All samples	No rejected results No rejected results	-
WF027	Ali metais Cyanide	All samples All samples	No rejected results No rejected results	-
WF028	All metals Cyanide	All samples All samples	No rejected results No rejected results	-
WF029	All metals Cyanide	All samples All samples	No rejected results No rejected results	
WF030	All metals Cyanide	All samples All samples	No rejected results No rejected results	-
WF031	All metals	All samples	No rejected results	-
	Cyanide	05G00101 05G00301 05G00802 05G00802 05G00901 05G01001 05G01001 05G01002 05R01901 33G00101 33G00201 33G00301D 33G00301D 33G00301D	Cyanide	Matrix spike (%R)
WF031B	All metals Cyanide	All samples All samples	No rejected results No rejected results	-
WF032	Ali metals Cyanide	All samples All samples	No rejected results No rejected results	. <u>-</u>
WF033	All metals Cyanide	Ali sampies Ali sampies	No rejected results No rejected results	-
WF034	All metals Cyanide	All samples All samples	No rejected results No rejected results	-
WF035	All metals Cyanide	All samples All samples	No rejected results No rejected results	
WF036	All metais Cyanide	All samples All samples	No rejected results No rejected results	-
WF037	All metals	All samples	No rejected results	
	Cyanide	15F00201	Cyanide	Matrix spike (%A)
WF041	All metals Cyanide	All samples All samples	No rejected results No rejected results	:

Table III Summary of Rejected Data (Inorganics) Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes

SDG	Fraction	Sample	Analyte	Reason
WF045	All metals Cyanide	All samples All samples	No rejected results No rejected results	
WF046	All metals Cyanide	All samples All samples	No rejected results No rejected results	·
WF047	All metals	All samples	No rejected results	
WF051	All metals	All samples	No rejected results	•
WF053	All metals	All samples	No rejected results	-
WF054	All metais	Ali samples	No rejected results	

Table IV

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		· · · · · · · · · · · · · · · · · · ·		· 	,			
	-	Compound	Criter	ria 	% Recovery			
SDG	Client ID		% Recovery	RPD	MS	MSD	RPD	Qualifier
WF022	BKG00101	Volatiles	•	-	-		-	None
		Semivolatiles			ļ			
		4-Chloro-3-methylphenol	23-97	-	108	115		J (all detects)
		4-Nitrophenol	10-80		88	93	_	J (all detects)
		2,4-Dinitrotoluene	24-96	-	100	108		J (all detects)
		Pentachlorophenol	9-103	-	106	118		J (all detects)
		1						, , , , , , , , , , , , , , , , , , , ,
		Pesticides/PCBs	-	-	<u> </u>	<u> </u>	-	None
WF023	02G00301	Volatiles	•	•			•	None
		Semivolatiles						
		4-Nitrophenol	10-80		88	82		J (all detects)
		2,4-Dinitrotoluene	24-96		97			J (all detects)
	į	Pentachlorophenol	9-103	•	139	122		J (all detects)
···		Pesticides/PCBs	-		<u> </u>	-	•	None
WF024	15G00701	Volatiles	-	•	•		-	None
		<u> </u>			j	j		
		Semivolatiles			1	1		
	,	4-Nitrophenol	10-80	-	100	102	-	J (all detects)
		2,4-Dinitrotoluene	24-96	•	102	106	-	J (all detects)
		Pentachlorophenol	9-103	•	147	148	-	J (all detects)
		Pesticides/PCBs		_				None
WF025	15G00601	Volatiles		•	-		-	None
		Semivolatiles						
		4-Nitrophenol	10-80	-	99	102	•	J (all detects)
		2,4-Dinitrotoluene	24-96		101	103	•	J (all detects)
		Pentachlorophenol	9-103	•	124	130	٠	J (all detects)
		Pesticides/PCBs		-	_	.	-	None

Table IV

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

			Crite	ria	% Recovery			
SDG	Client ID	Compound	% Recovery	RPD	MS	MSD	APD	Qualifier
WF026	15G00803	Volatiles	-	-	-		-	None .
		Semivolatiles 4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol 2,4-Dinitrotoluene Pesticides/PCBs	23-97 10-80 9-103 24-96		99 108 140 -	- 114 144 100	-	J (all detects) J (all detects) J (all detects) J (all detects) None
WF027	16G00501	Volatiles				<u> </u>		
52.	100000	Benzene	-	≤11	-	•	12	J
	·	Semivolatiles 4-Nitrophenol Pentachlorophenol	10-80 9-103	-	91 104	91 104		J (all detects) J (all detects)
	ļ	Pesticides/PCBs		<u>-</u>	-	-	<u>-</u>	None
WF028	12G00101	Volatiles	-	•		-	-	None
		Semivolatiles 4-Nitrophenol	10-80		83	-	-	J (all detects)
		Pesticides/PCBs		•			-	None
WF029	14G00101	Volatiles	-	•	-	-	-	None
		Semivolatiles 4-Nitrophenol Pentachlorophenol	10-80 9-103	-	88	91 106	.	J (all detects) J (all detects)
	·	Pesticides/PCBs	-	-		-		None
WF030	66G00601	Volatiles	•	-	-	-	•	None
		Semivolatiles 4-Nitrophenol	10-80	-	85	89	-	J (all detects)
		Pesticides/PCBs		•	••		-	None

Table IV

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

ı				ria .	% Red	covery		
SDG	Client ID	Compound	% Recovery	RPD	MS	MSD	RPD	Qualifier
WF031	05G01001	Volatiles	-	-		-	-	None
		Semivolatiles		ļ				
		Phenol		≤42			50	None
		2-Chlorophenol		≤40	_		50	None
		4-Chloro-3-methylphenol		≤42	-	-	51	None -
		4-Nitrophenol	10-80	≲50	[-]	95	58	None
		Pentachlorophenol		≤50	-	-	52	None
	·	1,4-Dichlorobenzene		≤28	-		45	J
		N-Nitroso-di-n-propylamine	-	≤38			56	J
		1,2,4-Trichlorobenzene		≤28	-		41	J
		Acenaphthene	-	≤31	-	-	84	J
	1	2,4-Dinitrotoluene	-	≤38	-	•	52	J
		Pyrene	•	≤31		-	54	J
			, .					
		Pesticides/PCBs	•	•		-	-	None
WF031B	None	Volatiles	-	-	-		-	
•		Semivolatiles	-	-	-	-	-	-
		Pesticides/PCBs	<u> </u>	-	-	•	•	-
WF032	29G00501	Volatiles	- :					None
		Semivolatiles		-	-	•	•	None
		Pesticides/PCBs	<u> </u>	-	•	•	-	None
WF033	66G00201	Volatiles				,		
		1,1-Dichloroethene		≤14	•	•	16	None
		Semivolatiles						•
		4-Nitrophenol	10-80	-		83	•	None .
		Pesticides & PCBs	-	•	-		-	None
WF034	30G00301	Volatiles	-	•	-	•	<u>-</u>	None
		Complete Lakillan						İ
		Semivolatiles Acenaphthene	46-118	. ≤31	44	_ '	37	None
		1,4-Dichlorobenzene	1 40-110	≤31 ≤28	74		33	None
		1,2,4-Trichlorobenzene		≤28			34	None
		2,4-Dinitrotoluene		≤28 ≤38			40	None
	1	Pyrene	1	<u>≤</u> 30	i		36	None

Table IV

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

			Crite	ria	% Re	covery		
SDG	Client ID	Compound	% Recovery	RPD	MS	MSD	RPD	Qualifier
WF034 cont.	30G00301	Pesticides/PCBs	-	-		-		None
WF035	66G01701	Volatiles Semivolatiles Pesticides/PCBs	- - -	- -	•	- - -	- - -	None None None
WF036	54G00101	Volatiles Semivolatiles 4-Nitrophenol 1.4-Dichlorobenzene 1,2,4-Trichlorobenzene Pesticides/PCBs	10-80	≤28 ≤28	101	81 - -	30 36	None None J J None
WF037	15G00803	Volatiles	-	-		-	•	None
WF038	36BO0303	Volatiles		-	<u> </u>	-	-	None
WF039	35BO0203	Volatiles	-	-	-		•	None
WF040	37BO0203	Volatiles	-	-	-	-	•	None
WF041	35G00101	Volatiles Semivolatiles Pesticides & PCBs Aldrin	- - 40-120		124	121	•	None None J (all detects)
WF042	05G00902	Volatiles		_	-		•	None
WF043	05G00802	Volatiles		•		-	-	None
WF044	66G01201	<u>Volatiles</u> Trichloroethene	-	≤14	-	•	40	None
WF045	OWG00502	Volatiles <u>Semivolatiles</u> 4-Nitrophenol 2,4-Dinitrotoluene	- 10-80 24-96	•	- 96 -	109 100	-	None J (all detects) J (all detects)

Taple IV

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike/Matrix Spike Duplicates Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

			-					
			Crite	ria	% Red	covery		
SDG	Client ID	Compound	% Recovery	RPD	MS	MSD	RPD	Qualifier
WF045 cont.	OWG00502	Pesticides & PCBs						
		gamma-BHC	-	≤15	-	-	28	J
		Heptachlor	-	≲20	·		24	J
		Aldrin	40-120	≤22	<u>-</u>	128	29	J
		Dieldrin	52-126	≤18	-	134	22	J
		Endrin	56-121	≤21	·	144	22	J
WF046	31G00101	Volatiles	-	-	-	-		None
		Semivolatiles 4-Nitrophenol	10-80	-	88	96		J (all detects)
		Pesticides & PCBs			1	<u>l</u> .		
		Endrin	56-121	-	127	-	-	J (all detects)
WF047	39W034	Volatiles	-	•	•	-	• 100	None
WF048	39D018	Volatiles		-	•	-	-	None
WF049	39W021	Volatiles	-	•	-		-	None
	None	Semivolatiles	-	-	-	·	-	None
WF051	16G00401	Volatiles	-	-	•	-	-	None
WF052	39020	Volatiles	-		•		-	None
WF053	15G00602	Volatiles	-	-		-	-	None
WF054	15G00801	Volatiles	-	-	•	-	-	None
WF055	13G00401	Volatiles	-		-	-		None

SDG		RPD		
WF022	Client ID Laboratory ID Collection Date	BKG00101 RB858003 7/16/96	BKG00101D RB858004 7/16/96	
	Acetone	ND	8 ug/L	Not calculable
	Semivolatiles Pesticides/PCBs	ND ND	ND ND	-
WF022	Client ID Laboratory ID Collection Date	01G00102 RB873008 7/19/96	01G00102D RB873009 7/19/96	
	Acetone	4 ug/L	2 ug/L	67
	Semivolatiles Pesticides/PCBs	ND ND	ND ND	-
WF023	Client ID Laboratory ID Collection Date	02G00301 RB887012 7/24/96	02G00301D RB887013 7/24/96	
	Acetone Carbon disulfide	ND 1 ug/L	10 ug/L ND	Not calculable Not calculable
	Semivolatiles Pesticides/PCBs	ND ND	ND ND	- -
WF024	Client ID Laboratory ID Collection Date	15G00701 RB920009 7/31/96	15G00701D RB920010 7/31/96	
	Acetone	2	ND	Not calculable
	Semivolatiles Pesticides/PCBs	ND ND	ND ND	•
WF025	Client ID Laboratory ID Collection Date	15G00601 RB956006 8/7/96	15G00601D RB956008 8/7/96	
	Acetone 1.2-Dichloroethene (total) Chlorobenzene Ethylbenzene	5 ug/L 1 ug/L 5 ug/L 10U ug/L	8 ug/L 1 ug/L 5 ug/L 1 ug/L	46 0 0 Not calculable
	1,4-Dichlorobenzene Naphthaiene Diethyiphthalate	12 ug/L 4 ug/L 1 ug/L	12 ug/L 4 ug/L 1 ug/L	0 0
	Pesticides/PCBs	ND	ND	•
WF026	Client ID Laboratory ID Collection Date	15G00803 RB980007 8/14/96	15G00803D RB980008 8/14/96	
	Acetone 2-Butanone Trichloroethene	25 ug/L 7 ug/L 4 ug/L	5 ug/L 10U ug/L 4 ug/L	133 Not calculable 0
	Bis (2-ethylhexyl) phthalate	2 ug/L	1 ug/L	67
	4,4'-DDT	0.16 ug/L	0.079 ug/L	68

SDG		RPD		
WF026	Client ID Laboratory ID Collection Date	16G00403 RB980020 8/16/96	16G00403D RB980021 8/16/96	
	Acetone 1,2-Dichloroethene (total) Benzene	3 ug/L 1 ug/L 600 ug/L	2 ug/L 2 ug/L 600 ug/L	40 67 0
	Phenol Naphthalene Bis(2-ethylhexyl)phthalate	8 ug/L 1 ug/L 1 ug/L	8 ug/L 2 ug/L 10U ug/L	0 67 Not calculable
	Pesticides/PCBs	ND	ND	None
WF026	Client ID Laboratory ID Collection Date	16G00403DL RB980020DL 8/16/96	16G00403DDL RB9890021DL 8/16/96	
	Acetone Benzene	18 ug/L 700 ug/L	24 ug/L 740 ug/L	29 6
WF027	Client ID Laboratory ID Collection Date	16G00501 RC016009 8/21/96	16G00501D RC016013 8/21/96	
	Volatiles	ND	ND	None
	Bis(2-ethylhexyl)phthalate	2 ug/L	10U ug/L	Not calculable
	Pesticides/PCBs	ND	ND ND	None
WF027	Client ID Laboratory ID Collection Date	09G00301 RC016019 8/23/96	09G00301D RC016020 8/23/96	
	Acetone 2-Butanone	46 ug/L 2 ug/L	18 ug/L 10U ug/L	88 Not calculable
	Semivolatiles Pesticides/PCBs	ND ND	ND ND	None None
WF028	Client ID Laboratory ID Collection Date	11G00201 RC044011 8/28/96	11G00201D RC044018 8/28/96	
	Acetone	5 ug/L 11 ug/L		75
	Phenol Bis(2-ethylhexyl)phthalate	4 ug/L 5 ug/L	6 ug/L 4 ug/L	40 22
	Pesticides/PCBs	ND	ND	None
WF028	Client ID Laboratory ID Collection Date	12G00101 RC044012 8/27/96	RC044012 RC044017	
	Acetone	3 ug/L	6 ug/L	67
	Bis (2-ethylhexyl) phthalate	2 ug/L	2 ug/L	o
	Pesticides/PCBs	ND	ND	None

SDG		Organic Compounds			
WF029	Client ID Laboratory ID Collection Date	14G00101 RC092007 9/11/96	14G00101D RC092009 9/11/96		
	Acetone Carbon disulfide Methylene chloride	8 ug/L 3 ug/L 1 ug/L	4 ug/L 10U ug/L 10U ug/L	67 Not calculable Not calculable	
	Bis(2-ethylhexyl)phthalate	4 ug/L	4 ug/L	o	
	Pesticides/PCBs	ND	ND	None	
WF030	Client ID Laboratory ID Collection Date	66G00601 RC121007 9/18/96	66G00601D RC121011 9/18/96		
	Acetone Methylene chloride	2 ug/L 2 ug/L	8 ug/L 10U ug/L	120 Not calculable	
	Bis (2-ethylhexyl) phthalate	2 ug/L	3 ug/L	40	
	Pesticides/PCBs	ND ·	ND	None	
WF030	Client ID Laboratory ID Collection Date	66G02203 RC121016 9/20/96	66G02203D RC121017 9/20/96		
	Acetone	4 ug/L	10U ug/L	Not calculable	
	Bis(2-ethylhexyl)phthalate	2 ug/L	10U ug/L	Not calculable	
	Pesticides/PCBs	ND	ND	None	
WF031	Client ID Laboratory ID Collection Date	05G01001 MB928007 9/25/96	05G01001D MB928012 9/25/96		
	Volatiles Semivolatiles Pesticides/PCBs	ND ND ND	ND ND ND	None None None	
WF031	Client ID Laboratory ID Collection Date	33G00301 MB958006 9/27/96	33G00301D MB958007 9/27/96		
	1,1-Dichloroethene 1,2-Dichloroethene (total) Trichloroethene	5 ug/L 4 ug/L 300 ug/L	6 ug/L 3 ug/L 300 ug/L	18 29 0	
	Di-n-butylphthalate	1 ug/L	1 ug/L	o	
	Pesticides/PCBs	ND	ND	None	

SDG		Organic Compounds	ganic Compounds			
WF032	Client ID Laboratory ID Collection Date	29G00501 MC011007 10/2/96	29G00501D MC011008 10/2/96			
	Volatiles Semivolatiles Pesticides/PCBs	ND ND ND	ND ND ND	None None None		
WF033	Client ID Laboratory ID Collection Date	66G00201 MC118002 10/9/96	66G00201D MC118003 10/9/96			
	Trichioroethene Toluene	1 ug/L 1 ug/L	1 ug/L 1 ug/L	0		
	Semivolatiles Pesticides/PCBs	ND ND	ND ND	None None		
WF034	Client ID Laboratory ID Collection Date	30G00301 MC153005 10/16/96	30G00301D MC153008 10/16/96			
	1,2-Dichloroethene (total) Trichloroethene	31 ug/L 340 ug/L	31 ug/L 340 ug/L	0 0		
	Di-n-butylphthalate	2 ug/L	10U ug/L	Not calculable		
	Pesticides/PCBs	ND	ND ·	None		
WF035	Client ID Laboratory ID Collection Date	66G01701 MC214005 10/23/96	66G01701D MC214007 10/23/96			
	Volatiles	ND	ND	None		
	Di-n-butylphthalate	3 ug/L	2 ug/L	40		
	Pesticides/PCBs	ND	ND	None		
WF036	Client ID Laboratory ID Collection Date	54G00101 MC262004 10/30/96	54G00101D MC262008 10/30/96			
	Volatiles	ND	ND	None		
	Diethylphthalate Di-n-butylphthalate	1 ug/L 1 ug/L	10U ug/L 10U ug/L	Not calculable Not calculable		
***	Pesticides/PCBs	ND	ND	None		
WF037	Client ID Laboratory ID Collection Date	15G00803 MC424007 11/20/96	15G00803D MC424008 11/20/96			
	Trichloroethene	5 ug/L	5 ug/L	0		
WF038	Client ID Laboratory ID Collection Date	36BO0303 MC687010 12/17/96	36BO0303D MC687011 12/17/96			
	Volatiles	ND	ND	None		

NAS Whiting Field, Milton Florida

SDG		RPD		
WF038	Client ID Laboratory ID Collection Date	36B00403 MC687014 12/18/96	36BO0403D MC687015 12/18/96	
	Volatiles	ND	ND ·	None
WF039	Client ID Laboratory ID Collection Date	35B00302 MC698013 12/21/96	35BO0302D MC698015 12/21/96	
	Volatiles	ND	ND	None
WF039	Client ID Laboratory ID Collection Date	35BO0203 MC698010 12/21/96	35BO0203D MC698016 12/21/96	
	Volatiles	ND	ND	None
WF040	Client ID Laboratory ID Collection Date	37BO0203 MC783010 1/8/97	37BO0203D MC783018 1/8/97	
	Acetone Methylene chloride	14 ug/Kg 2 ug/Kg	12 ug/Kg 10 ug/Kg	15 133
WF040	Client ID Laboratory ID Collection Date	37BO0103 MC783013 1/8/97	37BO0103D MC783019 1/8/97	
	Acetone Methylene chloride	18 ug/Kg 3 ug/Kg	22 ug/Kg 11 ug/Kg	20 114
WF041	Client ID Laboratory ID Collection Date	35G00101 MD908004 6/11/97	35G00101D MD908005 6/11/97	
	Volatiles 1.1-Dichlcroethene 1.1.1-Trichloroethane Xylene (total)	6 ug/L 2 ug/L 2 ug/L	7 ug/L 2 ug/L 1 ug/L	15 0 67
	Semivolatiles Pesticides & PCBs	ND ND	ND ND	-
WF041	Client ID Laboratory ID Collection Date	35G00202 MD950002 6/15/97	35G00202D MD950003 6/15/97	
	<u>Volatiles</u> Chloroform	3 ug/L	3 ug/L	o
	Semivolatiles Bis(2-ethylhexyl)phthalate	10U ug/L	5 ug/L	Not calculable
	Pesticides & PCBs	ND	ND	•
WF042	Client ID Laboratory ID Collection Date	05G00902 ME007004 6/19/97	05G00902D ME007005 6/19/97	
	Volatiles	ND	ND	

The same of the sa

SDG		RPD		
WF043	Client ID Laboratory ID Collection Date	05G00802 ME042004 6/24/97	05G00802D ME042005 6/24/97	
	Volatiles Benzene Trichloroethene Xylenes (total)	1 ug/L 4 ug/L 1 ug/L	10U ug/L 10U ug/L 10U ug/L	Not calculable Not calculable Not calculable
WF043	Client ID Laboratory ID Collection Date	07G00101 ME087002 6/26/97	07G00101D ME087003 6/26/97	
	Acetone Benzene Toluene Ethylbenzene Xylenes, total	540 ug/L 3900 ug/L 14000 ug/L 1800 ug/L 3200 ug/L	490 ug/L 4400 ug/L 16000 ug/L 2000 ug/L 3600 ug/L	10 12 13 10 12
WF044	Client ID Laboratory ID Collection Date	66G01201 ME110002 6/30/97	66G01201D ME110003 6/30/97	
	Volatiles 1,1-Dichloroethene 1,2-Dichloroethene (total) Trichloroethene	3 ug/L 3 ug/L 120 ug/L	2 ug/L 3 ug/L 96 ug/L	40 0 22
WF044	Client ID Laboratory ID Collection Date	66G00603 ME135002 7/2/97	66G00603D ME135003 7/2/97	
	Volatiles Trichloroethene	1 ug/L	1 ug/L	0
WF045	Client ID Laboratory ID Collection Date	OWG00502 ME149004 7/8/97	OWG00502D ME149005 7/8/97	
	<u>Volatiles</u> Acetone	3 ug/Kg	2 ug/Kg	40
:	Semivolatiles Pesticides & PCBs	* ND ND	ND ND	-
WF045	Client ID Laboratory ID Collection Date	OWG00302 ME190002 7/10/97	OWG00302D ME190003 7/10/97	
	Volatiles Pesticides & PCBs	ND ND	ND ND	-
	Semivolatiles Di-n-butylphthalate	4 ug/L	6 ug/L	40
WF046	Client ID Laboratory ID Collection Date	31G00101 ME241003 7/15/97	31G00101D ME241004 7/15/97	
	Volatiles Pesticides & PCBs	ND ND	ND ND	
	Semivolatiles Di-n-butylphthalate	6 ug/L	3 ug/L	67

SDG	0	RPD		
WF047	Client ID Laboratory ID Collection Date	39W034 ME243005 7/15/97	39W034D ME243006 7/15/97	
	Volatiles Acetone Carbon disulfide	4 ug/L 1U ug/L	5U ug/L 1 ug/L	Not calculable Not calculable
WF047	Client ID Laboratory ID Collection Date	39W012 ME267004 7/16/97	39W012D ME267005 7/16/97	
	Volatiles Methylene chloride Benzene	2U ug/L 2 ug/L	1 ug/L 2 ug/L	Not calculable 0
WF048	Client ID Laboratory ID Collection Date	39D018 ME264006 7/17/97	39D018D ME264007 7/17/97	
	Volatiles Acetone Trichloroethene	27 ug/Kg 2 ug/Kg	27 ug/Kg 2 ug/Kg	0
WF049	Client ID Laboratory ID Collection Date	39W021 ME263004 7/17/97	39W021D ME263005 7/17/97	
	Volatiles	ND	ND	.
WF051	Client ID Laboratory ID Collection Date	16G00401 ME306003 7/22/97	16G00401D ME306003 7/22/97	
	Volatiles Acetone	18 ug/L	14 ug/L	25
WF051	Client ID Laboratory ID Collection Date	16G00101 ME340009 7/24/97	16G00101D ME340010 7/24/97	
	Volatiles	ND	ND	•
WF052	Client ID Laboratory ID Collection Date	39020 ME346004 7/25/97	39020D ME346005 7/25/97	
	Volatiles	ND	ND	•
WF053	Client ID Laboratory ID Collection Date	15G00602 ME367004 7/27/97	15G00602D ME367005 7/27/97	
	Volatiles Trichloroethene	2 ug/L	2 ug/L	0
WF053	Client ID Laboratory ID Collection Date	15G00703 ME404003 7/30/97	15G00703D ME404004 7/30/97)
	Volatiles 1,2-Trichloroethene (total) Trichloroethene 1,1-Dichloroethene	1 ug/L 36 ug/L 2 ug/L	2 ug/L 38 ug/L 10U ug/L	67 5 Not calculable

SDG		RPD			
WF054	Client ID Laboratory ID Collection Date Volatiles Chlorobenzene	15G00801 ME441002 8/4/97 4 ug/L	15G00801D ME441003 8/4/97	0	
WF055	Client ID Laboratory ID Collection Date Volatiles	OWG00401 MF004003 10/27/97	OWG00401D MF004004 10/27/97	· -	

Table VI Summary of Surrogate Recoveries Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier
WF022	All	Volatiles	All within QC limits	•	-	None
	All	Semivolatiles	All within QC limits	-		None
		Pesticides/PCBs			10	
	BKR01001	Decachlorobiphenyl	58	60-150	· · ·	J.
	D.K.TOTOO!	Decachlorobiphenyl	58	60-150		.i
	BKG00101	Tetrachloro-m-xylene	59	60-150		J
	C. Cassilla	Tetrachloro-m-xylene	57	60-150		J
	BKG00102	Decachlorobiphenyl	37	60-150		J
		Decachlorobiphenyl	37	60-150		J
	BKG00103	Decachlorobiphenyl	40	60-150		J
		Decachlorobiphenyl	41	60-150		j
	BKG00202	Decachlorobiphenyl	47	60-150	•	J
		Decachlorobiphenyl	47	60-150		J
	BKG00201	Decachlorobiphenyl	43	60-150		J
	_	Decachlorobiphenyl	43	60-150		J
	BKF01001	Tetrachloro-m-xylene	59	60-150		J
	ł	Tetrachloro-m-xylene	59	60-150	1	J
		Decachlorobiphenyl	51	60-150		J
		Decachlorobiphenyl	47	60-150		j
	17G00101	Decachlorobiphenyl	58	60-150		· J
		Decachlorobiphenyl	56	60-150		J
	17G00201	Decachlorobiphenyl	22	60-150		J
		Decachlorobiphenyl	21	60-150		j
	01G00102D	Decachlorobiphenyl	59	60-150		J
		Decachlorobiphenyl	56	60-150	<u> </u>	J
WF023	All	Volatiles	All within QC limits	•	<u>.</u>	None
*** 020	All	Semivolatiles	All within QC limits	-		None
			· ·			
		Pesticides/PCBs			5	
	01G00201	Decachlorobiphenyl	32	60-150	:	J .
	1	Decachlorobiphenyl	28	60-150	•	J
	01G00301	Decachlorobiphenyl	49	60-150		J
		Decachlorobiphenyl	47	60-150		J
	02G00101	Decachlorobiphenyl	41	60-150]	J
		Decachlorobiphenyl	42	60-150		J
	16G00703	Decachlorobiphenyl	59	60-150		J
·		Decachlorobiphenyl	55	60-150		J
	18G00301	Decachlorobiphenyl	48	60-150		J
		Decachlorobiphenyl	46	60-150		J

Table VI Summary of Surrogate Recoveries Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds							
SDG	Cilent ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier	
WF024	All All	Volatiles Semivolatiles	All within QC limits All within QC limits	-	-	None None	
	BKG00203	Pesticides/PCBs Decachlorobiphenyl Decachlorobiphenyl	52 48	60-150 60-150	1 -	J J	
WF025	All All	Volatiles Semivolatiles	All within QC limits All within QC limits	<u>-</u>	-	None None	
	15G00101 15G00303 15G00502 15R01301 15G00502RE	Pesticides/PCBs Decachlorobiphenyl Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl	21 20 57 58 155 162 59 53	60-150 60-150 60-150 60-150 60-150 60-150 60-150 60-150	5	J J J J (all detects) J (all detects) J J	
WF026	All 15G00802 15G00802R	Volatiles <u>Semivolatiles</u> 2-Fluoroblphenyl Terphenyl-d14 2-Fluorobiphenyl Terphenyl-d14	All within QC limits 161 -163 -182 -153	- 43-116 33-141 43-116 33-141	2	None J (all detects) all B/N J (all detects) all B/N J (all detects) all B/N J (all detects) all B/N	

Summary of Surrogate Recoveries Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier
WF026 cont		Pesticides/PCBs			9	
747 020 COM.	15G00201	Decachlorobiphenyl	52	60-150		J.
		Decachlorobiphenyl	50	60-150	ł	J. J
	15G00202	Decachlorobiphenyl	58	60-150		J
		Decachlorobiphenyl	58	60-150	}	J
	15G00801	Decachlorobiphenyl	43	60-150		J -
		Decachlorobiphenyl	38	60-150		J .
	15G00803	Decachlorobiphenyl	58	60-150		J
		Decachlorobiphenyl	58	60-150		J
	16G00201	Decachlorobiphenyl	43	60-150		J
	1	Decachlorobiphenyl	37	60-150	•	J
	16G00203	Decachlorobiphenyl	44	60-150		J
		Decachlorobiphenyl	43	60-150		J
	16G00403	Decachlorobiphenyl	40	60-150		J
		Decachlorobiphenyl	39	60-150	}	J
	16G00403D	Decachlorobiphenyl	47	60-150		J
į		Decachlorobiphenyl	46	60-150	Į.	J
	16G00601	Decachlorobiphenyl	25	60-150		J.
		Decachlorobiphenyl	25	60-150		J
WF027	All	Volatiles	All within QC limits	-	-	None
VVI 021	All	Semivolatiles	All within QC limits	-	-	None
		·				
		Pesticides/PCBs			2	
	16G00304	Decachlorobiphenyl	46	60-150		J .
		Decachlorobiphenyl	43	60-150		J
	66G02103	Decachlorobiphenyl	58	60-150]
		Decachlorobiphenyl	. 58	60-150	<u> </u>	J
WF028	All	Volatiles	All within QC limits	-	-	None
VIII 020	All	Semivolatiles	All within QC limits	· .	-	None
					_	
		Pesticides/PCBs		60.450	5	j j
	10G00101	Decachlorobiphenyl	50	60-150	1 -	
		Decachlorobiphenyl	48	60-150	1	
	11G00101	Decachlorobiphenyl	47	60-150	Ì	
		Decachlorobiphenyl	47	60-150	1	
	11G00301	Decachlorobiphenyl	25	60-150	İ	J
		Decachlorobiphenyl	24	60-150]	,
	11G00401	Decachlorobiphenyl	29	60-150		1
		Decachlorobiphenyl	29	60-150		,
•	11G00201D	Decachlorobiphenyl	59	60-150	<u> </u>	J

Summary of Surrogate Recoveries Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

						1
SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier
WF029	All All	Volatiles Semivolatiles	All within QC limits All within QC limits	-	-	None None
	13G00101 66G00901 66G00903	Pesticides/PCBs Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl Decachlorobiphenyl	23 23 43 42 52 52	60-150 60-150 60-150 60-150 60-150 60-150	3]]]]
WF030	All All 66G00804	Volatiles Semivolatiles Pesticides/PCBs Decachlorobiphenyl Decachlorobiphenyl	All within QC limits All within QC limits 31 31	- - 60-150 60-150	- 1	None None J J
WF031	All All 05G00301 05G00101 05G01002	Volatiles Semivolatiles Pesticides/PCBs Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Tetrachloro-m-xylene	All within QC limits All within QC limits 56 52 164 57	- - 60-150 60-150 60-150	3	None None J J J (all detects) J
WF031B	All All	Volatiles Semivolatiles Pesticides/PCBs	All within QC limits All within QC limits All within QC limits	• · •	-	None None None
WF032	All All 29G00101	Volatiles Semivolatiles Pesticides/PCBs Tetrachloro-m-xylene Tetrachloro-m-xylene	All within QC limits All within QC limits 54 56	- - 60-150 60-150	- 1	None None J J

Summary of Surrogate Recoverles Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier
WF033	All All	Volatiles Semivolatiles	All within QC limits All within QC limits	-		None None
	07G00101 30G00501 66G00201D	Pesticides/PCBs Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene	174 59 25 36	60-150 60-150 60-150 60-150	3	J (all detects) J J J
WF034	All All	Volatiles Semivolatiles Pesticides/PCBs	All within QC limits All within QC limits	-	1	None None
	66G01801	Tetrachloro-m-xylene	164	60-150	'	J (all detects)
WF035	All All	Volatiles Semivolatiles	All within QC limits All within QC limits	-	-	None None
	08G00101	<u>Pesticides/PCBs</u> Tetrachloro-m-xylene	59	60-150	1	J
WF036	All All	Volatiles Semivolatiles	All within QC limits All within QC limits	- -	-	None None
	54G00101	Pesticides/PCBs Tetrachloro-m-xylene Tetrachloro-m-xylene	57 52	60-150 60-150	1	J
WF037	All All	Volatiles Semivolatiles Pesticides/PCBs	All within QC limits All within QC limits All within QC limits	- -	- - -	None None None
WF038	All	Volatiles	All within QC limits	•	-	None
WF039	All	Volatiles	All within QC limits	•		None
WF040	All	Volatiles	All within QC limits	•		None

anle V

Summary of Surrogate Recoveries Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier
WF041	All All	Volatiles Semivolatiles	All within QC limits All within QC limits	-	- -	None None
	35G00201 36G00103	Pesticides & PCBs Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene	58 57 58	60-150 60-150 60-150	2	J J
WF042	All	Volatiles	- 7	-	-	None
WF043	All	Volatiles		-	-	None
WF044	All	Volatiles	-	-	-	None
WF045	All	Volatiles	-	-	-	None
	OWG00101	Semivolatiles 2-Fluorophenol Phenol-d5 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 2-Fluorophenol Phenol-d5 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14	0 0 0 0 0 0 0 0	21-110 10-110 33-110 16-110 35-114 43-116 10-123 33-141 21-110 10-110 33-110 16-110 35-114 43-116 10-123 33-141	3	J (all detects) R (all non-detects) J (all detects) R (all non-detects)

Table VI Summary of Surrogate Recoveries Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier
WF045 cont.	OWG00103	2-Fluorophenol Phenol-d5 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4 Nitrobenzene-d5 2-Fluorobiphenyl	0 0 0 0 0	21-110 10-110 33-110 16-110 35-114 43-116		J (all detects) R (all non-detects)
·		2,4,6-Tribromophenol Terphenyl-d14	0	10-123 33-141		
	OWG00101 OWG00103 OWG00302 OWG00302D	Pesticides & PCBs Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene	45 52 59 54 52 53 52	60-150 60-150 60-150 60-150 60-150 60-150	4	J J J J
WF046	All All 31G00101	Volatiles Semivolatiles Pesticides & PCBs Tetrachloro-m-xylene Tetrachloro-m-xylene	48 55	60-150 60-150	2	None None J J
	31R03301	Tetrachloro-m-xylene	59	60-150		j
WF047	All	Volatiles	-	•		None
WF048	All	Volatiles	<u>.</u>	-	·	None
WF049	All All	Volatiles Semivolatiles	<u>-</u>	<u>-</u> -		None . None
WF051	All	Volatiles	•	•		None
WF052	All	Volatiles	-	•		None
WF053	All	Volatiles	•	-	-	None
WF054	All	Volatiles				None

Summary of Surrogate Recoveries Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds

SDG	Client ID	Compound	Percent Recovery	QC Limits	# of Samples	Qualifier
WF055	All	Volatiles		-	•	None

Notes: J = estimated value

UJ = undetected, but number that is reported as the quantification limit is an estimated value.

Summary of Compounds Exceeding Instrument Calibration Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		Org	anic Compounds		
SDG	Date	Compound	Initial Calibration %RSD	Continuing Calibration %D	Qualifier
WF022	6/25/96	Volatiles Acetone	30.2	-	J
	7/19/96	Chloromethane Chloroethane	•	28.8 48.7) J
	7/22/96	Chloroethane	<u>-</u> .	30.6	J
	8/13/96	Semivolatiles 4.6-Dinitro-2-methylphenol Pentachlorophenol	-	27.2 25.4	J
	8/14/96	4-Chloroaniline 2.4-Dinitrophenol 4,6-Dinitro-2-methylphenol		31.6 27.6 33.8	n n
	AII	Pesticides/PCBs	-	-	None
WF023	6/25/96	Volatiles Acetone	30.2	-	J
	7/25/96	Acetone	-	33.2	IJ
	7/31/96	Acetone Methylene chloride Carbon disulfide	-	30.4 31.7 27.2	J J
	8/1/96	Chloroethane Carbon disulfide Methylene chloride		27.5 27.5 37.8	J J
	8/20/96	Semivolatiles 4-Nitroaniline Chrysene	•	37.8 27.8	Ŋ
	8/21/96	4-Nitroaniline Chrysene Benzo(g,h,i)perylene	- -	31.5 28.5 32.7	J J
	8/25/96	4.4'-DDT	23.6	-	J
WF024	6/25/96	Volatiles Acetone	30.2	•	J
	8/5/96	Acetone	33.8	-	j
	8/2/96	Chloroethane Carbon disulfide Methylene chloride		29.5 30.8 41.0	. J
	8/21/96	Semivolatiles 4-Nitroaniline Chrysene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene		28.7 29.5 28.1 34.0 37.6)))
	All	Pesticides/PCBs	-		None

Summary of Compounds Exceeding Instrument Calibration Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

SDG Date Compound Initial Calibration Continuing Qualifie						
300	Date	Compound	%RSD	Calibration %D	Guanner	
VF025		Volatiles				
	8/5/96	Acetone	33.8	•	J	
	8/14/96	Chloromethane	26.7	-	J	
	0,7,7,00	Chioroethane	28.5		j	
		Acetone	29.7	-	J	
		Semivolatiles				
	9/9/96	2.4-Dinitrophenol	-	29.9	J	
		4-Nitroaniline	-	27.6	J	
		4,6-Dinitro-2-methylphenol		30.7	J	
		Pyrene		30.0	J	
		3,3'-Dichlorobenzidine	-	37.0	J	
		2,4-Dinitrophenol		35.6	J	
		4-Nitroaniline		29.4	J	
		4,6-Dinitro-2-methylphenol	-	32.0	J	
		Pentachlorophenol		27.8	J	
		3,3'-Dichlorobenzidine	-	27.8	J	
	8/25/96	4.4'-DDT	23.6	-	J	
WF026		Volatiles				
	8/5/96	Acetone	33.8	-	J	
	8/19/96	Chloromethane	_	46.5	J	
		Chloroethane		77.1	J	
		1,1-Dichloroethane		28.6	J	
		2-Butanone	-	30.3	J	
	8/20/96	Chloromethane		32.5	J	
	1,72,73	Chioroethane		32.4	J	
	8/22/96	Acetone	_	37.9	J	
	0,22,00	Carbon disulfide		28.0	Ĵ	
		2-Butanone	-	27.8	J	
		Semivolatiles				
	9/10/96	2,4-Dintrophenol		35.6	ل ٠	
	-,	4-Nitroaniline		29.4	Ĵ	
		4,6-Dinitro-2-methylphenol	• ***	32.0	Ĵ	
		Pentachiorophenol	-	27.8	Ĵ	
		3,3'-Dichlorobenzidine	-	27.8	Ĵ	
	9/10/96	4-Chloroaniline		36.8	J	
		3-Nitroaniline		37.9	J	
		2,4-Dinitrophenol		29.3	Ĵ	
		4-Nitroaniline	-	49.5	J	
		4,6-Dinitro-2-methylphenol		29.4	J	
	1	Pentachlorophenol	-	29.6	J	
		3,3'-Dichlorobenzidine		54.1	j	
		Pesticides & PCBs				
	9/14/96	alpha-BHC	22.2	_	J	
	1	detta-BHC	22.1		J	

Table VII Summary of Compounds Exceeding Instrument Calibration Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

.....

		Org	anic Compounds		
SDG	Date	Compound	Initial Calibration %RSD	Continuing Calibration %D	Qualifier
WF027		Volatiles			
	9/1/96	2-Butanone	39.1	•	J
		2-Butanone	0.014 (RRF)	-	J(detects) / R(ND)
	8/5/96	Acetone	33.8	-	J
	9/2/96	Acetone		102.4	l t
	-,	2-Butanone	-	36.3	J
	8/22/96	Acetone		37.9	J
	1 -77	Carbon disulfide		28.0	j
		2-Butanone	-	27.8	J
	8/29/96	Bromomethane	_	31.0	J
	0/29/90	Chloroethane		63.9	j
		Acetone		37.2	j
	9/2/96	Chloromethane	-	32.4	١
		Chloroethane	•	28.4	J
		Acetone	-	49.2	1
		2-Butanone	•	38.7	J
		4-Methyl-2-pentanone	•	35.7	J
		2-Hexanone 2-Butanone	•	38.9 0.019 (RRF)	J J (detects) / R (ND)
		2-Dutanone		0.019 (1111)	o (detects) / H (ND)
	9/3/96	Chioromethane	-	27.4	J
		Acetone		34.7	J
		2-Butanone	-	32.6	J
		4-Methyl-2-pentanone	-	32.9	J
		2-Hexanone	-	38.9	J
		Semivolatiles			
	9/10/96	4-Chloroanifine	-	36.8	J.
		3-Nitroaniline	-	37.9	j
İ		2,4-Dinitrophenol	-	29.3	j
		4-Nitroaniline	-	49.5	J
		4,6-Dinitro-2-methylphenol		29.4	J
		Pentachlorophenol	-	29.6	J
		3,3'-Dichlorobenzidine	-	54.1	J
	9/20/96	3.3'-Dichlorobenzidine	-	30.4	J
	All	Pesticides/PCBs	-		None
WF028		Volatiles			
	8/5/96	Acetone	33.8	•	J
	9/2/96	Chloromethane		32.4	j
1		Chioroethane	•	28.4	J
1		Acetone	•	49.2	J
		2-Butanone	•	38.7	. J
		4-Methyl-2-pentanone 2-Hexanone	-	35.7 38.9	j
	9/3/96	Chloromethane		27.4	J
	ł	Acetone	•	34.7	J
N		2-Butanone	•	32.6	J
	İ	4-Methyl-2-pentanone	•	32.9	J
		2-Hexanone	1	38.9	J

Table VII Summary of Compounds Exceeding Instrument Calibration Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organ	ic Co	mpound	İS
-------	-------	--------	----

		Orga	nic Compounds		
SDG	Date	Compound	Initial Calibration %RSD	Continuing Calibration %D	Qualifier
WF028	9/6/96	Chloromethane	•	35.4	J
cont.		Acetone	-	41.0	. J
00111.		2-Butanone	_	41.8	ن
		1,2-Dichloropropane	_	27.6	J
			-	40.5	•
		4-Methyl-2-pentanone	-	I	<u>ل</u> ر
		2-Hexanone	-	43.3	J
		Bromoform	-	26.2	J
		1.1.2.2-Tetrachloroethane	-	26.5	J
	9/20/96	<u>Semivolatiles</u> 3,3'-Dichlorobenzidine	-	30.4	J
	9/26/96	Benzo(k)fluoroanthene	-	28.5	J
	All	Pesticides/PCBs	-	-	None
WF029		Volatiles			
	9/17/96	Chloromethane	-	38.1	J
	•,,	Methylene chloride	-	33.6	Ĵ
	9/18/96	2-Hexanone		26.5	j
	9/10/90	24 lexalione	•	20.5	3
		<u>Semivolatiles</u>]	
	9/26/96	Benzo(k)fluoranthene	-	28.5	J
	9/26/96	Benzo(k)fluoranthene	•	25.6	J
		` '		1	
	All	Pesticides/PCBs	-	•	None
WF030		Veletiles			
VVF030		Volatiles			
	9/20/96	Methylene chloride	-	35.2	J
	9/23/96	Methylene chloride	•	30.2	J
		_ , , , , , ,			
		Semivolatiles			
	10/16/96	2.4-Dinitrophenol	-	25.8	J
	1	4-Nitrophenol		28.0	J
		'			
	All	Pesticides/PCBs	-	•	None
WF031	All	Volatiles	_		None
*** 001	All	Semivolatiles			1
	Aii	Semivolatiles		•	None
		Destinidas & DCBs			
		Pesticides & PCBs		İ	
	11/5/96	detta-BHC	21.2	-	J
WF031B	All	Volatiles	-	-	None
		Somiyolatilas			
		Semivolatiles			
	11/28/96	Di-n-octylphthalate	-	25.3	J
		Pesticides & PCBs	į.		
	12/9-10/97	Alpha-BHC	23.9	<u> </u>	. J
WF032		Volatiles			
711 302	10/10/96	1,1,2,2-Tetrachloroethane		27.8	J
	10/10/90	1,1,2,2-1 etrachioroethane		21.0	
	1	Combinatelle			
		Semivolatiles			
		Hexachlorobutadiene		33.5	J
	11/3/96	l .	1		
	11/3/96	Hexachlorocyclopentadiene	-	31.5	J
	11/3/96	l .	-	31.5 27.0	J
	11/3/96	Hexachlorocyclopentadiene	-		1
	11/3/96	Hexachlorocyclopentadiene	-		i i

Summary of Compounds Exceeding Instrument Calibration Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

	_		
Organi	ic Co	mpou	nas

SDG	Date	Compound	Initial Calibration %RSD	Continuing Calibration %D	Qualifier
WF033	10/16/96	Volatiles Acetone	-	25.3	J
	11/4/96	Semivolatiles Hexachlorobutadiene Hexachlorocyclopentadiene	- -	31.2 27.9	J
	All	Pesticides/PCBs	-	-	None
WF034	All	Volatiles	-	-	None
	11/26/96	<u>Semivolatiles</u> Di-n-octylpthalate	-	33.9	J
	All	Pesticides/PCBs	-	-	None
WF035	All	Volatiles	•	•	None
	11/26/96	Semivolatiles Bis(2-ethylhexyl)phthalate Di-n-octylphthalate	-	25.6 32.1	J
	11/27/96	Di-n-octylphthalate	-	30.0	J
	11/5/96	Pesticides & PCBs delta-BHC	21.2	-	J
WF036	All	Voiatiles	-	-	None
	·	<u>Semivolatiles</u> Di-n-octylphthalate Di-n-octylphthalate		30.0 25.3	J
		Pesticides & PCBs alpha-BHC	23.9	-	J
WF037	All	Volatiles	-	-	None
	11/28/96	Semivolatiles Di-n-octylphthalate		25.3	J
	12/9-10/96	Pesticides & PCBs alpha-BHC	23.9	•	J
WF038	12/26/96	<u>Volatiles</u> Acetone	-	30.6	J
WF039	12/26/96	Volatiles Acetone	-	30.6	J
WF040	All	Volatiles	-	-	None
WF041	All -	Volatiles Semivolatiles		-	None None
	6/11-12/97	Pesticides & PCBs Methoxychlor delta-BHC	24.2 21.5	-	J
WF042	All	Volatiles		-	None
WF043	All	Volatiles	-	-	None

The state of the s

Table VII

Summary of Compounds Exceeding Instrument Calibration Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		T	T		<u> </u>
SDG	Date	Compound	Initial Calibration %RSD	Continuing Calibration %D	Qualifier
WF044	7/7/97	Volatiles Bromomethane	-	33.5	ij
WF045	All All	Volatiles Semivolatiles	-	-	None None
	7/31/97	Pesticides & PCBs alpha-BHC alpha-BHC gamma-BHC	20.3 24.2 21.9	- - -	ر ر ر
WF046	All All	Volatiles Semivolatiles	-	•	None None
	7/31/97	Pesticides & PCBs alpha-BHC alpha-BHC gamma-BHC	20.3 24.2 21.9	- - -	ن ن ن
WF047	7/21/97	Volatiles Acetone	35.4	•	J
	7/21/97	Acetone 2-Butanone	0.023 RRF 0.030 RRF	-	J (all detects) R (all non-detects) J (all detects) R (all non-detects
	7/28/97	Bromomethane Acetone	• • • • • • • • • • • • • • • • • • •	34.6 35.1	J
	7/29/97	Bromo:nethane Acetone	-	30.5 30.9	J
	7/21/97	Acetone	•	0.020 (RRF)	J (all detects) R (all non-detects J (all detects) R (all non-detects J (all detects) R (all non-detects J (all detects) J (all detects)
		2-Butanone	•	0.030 (RRF)	
	7/22/97	Acetone 2-Butanone	-	0.020 (RRF) 0.030 (RRF)	
					R (all non-detects
	7/28/97	2-Butanone	-	0.015 (RRF) 0.026 (RRF)	J (all detects) R (all non-detects) J (all detects) R (all non-detects
	7/29/97	Acetone		0.015 (RRF)	J (all detects) R (all non-detects
		2-Butanone	•	0.026 (RRF)	J (all detects) R (all non-detects
WF048	7/25/97	Volatiles Bromomethane	36.5	-	J
	7/26/97	Bromomethane		28.7	,

Table VII Summary of Compounds Exceeding Instrument Calibration Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic	Compounds
---------	-----------

Organic Compounds					
SDG	Date	Compound	Initial Calibration %RSD	Continuing Calibration %D	Qualifier
WF049	7/21/97	Volatiles Acetone	35.4		J
	7/21/97	Acetone	0.023 (RRF)	-	J (all detects) R (all non-detects)
·		2-Butanone	0.030 (RRF)	•	J (all detects) R (all non-detects)
	7/28/97	Bromomethane Acetone	-	34.6 3 5.1	J
	7/22/97	Acetone	-	0.020 (RRF)	J (all detects) R (all non-detects)
		2-Butanone	-	0.030 (RRF)	J (all detects) R (all non-detects)
	7/28/97	Acetone	-	0.015 (RRF)	J (all detects) R (all non-detects)
		2-Butanone	-	0.026 (RRF)	J (all detects) R (all non-detects)
	All	Semivolatiles	-	-	None
WF051	All	Volatiles	-	•	None
WF052	7/21/97	Volatiles Acetone	35.4	-	J
	7/21/97	Acetone	0.023 (RRF)	•	J (all detects) R (all non-detects)
		2-Butanone	0.030 (RRF)	•	J (all detects) R (all non-detects)
	7/29/97	Bromomethane Acetone	-	30.5 30.9	n n
	7/29/97	Acetone	<u>-</u>	0.016 (RRF)	J (all detects)
		2-Butanone	· -	0.026 (RRF)	R (all non-detects) J (all detects) R (all non-detects)
WF053	8/8/97	Volatiles Acetone		36.4	J
WF054	8/19/97	Volatiles Acetone	39.1	•	J
	8/8/97	Acetone	. •	36.4	J
	8/19/97	Acetone		30.3	J

Summary of Compounds Exceeding Instrument Calibration Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds

SDG	Date	Compound	Initial Calibration %RSD	Continuing Calibration %D	Qualifier
WF055	All	Volatiles	-	•	None

Notes:

%RSD = percent Relative Standard Deviation for initial calibrations

%D = percent Difference for continuing calibrations

J = the compound was positively identified: the associated numerical value is the approximate concentration of the compound in the sample, either because its concentration was lower than the QL (laboratory "J" flag), or because QC criteria were not met (validation "J").

UJ = the compound was not detected above the reported sample QL. However, the reported sample QL is approximate: the compound concentration may not reliably be presumed to be less than the QL value.

R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the compound cannot be verified.

Summary of Method Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds

SDG	Compound	Concentration	Associated Samples
WF022	Volatiles Acetone	8 ug/L	BKT01001 BKR01001 BKG00101 BKG00101D BKG00102 BKG00103
	Methylene chloride Acetone	1 ug/L 16 ug/L	BKG00202 BKG00201 BKF01001
	Acetone Semivolatiles Pesticides/PCBs	14 ug/L ND ND	17T01101 17G00102 17G00101 17G00201 17G00301 01G00101 01G00102 01G00102D
WF023	Volatiles Methylene chloride Acetone	2 ug/L 15 ug/L	01T01201 01G00401 01G00201 01G00301 BKG00301 02G00201 02G00101 18G00301 02G00301 02G00301D
	Semivolatiles Pesticides/PCBs	ND ND	-
WF024	Volatiles Acetone	2 ug/L	18T01401 18G00101 15G00401 BKG00203 15R01201 15G00701
	Semivolatiles Pesticides/PCBs	ND ND	-
WF025	Volatiles Acetone	3 ug/L	15G00503DL 15R01301 15T01601 15G00301 15G00302 15G00303 15G00101 15G00203
	Semivolatiles Pesticides/PCBs	ND ND	

202	Compound	Concentration	Acceptated Complex
SDG	Compound	Concentration	Associated Samples
VF026	Volatiles Acetone	11 ug/L	15T01701 15G00202 15G00201 15G00802 15G00801 16G00201
			15G00803D 15R01401
	Acetone	4 ug/L	15G00803 16T01801 16G00202 16G00203
	Acetone	5 ug/L	16G00202DL 16G00602 16G00601 16G00403 16G00403DL 16G00403D 16G00403DDL
	Semivolatiles Pesticides/PCBs	ND ND	-
WF027	Volatiles Acetone	5 ug/L	16G00401 16G00402 16G00101 16G00301
	Acetone	5 ug/L	09G00301
	Acetone Trichloroethene Xylenes (total)	6 ug/L 1 ug/L 2 ug/L	16G00501 16R01501 16G00501D 66T02001 66G02101 66G02103
	Acetone	11 ug/L	16G00303 66G02102 09G00101 09G00301D
	Semivolatiles Pesticides/PCBs	ND ND	-
WF028	Volatiles Acetone	5 ug/L	10T02101 09G00201 10G00201 11G00102 11G00401 11T02201 11G00301
	Acetone	11 ug/L	10G00101 11G00402 11G00201 12G00201

Summary of Method Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds

SDG	Compound	Concentration	Associated Samples
WF028 cont.	Acetone Carbon disulfide	Parbon disulfide 6 ug/l 12G0	
	Semivolatiles Pesticides/PCBs	ND ND	-
WF029	<u>Volatiles</u> Acetone	3 ug/L	13T02301 13G00101 13R01701
	Acetone	3 ug/L	13G00102 13G00201 13G00103 14G00201 14G00101
			66T02401 66G00901 66G00904 66G00902 66G00903
	Semivolatiles Bis (2-ethylhexyl)phthalate	1 ug/L	All samples in SDG WF029
	Pesticides/PCBs	ND	-
WF030	Volatiles Acetone	3 ug/L	66T02501 66G00801 66G00802 66G00803 66G00804
	Semivolatiles Bis(2-ethylhexyl)phthalate	2 ug/L	All samples in SDG WF030
	Pesticides/PCBs	ND	<u> </u> -
WF031	Volatiles Semivolatiles	ND	-
	Di-n-butylphthalate Bis(2-ethylhexyl)phthalate	3 ug/L 3 ug/L	05G00801 05G00802 05G00901 05G00902
	Di-n-butylphthalate Bis(2-ethylhexyl)phthalate	2 ug/L 2 ug/L	05G01001 05G00301 05R01901 05G01001D
	Di-n-butylphthalate	2 ug/L	05G00101 33G00501 33G00201 33G00101 33G00301
No.		ND	İ

Organic Compounds					
SDG	Compound	Concentration	Associated Samples		
WF031B	Volatiles Semivolatiles Pesticides/PCBs	ND ND ND	-		
WF032	Volatiles	ND	-		
	Semivolatiles Di-n-butyiphthalate	1 ug/L	33G00401 06G00102 06G00101 06G00301 06R02001 29G00501 29G00501D		
	Di-n-butylphthalate	3 ug/L	29G00101 66G01201 66G00102		
	Pesticides/PCBS	ND	•		
WF033	Volatiles Semivolatiles Pesticides/PCBs	ND ND ND .	-		
WF034	Volatiles	ND .	-		
	Semivolatiles Bis(2-ethylhexyl)phthalate	2 ug/L	66G01101 66G01301 66G00501		
	Pesticides/PCBs	ND			
WF035	Volatiles Semivolatiles Pesticides/PCBs	ND ND ND	-		
WF036	Volatiles	ND	•		
	Semivolatiles Di-n-butylphthalate	2 ug/L	66G00701 54G00201 54G00101 31G00201 54R02401 54G00101D		
	Pesticides/PCBs	ND	-		
WF037	Volatiles	ND	-		
	<u>Semivolatiles</u> Di-n-butylphthalate	4 ug/L	All samples in SDG WF037		
	Pesticides/PCBs	ND	_		

Table VIII Summary of Method Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds

SDG	Compound	Concentration	Associated Samples
WF038	<u>Volatiles</u> Acetone	7 ug/Kg	36BO0101 36BO0102 36BO0103 36BO0201 36BO0202 36BO0203 36BO0301 36BO0302 36BO0303 36BO0303 36BO0401 36BO0402 36BO0403 36BO0403
WF039	Volatiles Acetone Methylene chloride	7 ug/Kg 4 ug/Kg	35BO0203D 35BO0102DL 35BO0105 35BO0201
WF040	Volatiles Acetone Bromomethane Acetone	3 ug/L 2 ug/L 3 ug/Kg	All water samples in SDG WF040 35BO0402 35BO0501 35BO0501DL 35BO0502 37BO0201 37BO0202 37BO0101 37BO0102 37BO0103 37BO0302 37BO0303 37BO0303 37BO0303 37BO0203D 37BO0103D
WF041	Volatiles Pesticides & PCBs Semivolatiles Di-n-butylphthalate Bis(2-ethylhexyl)phthalate	ND ND 1 ug/L 2 ug/L	- - 13G00301 13G00401
WF042	Volatiles	ND	•
WF043	Volatiles Acetone	6 ug/L	33T05301 06G00102 06G00301 33G00401
WF044	Volatiles Acetone	3 ug/L	66T05601 66G01201 66G01201D 66G00102 66G01301

	Organ	ic Compounds		
SDG	Compound	Concentration	Associated Samples	
WF044 cont.	Acetone	11 ug/L	66T05701 66G00401 66G02001 66T05801 66G00603 66G00603D 66G00604 66G00601 66G00601	
WF045	Volatiles Acetone	5ug/L	OWT05901 OWR03401 OWG00501 OWG00502 OWG00503 OWT06001 OWG00101 OWG00102 OWG00103 66T06101 66G02301 66G02302 66G02303	
	Acetone	5 ug/L	OWT06201 OWG00302 OWG00302D OWG00303 OWG00301 OWT06401 OWT06401DL OWG00401 OWG00201	
	Semivolatiles Di-n-butylphthalate	2 ug/L	OWR03401 OWG00501 OWG00502 OWG00502D OWG00503	
	Phenol 2-Chlorophenol 1.4-Dichlorobenzene N-Nitroso-di-n-propylamine 1.2.4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthylene Acenaphthene 4-Nitrophenol 2.4-Dinitrotoluene Pentachlorophenol Pyrene	72 ug/L 67 ug/L 33 ug/L 49 ug/L 36 ug/L 62 ug/L 12 ug/L 39 ug/L 69 ug/L 43 ug/L 65 ug/L	OWG00101 OWG00102 OWG00103	
	Di-n-butylphthalate	5 ug/L	66G02301 66G02302 66G02303	
	Di-n-butylphthalate	4 ug/L	OWG00401 OWG00201	
	Pesticides & PCBs	ND		

Summary of Method Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds				
SDG	Compound	Concentration	Associated Samples	
WF046	<u>Volatiles</u> 2-Butanone	4 ug/L	All samples in SDG WF046	
	Semivolatiles Di-n-butylphthalate	3 ug/L	31R03301 31G00101 31G00101D	
	Pesticides & PCBs	ND		
WF047	Volatiles Acetone	4 ug/L	39W028 39W027 39W024 39W032 39W034D 39W031 39T10001 39W001 39W002 39W002 39W003 39W004	
VF048	Volatiles 2-Butanone	4 ug/L	39R03401	
	Acetone 2-Butanone	3 ug/Kg 4 ug/Kg	39D002 39D001 39D007 39D023 39D026 39D016 39D013 39D019 39D018 39D018D 39D022	
VF049	Volatiles 2-Butanone	4 ug/L	39U001	
	Semivolatiles	ND	-	
VF051	Volatiles 2-Butanone	4 ug/L	16T06801 16R03501	
VF052	Volatiles	ND		
WF053	Volatiles Methylene chloride	8 ug/L	15G00602D 15T07501 15G00401	

4 ug/L

Volatiles Acetone

WF054

15G00703 15G00703D 15G00501 15G00502 15G00503

30T07701 30R03901 30G00302

Organic Compounds						
SDG	Compound	Concentration	Associated Samples			
WF054 cont.	Methylene chloride	8 ug/L	15T07601 15G00801 15G00801D 15G00802 15R03801 15G00803 15G00303			
WF055	Volatiles	ND	-			

Organic Compound	ds
------------------	----

SDG	Parameter		Concentration	Qualifier
WF022	Client ID: Laboratory ID: Collection Date: Type:	BKF01001 RB858010 7/17/96 Source blank		
	Volatiles Acetone		4 ug/L	10U ug/L¹
	Semivolatiles Di-n-butylphthalate		6 ug/L	None
	Pesticides/PCBs		ND	None
WF022	Client ID: Laboratory ID: Collection Date: Type:	BKR01001 RB858002 7/16/96 Equipment rinsate		
	Volatiles		ND	None
	Semivolatiles Di-n-butylphthalate Bis(2-ethylhexyl)phti	nalate	5 ug/L 2 ug/L	None None
	Pesticides/PCBs		ND	None
WF022	Client ID: Laboratory ID: Collection Date: Type:	BKT01001 RB858001 7/16/96 Trip blank		
	Volatiles Acetone		3 ug/L	10U ug/L'
WF022	Client ID: Laboratory ID: Collection Date: Type:	17T01101 RB873001 7/18/96 Trip blank		
	Volatiles Acetone		8 ug/L	10U ug/L¹
WF023	Client ID: Laboratory ID: Collection Date: Type:	01R01101 RB887005 7/23/96 Equipment rinsate		
	Volatiles Acetone		4 ug/L	None
	Semivolatiles Di-n-butylphthalate	***	6 ug/L	None
	Pesticides/PCBS		ND	None
WF023	Client ID: Laboratory ID: Collection Date: Type:	01T01201 RB887001 7/22/96 Trip blank		
	Volatiles Methylene chloride Acetone		2 ug/L 3 ug/L	10U ug/L¹ 10U ug/L¹

		Organic Co	mpounds	
SDG	Parameter		Concentration	Qualifier
WF023	Client ID: Laboratory ID: Collection Date:	16T01301 RB887014 7/25/96		
	Type:	Trip blank		
	Acetone		2 ug/L	None
WF024	Client ID: Laboratory ID: Collection Date: Type:	18T01401 RB92001 7/29/96 Trip blank		
	Volatiles Methylene chloride Acetone Chloroform		2 ug/L 4 ug/L 1 ug/L	None 10U ug/L¹ None
WF024	Client ID: Laboratory ID: Collection Date: Type:	15R01201 RB920005 7/31/96 Equipment rinsate		
	Volatiles Acetone		6 ug/L	10U ug/L ¹
	Semivolatiles Di-n-butylphthalate	•	6 ug/L	None
	Pesticides/PCBs		ND	None
WF025	Client ID: Laboratory ID: Collection Date: Type:	15R01301 RB956011 8/7/96 Equipment rinsate		
	Volatiles		ND (1986)	None
	Semivolatiles Di-n-butyiphthalate		6 ug/L	None
	Pesticides/PCBs		ND	None
WF025	Client ID: Laboratory ID: Collection Date: Type:	15T01501 RB956001 8/5/96 Trip blank		
	Volatiles Methylene chloride Acetone		2 ug/L 4 ug/L	None None
WF025	Client ID: Laboratory ID: Collection Date: Type:	15T01601 RB956012 8/8/96 Trip blank		
	Volatiles Methylene chloride Acetone		1 ug/L 2 ug/L	None 10U ug/L

Summary of Field Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

	Organic Compounds					
SDG	Parameter		Concentration	Qualifier		
WF026	Client ID: Laboratory ID: Collection Date: Type:	15T01701 RB980001 8/12/96 Trip blank				
	Volatiles Methylene chloride		1 ug/L	None		
WF026	Client ID: Laboratory ID: Collection Date: Type:	16T01801 RB980015 8/15/96 Trip blank				
	<u>Volatiles</u> Methylene chloride Acetone		1 ug/L 3 ug/L	None 100 ug/L'		
WF026	Client ID: Laboratory ID: Collection Date: Type:	15R01401 RB980012 8/14/96 Equipment rinsate	en en en en en en en en en en en en en e	and the second		
	Volatiles Acetone		6 ug/L	10U ug/L¹		
	Semivolatiles Di-n-butylphthalate		6 ug/L	None		
	Pesticides/PCBS		ND	None		
WF027	Client ID: Laboratory ID: Collection Date: Type:	16T01901 RC016001 8/19/96 Trip blank				
	Volatiles Methylene chloride Acetone		5 ug/L 6 ug/L	None None		
WF027	Client ID: Laboratory ID: Collection Date: Type:	66T02001 RC016014 8/22/96 Trip blank				
	<u>Volatiles</u> Methylene chloride		3 ug/L	None		
WF027	Client ID: Laboratory ID: Collection Date: Type:	16R01501 RC016012 8/21/96 Equipment rinsate				
	Volatiles		ND	None		
	Semivolatiles Di-n-butylphthalate		5 ug/L	None		

ND

None

Pesticides/PCBs

			0	A
SDG	Parameter		Concentration	Qualifier
WF028	Client ID:	11T02201		
	Laboratory ID: Collection Date:	RC044008 8/28/96		
	Type:	Trip blank		
	Volatiles			
	Methylene chloride		2 ug/L	None
	Acetone		8 ug/L	10U ug/Li
WF028	Client ID:	10T02101		188 T. C. C. C. C. C. C. C. C. C. C. C. C. C.
	Laboratory ID:	RC044001		
	Collection Date:	8/26/96 Trip blank		
	Type.	Trip Diatric		
	Volatiles Methylene chloride		2	None
	Wethylene Chloride		2 ug/L	None
WF028	Client ID:	11R01601		
	Laboratory ID: Collection Date:	RC044016 8/28/96		
	Туре:	Equipment rinsate		
	Volatiles			
	Acetone		9 ug/L	10U ug/L1
•	Semivolatiles			
	Di-n-butylphthalate		5 ug/L	None
	Pesticides/PCBs		ND	None
				None
WF029	Client ID: Laboratory ID:	13R01701 RC092008		
	Collection Date:	9/11/96		
	Туре:	Equipment rinsate		
	Volatiles			
	Acetone		3 ug/L	10U ug/L¹
	Semivolatiles			
	Di-n-butylphthalate		5 ug/L	None
	Bis (2-ethylhexyl) pht	haiate	1 ug/L	10U ug/L¹
	Pesticides/PCBs		ND	None
WF029	Client ID:	13T02301		
	Laboratory ID:	RC092001		
	Collection Date:	9/9/96		
	Туре:	Trip blank	i.	
	<u>Voiatiles</u>		4= 15	
	Methylene chloride Acetone		1 ug/L 2 ug/L	None 10U ug/L¹
			2 U9/L	.oo ug/L
WF029	Client ID: Laboratory ID:	66T02401 RC092011		
	Collection Date:	9/12/96		
	Type:	Trip blank		
	Volatiles			
	Methylene chloride		3 ug/L	None
	Acetone		3 ug /L	10U ug/L¹

Organic	Compounds
---------	-----------

SDG	Parameter		Concentration	Qualifier
WF030	Client ID: Laboratory ID: Collection Date: Type:	66R01801 RC121010 9/18/96 Equipment rinsate		
• •	Volatiles Acetone		4 ug/L	None
	Semivolatiles Di-n-butylphthalate Bis(2-ethylhexyl)phth	nalate	3 ug/L 1 ug/L	None 10U ug/L¹
	Pesticides/PCBs		. ND	None
WF030	Client ID: Laboratory ID: Collection Date: Type:	66T02501 RC121001 9/16/96 Trip blank		
	Volatiles Methylene chloride Acetone		3 ug/L 3 ug/L	None 10U ug/L¹
WF030	Client ID: Laboratory ID: Collection Date: Type:	66T02601 RC121012 9/19/96 Trip blank		
	Volatiles Methylene chloride Acetone		3 ug/L 3 ug/L	None None
WF031	Client ID: Laboratory ID: Collection Date: Type:	05T02701 MB928001 9/23/96 Trip blank		
	<u>Volatiles</u> Methylene chloride		2 ug/L	None
WF031	Client ID: Laboratory ID: Collection Date: Type:	33T02801 MB958001 9/26/96 Trip blank		
	Volatiles Methylene chloride		3 ug/L	None
WF031	Client ID: Laboratory ID: Collection Date: Type:	05R01901 MB928011 9/25/96 Equipment rinsate		
	Volatiles		ND	None
	Semivolatiles Di-n-butylphthalate		2 ug/L	10U ug/L ¹
	Pesticides/PCBs		ND	None

Concentration Constitution				
SDG	Parameter		Concentration	Qualifier
WF031B	Client ID:	16T04001 MC447002		
	Laboratory ID: Collection Date:	11/21/96		
	Type:	Trip blank		
	Volatiles		ND	None
WF032	Client ID:	06T02901		
VV: 002	Laboratory ID:	MC011001		
	Collection Date:	9/30/96		
	Type:	Trip blank		
	Volatiles		ND	None
WF032	Client ID:	29T03001		
	Laboratory ID:	MC037001		
	Collection Date: Type:	10/3/96 Trip blank		
	Type.	THP DIGIT		
	Volatiles		ND	None
WF032	Client ID:	06R02001		
	Laboratory ID: Collection Date:	MC011006 10/2/96		
	Type:	Equipment rinsate		
	Volatiles		ND	None
	Semivolatiles		_ "	
	Di-n-butylphthalate		3 ug/L	10U ug/L ¹
	Pesticides/PCBs		ND	None
WF033	Client ID:	29T03101		
	Laboratory ID: Collection Date:	MC085001 10/7/96		
	Type:	Trip blank		
	Volatiles		AID	Nama
			ND	None
WF033	Client ID: Laboratory ID:	66T03201 MC118001		
	Collection Date:	10/10/96		
	Туре:	Trip blank		
	Volatiles			
	Acetone		26 ug/L	None
WF033	Client ID:	66R02101	,	
	Laboratory ID:	MC02101		
	Collection Date: Type:	10/9/96 Equipment rinsate		
	Type.	Edeibinent impere		
	Volatiles			
	Methylene chloride		1 ug/L	None
	Semivolatiles			
	Di-n-butylphthalate		6 ug/L	None
			•	

Summary of Field Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Organic Compounds

SDG	Parameter		Concentration	Qualifier
WF034	Client ID: Laboratory ID: Collection Date: Type:	66T03301 MC153001 10/14/96 Trip blank	ND.	
	Volatiles		ND	None
WF034	Client ID: Laboratory ID: Collection Date: Type:	66T03401 MC176001 10/17/96 Trip blank		
	Volatiles		ND	None
WF034	Client ID: Laboratory ID: Collection Date: Type:	66R02201 MC153007 10/16/96 Equipment rinsate		
	Volatiles Toluene Ethylbenzene Xylenes (total)		8 ug/L 1 ug/L 2 ug/L	None None None
	Semivolatiles Di-n-butylphthalate		2 ug/L	None
	Pesticides/PCBs		ND	None
WF035	Client ID: Laboratory ID: Collection Date: Type:	66T03501 MC214001 10/21/96 Trip blank		
	Volatiles		ND	None
WF035	Client ID: Laboratory ID: Collection Date: Type:	66T03601 MC231001 10/24/96 Trip blank		
	Volatiles		ND	None
WF035	Client ID: Laboratory ID: Collection Date: Type:	66R02301 MC214006 10/23/96 Equipment rinsate		
	Volatiles		ND	None
	Semivolatiles Di-n-butylphthalate	٠	3 ug/L	None
	Pesticides/PCBs		ND	None
WF036	Client ID: Laboratory ID: Collection Date: Type:	66T03701 MC262001 10/28/96 Trip blank		
	Volatiles		ND	None

		Organic (Compounds	
SDG	Parameter		Concentration	Qualifier
WF036	Client ID: Laboratory ID: Collection Date: Type:	31T03801 MC284001 10/31/96 Trip blank		
	Volatiles		ND ·	None
WF036	Client ID: Laboratory ID: Collection Date: Type:	54R02401 MC252007 10/30/96 Equipment rinsate		
	Volatiles		n generalise tragilier in eigenversche Seine eine eine Andrea ND Historie (1980 – 1984 – 1984 – 1984 – 1984 – 1984 – 1984 – 1984 – 1984 – 1984 – 1984 – 1984 – 1984 – 1984 – 19	None
	Semivolatiles Di-n-butylphthalate		4 ug/L	10U ug/L1
	Pesticides/PCBs		ND	ND
WF037	Client ID: Laboratory ID: Collection Date: Type:	15T03901 MC424001 11/18/96 Trip blank		
	Volatiles		ND	None
WF037	Client ID: Laboratory ID: Collection Date: Type:	16T04001 MC448004 11/21/96 Trip blank		
	Volatiles		ND	None
WF037	Client ID: Laboratory ID: Collection Date: Type:	15R02501 MC424009 11/20/96 Equipment rinsate		
	Volatiles		ND	None
WF037	Client ID: Laboratory ID: Collection Date: Type:	15F00201 MC424010 11/20/96 Source blank		
	Volatiles Xylenes (total)		2 ug/L	None
	Semivolatiles Di-n-butylphthalate		4 ug/L	10U ug/L¹
	Pesticides/PCBs		ND	None
WF038	Client ID: Laboratory ID: Collection Date: Type:	36RO2601 MC687016 12/18/96 Rinsate		
	Volatiles		ND	None

Company of the compan					
SDG	Parameter		Concentration	Qualifier	
WF038	Client ID:	36TO4101			
	Laboratory ID: Collection Date:	MC687001 12/17/96			
	Type:	Trip Blank			
	Volatiles	•	ND	None	
	Votatiles		ND	None	
WF039	Client ID: Laboratory ID:	35TO4201 MC698001			
	Collection Date:	12/19/97			
	Type:	Trip Blank			
	Volatiles		. ND	None	
				-	
WF039	Client ID:	35RO2701 MC698011			
	Laboratory ID: Collection Date:	12/21/96			
	Type:	Equipment rinsate			
	Volatiles		ND	None	
WF040	Client ID:	35TO4301		The second secon	
VVFU4U	Laboratory ID:	MC783001			
	Collection Date:	1/7/97			
•	Type:	Trip blank			
	Volatiles	•	•		
	Bromomethane		1 ug/L	10U ug/L¹	
WF040	Client ID:	37RO2801		The state of the s	
	Laboratory ID:	MC783017			
	Collection Date:	1/9/97			
	Type:	Equipment rinsate			
	Volatiles		E()	4011=#1	
	Acetone Carbon disuffide		5 ug/L 2 ug/L	10U ug/L' None	
			L 09/L	1400.6	
WF041	Client ID: Laboratory ID:	35T04501 MD908001			
	Collection Date:	6/11/97			
	Type:	Trip blank			
	<u>Volatiles</u>				
	Acetone		6 ug/L	None	
WF041	Client ID:	37T04601			
	Laboratory ID:	MD926001	•		
	Collection Date:	6/12/97			
	Type:	Trip blank			
	Volatiles	→ '	4 0		
	Methylene chloride		1 ug/L	None	
WF041	Client ID:	35T04701			
	Laboratory ID: Collection Date:	MD950001 6/15/97			
	Type:	Trip blank			
		•			
	Volatiles Methylene chloride		3 ug/L	None	
	Xylene (total)		1 ug/L	None	

Organic	Compounds
---------	-----------

Organic Compounds				
SDG	Parameter		Concentration	Qualifier
WF041	Client ID: Laboratory ID: Collection Date: Type:	13T04801 MD985001 6/16/97 Trip blank		
	Volatiles Methylene chloride Acetone		2 ug/L 6 ug/L	None None
WF041	Client ID: Laboratory ID: Collection Date: Type:	35F00301 MD908002 6/11/97 Source blank		
	Semivolatiles Di-n-butylphthalate		3 ug/L	None
	Pesticides & PCB	s	ND	-
WF041	Client ID: Laboratory ID: Collection Date: Type:	35R03001 MD908003 6/11/97 Equipment rinsate		
	Semivolatiles Di-n-butylphthalate Bis(2-ethylhexyl)pht	thalate	4 ug/L 8 ug/L	None None
	Pesticides & PCBs		ND	None
WF042	Client ID: Laboratory ID: Collection Date: Type:	05T04901 ME007001 6/18/97 Trip blank		
	Volatiles		ND	None
WF042	Client ID: Laboratory ID: Collection Date: Type:	05T05001 ME021001 6/20/97 Trip blank		
	Volatiles Acetone		2 ug/L	None
WF042	Client ID: Laboratory ID: Collection Date: Type:	05R03101 ME007006 6/17/97 Equipment rinsate		
	Volatiles		ND	None
WF043	Client ID: Laboratory ID: Collection Date: Type:	05R03201 ME042002 6/23/97 Equipment rinsate		3
	Volatiles 1,2-Dichloropropar	ne	1 ug/L	None

Organ	ic	C٥	m	oou	nds

SDG	Parameter		Concentration	Qualifier
WF043	Client ID: Laboratory ID: Collection Date: Type:	05T05101 MW042001 6/23/97 Trip blank	, i garante de la composiçõe de la compo	an entered an entered place a businesses of the entered season
	Volatiles		ND	None
WF043	Client ID: Laboratory ID: Collection Date: Type:	33T05201 MW053001 6/24/97 Trip blank		
	<u>Volatiles</u> Acetone		3 ug/L	None
WF043	Client ID: Laboratory ID: Collection Date: Type:	33T05301 ME073001 6/25/97 Trip blank		
	Volatiles		ND	None
WF043	Client ID: Laboratory ID: Collection Date: Type:	30T05401 ME087001 6/26/97 Trip blank		
	Volatiles Acetone		4 ug/L	None
WF044	Client ID: Laboratory ID: Collection Date: Type:	06R03301 ME1 00002 6/29/97 Equipment rinsate		
	Volatiles Acetone Trichloroethene Toluene Ethylbenzene Xylene (total)		7 ug/L 6 ug/L 3 ug/L 1 ug/L 2 ug/L	None None None None None
WF044	Client ID: Laboratory ID: Collection Date: Type: Volatiles	06T05501 ME100001 6/29/97 Trip blank	ND	None
WF044	Client ID: Laboratory ID: Collection Date: Type:	66T05601 ME110001 6/30/97 Trip blank	NU	None
	Volatiles Acetone		5 ug/L	10U ug/L¹
WF044	Client ID: Laboratory ID: Collection Date: Type:	66T05701 ME133001 7/2/97 Trip blank		
	Volatiles		ND	None

The second secon

Table IX

Organic (Compounds
-----------	-----------

SDG	Parameter		Concentration	Qualifier
WF044	Client ID: Laboratory ID: Collection Date: Type:	66T05801 ME135001 7/2/97 Trip blank		
	<u>Volatiles</u> Acetone		3 ug/L	10U ug/L¹
WF045	Client ID: Laboratory ID: Collection Date: Type:	OWR03401 ME149002 7/7/97 Equipment rinsate		
	Volatiles Acetone 1.2-Dichloropropar	ne	3 ug/L 1 ug/L	10U ug/L¹ None
	Semivolatiles Di-n-butylphthalate		5 ug/L	10U ug/L.1
	Pesticides & PCBs		ND	None
WF045	Client ID: Laboratory ID: Collection Date: Type:	OWT05901 ME149001 7/7/97 Trip blank		
	Volatiles Acetone		2 ug/L	10U ug/L ¹
WF045	Client ID: Laboratory ID: Collection Date: Type:	OWT06001 ME159001 7/8/97 Trip blank		
	Volatiles		ND	None
WF045	Client ID: Laboratory ID: Collection Date: Type:	66T06101 ME175001 7/9/97 Trip blank		
	Volatiles Acetone		2 ug/L	10U ug/L'
WF045	Client ID: Laboratory ID: Collection Date: Type:	OWT06201 ME190001 7/10/97 Trip blank		
	Volatiles		ND	None
WF045	Client ID: Laboratory ID: Collection Date: Type:	OWT06401 ME226001 7/14/97 Trip blank		
	Volatiles Acetone		250 ug/L	None

Organic	Compounds	
---------	-----------	--

SDG	Parameter		Concentration	Qualifier
WF045	Client ID: Laboratory ID: Collection Date: Type:	OWT06401DL ME226001DL 7/14/97 Trip blank		The second second second second second second second second second second second second second second second s
	Volatiles Acetone		250 ug/L	None
WF046	Client ID: Laboratory ID: Collection Date: Type:	31R03301 MW241002 7/15/97 Equipment rinsate		
	Volatiles 1,2-Dichloropropan		1 ug/L	None
	Semivolatiles Di-n-butylphthalate		12 ug/L	12U ug/L'
	Pesticides & PCBs		ND	None
WF046	Client ID: Laboratory ID: Collection Date: Type:	31T06501 ME241001 7/15/97 Trip blank		
	Volatiles Acetone		4 ug/L	None
WF046	Client ID: Laboratory ID: Collection Date: Type:	31T06601 ME261001 7/16/97 Trip blank		
	Volatiles Toluene		1 ug/L	None
WF046	Client ID: Laboratory ID: Collection Date: Type:	31T06701 ME305001 7/21/97 Trip blank		
	<u>Volatiles</u> Methylene chloride		1 ug/L	None
WF047	Client ID: Laboratory ID: Collection Date: Type:	STOR_BLK ME243008 7/15/97 Storage blank		
	Volatiles		ND	None
WF047	Client ID: Laboratory ID: Collection Date: Type:	STOR_BLK2 ME267008 7/16/97 Storage blank		
	Volatiles Acetone Toluene		4 ug/L 0.4 ug/L	None None

THE RESERVE OF THE PROPERTY OF

Table IX

SDG	Parameter		Concentration	Qualifier
WF047	Client ID: Laboratory ID: Collection Date: Type:	39T10001 ME244001 7/15/97 Trip blank	and the second of the second o	Control of the state of the sta
	<u>Volatiles</u> Carbon disulfide Toluene		0.40 ug/L 0.50 ug/L	None None
WF048	Client ID: Laboratory ID: Collection Date: Type:	39R03401 ME264009 7/17/97 Equipment rinsate	ि विकास क्षिति विकास किया है। यह का प्रतिकार क्षित्र के अध्यक्षित क्षेत्र के अपने का का का क्षेत्र के स्वरूप क स्वरूप के स्वरूप के स्वरूप के स्वरूप के स्वरूप के स्वरूप के स्वरूप के स्वरूप के स्वरूप के स्वरूप के स्वरूप के	
	Volatiles 1,2-Dichloropropane		1 ug/L	None
WF049	Client ID: Laboratory ID: Collection Date: Type:	39T10201 ME262001 7/15/97 Trip blank		
	Volatiles Toluene		0.90 ug/L	None
WF049	Client ID: Laboratory ID: Collection Date: Type:	39T10401 ME263007 7/17/97 Trip blank		
	<u>Volatiles</u> Toluene		0.40 ug/i.	None
WF051	Client ID: Laboratory ID: Collection Date: Type:	16R03501 ME306002 7/21/97 Equipment rinsate		
	<u>Volatiles</u> Methylene chloride		1 ug/L	None
WF051	Client ID: Laboratory ID: Collection Date: Type:	16T06801 ME306001 7/21/97 Trip blank		
	Volatiles Methylene chloride Acetone		1 ug/L 3 ug/L	None None
WF051	Client ID: Laboratory ID: Collection Date: Type:	16T06901 ME322001 7/22/97 Trip blank		
	Volatiles		ND	None
WF051	Client ID: Laboratory ID: Collection Date: Type:	16T07001 ME340001 7/23/97 Trip blank		
	Volatiles		ND	None

Organic Compound

SDG	Parameter			Concentration	Qualifier
WF051	Client ID: Laboratory ID: Collection Date: Type:	16T07101 ME348001 7/25/97 Trip blank			i a litti ti e
	Volatiles			ND	None
WF052	Client ID: Laboratory ID: Collection Date: Type:	STORAGEBLK ME346008 7/25/97 Storage blank			
	Volatiles Methylene chloride Acetone			1 ug/L 3 ug/L	None None
WF052	Client ID: Laboratory ID: Collection Date: Type:	39T10501 ME346007 7/25/97 Trip blank			-
	Volatiles			ND	None
WF053	Client ID: Laboratory ID: Collection Date: Type:	15R03701 ME367002 7/27/97 Equipment rinsate			
	Volatiles			ND	None
WF053	Client ID: Laboratory ID: Collection Date: Type:	15T07201 ME367001 7/27/97 Trip blank			
	Volatiles	•		ND	None
WF053	Client ID: Laboratory ID: Collection Date: Type:	15T07301 ME377001 7/28/97 Trip blank	•		
WF053	Client ID: Laboratory ID: Collection Date: Type:	15T07401 ME390001 7/29/97 Trip blank		ND	None
	Volatiles			ND	None
WF053	Client ID: Laboratory ID: Collection Date: Type:	15T0,7501 ME404001 7/30/97 Trip blank			
	Volatiles			ND	None
WF054	Client ID: Laboratory ID: Collection Date: Type:	15R03801 ME441005 8/5/97 Equipment rinsate			
	Volatiles			ND	None

DG	Parameter		Concentration	Qualifier
WF054	Client ID: Laboratory ID: Collection Date: Type:	30R03901 ME450002 8/6/97 Equipment rinsate		
	Volatiles 1.2-Dichloropropan	e	1 ug/L	None
WF054	Client ID: Laboratory ID: Collection Date: Type:	15T07601 ME441001 8/4/97 Trip blank		
	Volatiles		ND	None
WF054	Client ID: Laboratory ID: Collection Date: Type:	30T07701 ME450001 8/5/97 Trip blank		
	Volatiles		ND	None
WF055	Client ID: Laboratory ID: Collection Date: Type:	OWR04101 MF004002 10/27/97 Equipment rinsate		
	Volatiles		ND	None
WF055	Client ID: Laboratory ID: Collection Date: Type:	13R04201 MF004005 10/28/97 Equipment rinsate		
	Volatiles		ND	None
WF055	Client ID: Laboratory ID: Collection Date: Type:	OWT08001 MF004001 10/27/97 Trip blank		-
	Volatiles	4	ND	None

Table X

Summary of Percent Recoveries (%R) and Relative Percent Differences (RPD) for Matrix Spike and Laboratory Duplicate Samples Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes

			Crit	leria	% Recovery			
SDG	Client ID	Analyte	% Recovery	Difference	MS	MSD	RPD/Difference	Qualifier
WF022	BKG00101	Metals Cyanide	-	-	<u>-</u>	- -	: :	None None
WF023	02G00301	Metals Cyanide	-	<u>-</u> -	-	- -	-	None None
WF024	15G00701	Metals Cyanide	-	-	•	- -	- -	None None
WF025	15G00601	Metals Cyanide	-	-	-	-		None None
WF026	15G00803	Metals Cyanide	-	-	-	-	-	None None
WF027	16G00501	Metals Cyanide	-	-	-	-	-	None None
WF028	12G00101	Metals Cyanide	-	-	-	-	-	None None
WF029	14G00101	Metals Cyanide	-	-	-	-	-	None None
WF030	66G00601	Metals Cyanide	-	-	•	- -	-	None None
WF031	05G01001	fron Lead Sodium Zinc Cyanide	- - - - 75-125	±100 ±3.0 ±5000 ±20.0	- - - - 3.7	- - - -	124.8 ug/L 9.2 ug/L 5978 ug/L 174 ug/L -	リ リ リ J (det) R (ND)
WF031B	None	Metals Cyanide	-	<u>-</u>	-	<u>-</u>	-	None None
WF032	29G00501	Metals Cyanide	-	-	-	-	-	None None
WF033	66G00201	Metals Cyanide	-	•	-	•		None None

Summary of Percent Recoverles (%R) and Relative Percent Differences (RPD) for Matrix Spike and Laboratory Duplicate Samples Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes

l			_					
			Cri	teria	% Red	covery		
SDG	Client ID	Analyte	% Recovery	Difference	MS	MSD	RPD/Difference	Qualifier
WF034	30G00301	Antimony Cyanide	75-125 -	-	126.7 -	-	:	J (all detects) None
WF035	66G01701	Metals Cyanide	-	-	-	<u>-</u> -		None None
WF036	54G00101	Metals Cyanide		-	-	-	•	None None
WF037	15F00201	Metals Cyanide	- 75-125	-	- 3.7	-	-	None J (del) R (ND)
WF041	35G00101	Aluminum Iron Manganese Cyanide	- - -	≤100 ≤100 ≤10		- - -	402 ug/L 309 ug/L 75.2 ug/L -	J J J None
WF045	OWG00502	Metals Cyanide	-	•	-	-		None None
WF046	31G00101	Metals Cyanide	-	-	-	•	-	None None
WF047	39W034	Metals	-	•	-	-		None
WF051	None	Metals	-	-	•	-	•	None
WF053	15G00602	Metals	-	-	-		-	None
WF054	15G00801	Metals	-	<u>.</u> .	-		-	None

SDG	In	RPD		
WF022	Client ID Laboratory ID Collection Date	BKG00101 RB858003 7/16/96	BKG00101D RB858004 7/16/96	
		40.4	5.4	
	Aluminum	43.4 ug/L	54.4 ug/L	22
	Barium	15.6 ug/L	15.6 ug/L	0
	Calcium	536 ug/L	558 ug/L	4
	Iron	54.0 ug/L	57.9 ug/L	7
	Lead	ND	0.80 ug/L	Not calculable
	Magnesium	499 ug/L	521 ug/L	4
	Manganese	1.7 ug/L	1.9 ug/L	11
	Selenium	0.67 ug/L	ND	Not calculable
	Sodium	1080 ug/L	1080 ug/L	0
	Zinc	2.4 ug/L	ND	Not calculable
	Cyanide	3.8 ug/L	6.5 ug/L	52
WF022	Client ID	01G00102	01G00102D	
	Laboratory ID	RB873008	RB873009	
	Collection Date	7/19/96	7/19/96	
	Aluminum	19.1 ug/L	10.3 ug/L	50
	Barium	15.6 ug/L	15.6 ug/L	0
	Beryllium	0.53 ug/L	ND	Not calculable
	Calcium	5850 ug/L	6250 ug/L	7
	Copper	ND	1.4 ug/L	Not calculable
	tron	12.2 ug/L	8.8 ug/L	32
	Lead	1.3 ug/L	1.5 ug/L	14
	Magnesium	337 ug/L	331 ug/L	2
	Manganese	6.7 ug/L	9.0 ug/L	29
	Potassium	938 ug/L	842 ug/L	11
	Sodium	2100 ug/L	2070 ug/L	1
	Vanadium	ND	1.6 ug/L	Not calculable
	Zinc	10.2 ug/L	11.4 ug/L	11
	Cyanide	1.9 ug/L	ND	Not calculable
NF023	Client ID	02G00301	02G00301D	
	Laboratory ID	RB887012	RB887013	
	Collection Date	7/24/96	7/24/96	
	Aluminum	79.3 ug/L	84.6 ug/L	6
	Barium	128 ug/L	129 ug/L	0.8
	Beryllium	0.39 ug/L	ND	Not calculable
•	Calcium	113000 ug/L	113000 ug/L	0
	Iron	36.2 ug/L	38.7 ug/L	7
	Lead	1.4 ug/L	1.3 ug/L	7
	Magnesium	9560 ug/L	9590 ug/L	0.3
	Manganese	13.5 ug/L	13.7 ug/L	1
	Nickel	7.8 ug/L	9.6 ug/L	21
	Potassium	4610 ug/L	4580 ug/L	0.7
	Selenium	1.2 ug/L	0.66 ug/L	58
	Sodium	2200 ug/L	2240 ug/L	2
	Vanadium	3.0 ug/L	2.8 ug/L	7
	Zinc	1.8 ug/L	2.0 ug/L	11

SDG		Inorganic Analytes .				
WF024	Client ID Laboratory ID	15G00701 RB920009	15G00701D RB950010			
	Collection Date	7/31/96	7/31/96			
	Aluminum	161 ug/L	173 ug/L	7		
	Barium	15.6 ug:L	19.3 ug/L	21		
	Calcium	356 ug/L	360 ug/L	1		
	Chromium	2.9 ug/L	2.0 ug/L	37		
	Iron	183 ug/L	202 ug/L	10		
	Lead	0.70 ug/L	0.60 ug/L	15		
	Magnesium	433 ug/L	422 ug/L	3		
	Manganese	2.8 ug/L	2.6 ug/L	7		
	Sodium	1530 ug/L	1610 ug/L	5		
	Vanadium	ND	1.2 ug/L	Not calculable		
	Zinc	3.4 ug/L	3.6 ug/L	6		
	Cyanide	2.6 ug/L	3.2 ug/L	21		
WF025	Client ID	15G00601	15G00601D			
	Laboratory ID	RB956006	RB956008			
	Collection Date	8/7/96	8/7/96			
	Aluminum	89.4 ug/L	55.8 ug/L	46		
	Arsenic	8.0 ug/L	7.8 ug/L	2		
	Barium	67.6 ug/L	63.7 ug/L	6		
	Calcium	3690 ug/L	3620 ug/L	2		
	Iron	31000 ug/L	30500 ug/L	2		
	Lead	0.90 ug/L	0.50U ug/L	Not calculable		
	Magnesium	1940 ug/L	1900 ug/L	2		
	Manganese	139 ug/L	136 ug/L	2		
	Potassium	2460 ug/L	2340 ug/L	5		
	Sodium	2630 ug/L	2590 ug/L	2		
	Zinc	3.4 ug/L	3.3 ug/L	3		
	Cyanide	1.5U ug/L	8.1 ug/L	Not calculable		
WF026	Client ID	15G00803	15G00803D			
	Laboratory ID	RB980007	RB980008			
	Collection Date	8/14/96	8/14/96			
	Aluminum	187 ug/L	146 ug/L	25		
	Barium	10.6 ug/L	10.8 ug/L	2		
	Calcium	1440 ug/L	1170 ug/L	21		
	Chromium	2.9 ug/L	2.0U ug/L	Not calculable		
	Cobalt	2.3U ug/L	2.4 ug/L	Not calculable		
	Copper	4.0 ug/L	2.4 ug/L	50		
	Iron	194 ug/L	175 ug/L	10		
	Lead	0.80 ug/L	0.50 ug/L	46		
	Magnesium	322 ug/L	296 ug/L	8		
	Manganese	33.1 ug/L	32.9 ug/L	0.6		
	Potassium	522 ug/L	316U ug/L	Not calculable		
	Sodium	5350 ug/L	5380 ug/L	0.6		
	Vanadium	2.0 ug/L	1.5 ug/L	29		
	Zinc	176 ug/L	178 ug/L	1		
	Cyanide	1.6 ug/L	4.2 ug/L	90		

SDG		RPD		
WF026	Client ID	16G00403	16G00403D	
	Laboratory ID	RB980020	RB980021	
	Collection Date	8/16/96	8/16/96	
	Aluminum	278 ug/L	290 ug/L	4
	Arsenic	1.0 ug/L	0.50U ug/L	Not calculable
	Barium	28.6 ug/L	27.5 ug/L	4
	Calcium	3110 ug/L	3300 ug/L	6
	Chromium	2.3 ug/L	2.9 ug/L	23
	Copper	1.1U ug/L	1.3 ug/L	Not calculable
	Iron	1370 ug/L	879 ug/L	44
	Lead	4.0 ug/L	2.7 ug/L	39
	Magnesium	1320 ug/L	987 ug/L	29
	Manganese	41.3 ug/L	33.5 ug/L	21
	Potassium	540 ug/L	713 ug/L	28
	Sodium	2570 ug/L	2590 ug/L	0.8
	Vanadium	2.2 ug/L	1.2U ug/L	Not calculable
	Zinc	103 ug/L	945 ug/L	161
	Cyanide	2.9 ug/L	1.6 ug/L	58
WF027	Client ID	16G00501	16G00501D	
	Laboratory ID	RC016009	RC016013	
	Collection Date	8/21/96	8/21/96	
	Aluminum	12.6 ug/L	16.7 ug/L	28
	Barium	10 ug/L	10 ug/L	0
	Calcium	239 ug/L	234 ug/L	2
	Cobatt	3.2 ug/L	2.3U ug/L	Not calculable
	Iron	9.2 ug/L	5.3 ug/L	54
	Magnesium	276 ug/L	261 ug/L	6
	Manganese	1.0U ug/L	2.1 ug/L	Not calculable
	Sodium	1550 ug/L	1450 ug/L	7
	Zinc	2.6 ug/L	1.6 ug/L	48
WF027	Client ID	09G00301	09G00301D	
	Laboratory ID	RC016019	RC016020	
	Collection Date	8/23/96	8/23/96	
	Aluminum	407 ug/L	372 ug/L	9
	Antimony	8.6U ug/L	9.3 ug/L	Not calculable
	Arsenic	2.6 ug/L	2.8 ug/L	7
	Barium	27.1 ug/L	25.8 ug/L	5
	Calcium	15300 ug/L	14600 ug/L	5
	Chromium	4.0 ug/L	2.4 ug/L	50
	Iron	173 ug/L	148 ug/L	16
	Lead	0.50U ug/L	0.60 ug/L	Not calculable
	Magnesium	158 ug/L	160 ug/L	1
	Manganese	1.5 ug/L	1.7 ug/L	12
	Potassium	2390 ug/L	2010 ug/L	17
	Sodium	2070 ug/L	1950 ug/L	6
	Vanadium	16.4 ug/L	14.3 ug/L	14
	Zinc	14.8 ug/L	1.2 ug/L	170

Table XI
Summary of Relative Percent Differences (RPD) for Original and Field Duplicate Samples
Groundwater and Subsurface Soil Investigation, Phase IIB
NAS Whiting Field, Milton Florida

SDG		Inorganic Analytes		RPD	
WF028	Client ID Laboratory ID	12G00101 RC044012	12G00101D RC044017		
1 1	Collection Date	8/27/96	8/27/96		
	Aluminum	14.0 ug/L	15.1 ug/L	6	
	Barium	14.5 ug/L	14.5 ug/L	0	
	Calcium	1840 ug/L	1870 ug/L	2	
	Lead	0.60 ug/L	0.50U ug/L	Not calculable	
	Magnesium	320 ug/L	327 ug/L	2	
	Manganese	1.0U ug/L	1.4 ug/L	Not calculable	
	Potassium	2220 ug/L	2290 ug/L	3	
	Sodium	2310 ug/L	2360 ug/L	2	
	Thallium	0.70 ug/L	0.60U ug/L	Not calculable	
	Zinc	6.7 ug/L	5.5 ug/L	20	
	Cyanide	1.8U ug/L	2.1 ug/L	Not calculable	
WF028	Client ID	11G00201	11G00201D		
	Laboratory ID	RC044011	RC044018		
	Collection Date	8/28/96	8/28/96		
	Aluminum	2770 ug/L	2320 ug/L	18	
	Arsenic	1.7 ug/L	2.0 ug/L	16	
	Barium	50.3 ug/L	51.6 ug/L	3	
	Beryllium	0.40 ug/L	0.30U ug/L	Not calculable	
	Calcium	35400 ug/L	41800 ug/L	17	
	Chromium	20.4 ug/L	19.2 ug/L	6	
	Copper	2.0 ug/L	3.1 ug/L	43	
	iron	232 ug/L	337 ug/L	37	
	Lead	0.50U ug/L	0.90 ug/L	Not calculable	
	Magnesium	388 ug/L	538 ug/L	32	
	Manganese	2.2 ug/L	4.8 ug/L	74	
	Potassium	12900 ug/L	9610 ug/L	29	
	Sodium	3420 ug/L	2950 ug/L	15	
	Vanadium	11.0 ug/L	11.0 ug/L	- 1 O	
	Zinc	3.4 ug/L	24.3 ug/L	151	
	Cyanide	1.5U ug/L	3.3 ug/L	Not calculable	
WF029	Client ID	14G00101	14G00101D		
	Laboratory ID	RC092007	RC092009		
	Collection Date	9/11/96	9/11/96		
	Aluminum	33.1 ug/L	26.5 ug/L	22	
	Arsenic	0.50 ug/L	0.50U ug/L	Not calculable	
	Barium	22.3 ug/L	22.3 ug/L	0	
	Calcium	3060 ug/L	2870 ug/L	6	
	iron	22.0 ug/L	27.3 ug/L	22	
	Lead	1.3 ug/L	0.80 ug/L	48	
	Magnesium	702 ug/L	691 ug/L	2	
	Manganese	1.9 ug/L	1.9 ug/L	0	
	Mercury	0.12 ug/L	0.10U ug/L	Not calculable	
	Sodium	1590 ug/L	1570 ug/L	1	
	Vanadium	1.2U ug/L	1.4 ug/L	Not calculable	
	Zinc	89.5 ug/L	96.8 ug/L	8	

SDG	inorganic Analytes			RPD
WF030	Client ID Laboratory ID Collection Date	66G00601 RC121007 9/18/96	66G00601D RC121011 9/18/96	
	Aluminum Barium	39.9 ug/L 38.1 ug/L	39.7 ug/L 36.2 ug/L	0.5
	Calcium	863 ug/L	770 ug/L	11
	Copper Iron	1.8 ug/L 8.2 ug/L	1.1U ug/L 41.9 ug/L	Not calculable 134
	Lead Magnesium	0.90 ug/L 1130 ug/L	0.50U ug/L 1110 ug/L	Not calculable 2
	Manganese Potassium	5.0 ug/L 860 ug/L	4.6 ug/L 689 ug/L	8 22
	Selenium Sodium	0.64 ug/L 1280 ug/L	0.60U ug/L 1160 ug/L	Not calculable
	Zinc	2.9 ug/L	4.8 ug/L	49
WF030	Client ID Laboratory ID Collection Date	66G02203 RC121016 9/20/96	66G02203D RC121017 9/20/96	
	Aluminum	44.0 ug/L	51.9 ug/L	16
	Barium Calcium	6.4 ug/L 751 ug/L	6.4 ug/L 731 ug/L	0 3
	Cobalt Iron	2.3U ug/L 35.6 ug/L	2.4 ug/L 38.9 ug/L	Not calculable 9
	Magnesium Manganese	271 ug/L 9.7 ug/L	242 ug/L 9.7 ug/L	11
	Potassium Sodium	491 ug/L	316U ug/L	Not calculable 2
	Zinc	2810 ug/L 1.2 ug/L 1.8U ug/L	2760 ug/L 2.2 ug/L 12.0 ug/L	59 Not calculable
	Cyanide			1 Not calculable
WF031	Client ID Laboratory ID Collection Date	05G01001 MB928007 9/25/96	05G01001D MB928012 9/25/96	
	Barium	27.6 ug/L	27.1 ug/L	2
	Calcium Chromium	854 ug/L 0.61 ug/L	803 ug/L 0.36 ug/L	6 52
	Copper Copper	0.85 ug/L 35.6 ug/L	0.72 ug/L 1.7U ug/L	17 Not calculable
	iron Lead	40.1 ug/L 4.4 ug/L	31.8U ug/L 1.8U ug/L	Not calculable Not calculable
	Magnesium Manganese	874 ug/L 3.3 ug/L	871 ug/L 2.5 ug/L	0.6 28
	Mercury Nickel	0.03 ug/L 1.4 ug/L	0.04 ug/L 1.4 ug/L	29 0
	Potassium	3.1U ug/L	825 ug/L	Not calculable
	Selenium Sodium	5.4 ug/L 15100 ug/L	3.9U ug/L 14900 ug/L	Not calculable
	Thallium Vanadium	7.4 ug/L 0.58U ug/L	1.9U ug/L 0.63 ug/L	Not calculable Not calculable
	Zinc	13.7 ug/L	3.8 ug/L	113

SDG WF031	ii	norganic Analytes		RPD
WF031				I RED
	Client ID Laboratory ID Collection Date	33G00301 MB958006 9/27/96	33G00301D MB958007 9/27/96	
	Aluminum	156	98.7	45
	Antimony	3.5	3.4U	Not calculable
	Barium	59.3	59.9	1
	Calcium	2230	2230	0
	Chromium	0.88	0.34U	Not calculable
	Cobatt	0.70	0.49	35
	Iron	107	50.6	72
	Magnesium	1750	1760	0.6
	Manganese	21.2	21.5	1
	Potassium	31.8	1040	188
	Sodium	5370	5550	3
	Thallium	2.9	3.4	16
	Vanadium	1.0	0.58U	Not calculable
	Zinc	7.4	7.2	3
WF032	Client ID	29G00501	29G00501D	
VII. 002	Laboratory ID	MC011007	MC011008	
	Collection Date	10/2/96	10/2/96	
	Barium	89.7 ug/L	84.2 ug/L	6
	Beryllium	0.14 ug/L	0.19 ug/L	30
	Calcium	1580 ug/L	1470 ug/L	7
	Chromium	2.1 ug/L	2.8 ug/L	29
	Cobalt	0.94 ug/L	0.98 ug/L	4
	Copper	2.7 ug/L	4.4 ug/L	48
	Magnesium	2500 ug/L	2320 ug/L	7
	Manganese	8.4 ug/L	8.0 ug/L	5
	Mercury	0.04 ug/L	0.04 ug/L	0
	Sodium	5040 ug/L	5030 ug/L	0.2
	Zinc	5.1 ug/L	3.8 ug/L	29
	Cyanide	1.0 ug/L	1.2 ug/L	18
WF033	Client ID Laboratory ID	66G00201 MC118002	66G00201D MC118003	
	Collection Date	10/9/96	10/9/96	
	Barium	20.8 ug/L	20.7 ug/L	0.5
	Calcium	3250 ug/L	3100 ug/L	5
	Chromium	0.75 ug/L	0.44 ug/L	52
	Copper	1.7U ug/L	2.7 ug/L	Not calculable
	tron	73.8 ug/L	31.8U ug/L	Not calculable
	Magnesium	456 ug/L	457 ug/L	0.2
	Manganese	3.4 ug/L	3.2 ug/L	6
	Mercury	0.03 ug/L	0.03 ug/L	o
	Potassium	648 ug/L	1920 ug/L	99
	Sodium	3040 ug/L	3020 ug/L	0.7
	1 Couldin	1 00-0 09/1	1 0020 ug/L	1 0.7

SDG	Inorganic Analytes			RPD
WF034	Client ID Laboratory ID	30G00301 MC153005	30G00301D MC153008	
	Collection Date	10/16/96	10/16/96	
	Barium	28.0 ug/L	27.8 ug/L	0.7
	Beryllium	0.20 ug/L	0.13U ug/L	Not calculable
	Calcium	1530 ug/L	1480 ug/L	3
	Copper	11.0 ug/L	3.2 ug/L	110
	Iron	626 ug/L	634 ug/L	1
	Lead	3.8 ug/L	2.4 ug/L	45
	Magnesium	642 ug/L	650 ug/L	1
	Manganese	20.7 ug/L	21.0 ug/L	1
	Mercury	0.04 ug/L	0.05 ug/L	22
	Potassium	1880 ug/L	2680 ug/L	. 35
	Sodium	4600 ug/L	4490 ug/L	2
	Zinc	5.5 ug/L	4.4 ug/L	22
WF035	Client ID	66G01701	66G01701D	
	Laboratory ID	MC214005	MC214007	
	Collection Date	10/23/96	10/23/96	
	Aluminum	24.3 ug/L	30.9 ug/L	24
	Barium	10.2 ug/L	10.7 ug/L	5
	Calcium	766 ug/L	816 ug/L	6
	Copper	1.7U ug/L	22.5 ug/L	Not calculable
	Iron	343 ug/L	348 ug/L	1
	Lead	2.0U ug/L	2.6 ug/L	Not calculable
	Magnesium	320 ug/L	324 ug/L	1
	Manganese	4.2 ug/L	5.4 ug/L	25
	Mercury	0.03 ug/L	0.03 ug/L	1 0
	Selenium	4.0 ug/L	3.9U ug/L	Not calculable
	Sodium	7660 ug/L	7790 ug/L	2
	Zinc	2.5 ug/L	26.3 ug/L	165
WF036	Client ID	54G00101	54G00101D	
	Laboratory ID	MC262004	MC262008	
	Collection Date	10/30/96	10/30/96	
	Aluminum	87.6 ug/L	91.6 ug/L	4
	Barium	75.2 ug/L	74.3 ug/L	1
	Beryllium	0.18 ug/L	0.18 ug/L	0
	Calcium	1680 ug/L	1660 ug/L	1
	Chromium	1.2 ug/L	1.0 ug/L	2
	Cobalt	0.90 ug/L	1.4 ug/L	43
	Magnesium	1950 ug/L	1920 ug/L	2
	Manganese	13.9 ug/L	12.9 ug/L	7
	Mercury	0.02 ug/L	0.01U ug/L	Not calculable
	Potassium	2410 ug/L	2530 ug/L	5
	Sodium	2110 ug/L	2070 ug/L	2

SDG		Inorganic Analytes		RPD	
WF041	Client ID Laboratory ID Collection Date	35G00101 MD908004 6/11/97	35G00101D MD908005 6/11/97		
•	Aluminum	47.8 ug/L	45.2 ug/L	6	
	Barium	78.8 ug/L	79.0 ug/L	0.2	
	Calcium	3150 ug/L 8.2 ug/L	3240 ug/L 6.8 ug/L	3 19	
	Copper	15.9 ug/L	19.0 ug/L	18	
	Lead	1.7 ug/L	0.93U ug/L	Not calculable	
	Magnesium	2340 ug/L	2370 ug/L	1	
	Manganese	28.7 ug/L	28.9 ug/L	0.7	
	Sodium	4330 ug/L	4430 ug/L	2	
	Thallium	1.9 ug/L	0.89U ug/L	Not calculable	
	Zinc	12.1 ug/L	130 ug/L	166	
	Cyanide	ND	ND	-	
WF041	Client ID	35G00202	35G00202D		
	Laboratory ID	MD950002	MD950003		
	Collection Date	6/15/97	6/15/97		
	Aluminum	65.0 ug/L	50.7 ug/L	25	
	Barium	24.8 ug/L	25.3 ug/L	2	
	Calcium	973 ug/L	1030 ug/L	6	
	Copper	5.6 ug/L	3.5 ug/L	46	
	iron	180 ug/L	196 ug/L	8	
	Lead	0.93U ug/L	1.9 ug/L	Not calculable	
	Magnesium	813 ug/L	819 ug/L	0.7	
	Manganese	9.5 ug/L	9.3 ug/L	2	
	Selenium	1.8U ug/L	2.6 ug/L	Not calculable	
	Sodium	20900 ug/L	21700 ug/L	4	
	Thallium	1.0 ug/L	0.89U ug/L	Not calculable	
	Zinc Cyanide	18.7 ug/L ND	15.4 ug/L ND	19	
	Cyanide	NO	ND	•	
WF045	Client ID	OWG00502	OWG00502D		
	Laboratory ID Collection Date	ME149004 7/8/97	ME149005 7/8/97		
				_	
	Aluminum	175 ug/L	160 ug/L	9	
	Barium Calcium	7.3 ug/L 648 ug/L	7.1 ug/L	3	
	Calcium	2.9 ug/L	585 ug/L 4.4 ug/L	41	
	Iron	106 ug/L	97.1 ug/L	9	
	Magnesium	308 ug/L	317 ug/L	3	
	Manganese	3.3 ug/L	3.5 ug/L	6	
	Nickel	7.8 ug/L	7.7U ug/L	Not calculable	
	Sodium	1990 ug/L	2060 ug/L	3	
	Zinc	4.5 ug/L	4.7 ug/L	4	
	Cyanide	ND	ND		

SDG		Inorganic Analytes		RPD
WF045	Client ID Laboratory ID Collection Date	OWG00302 ME190002 7/10/97	OWG00302D ME190003 7/10/97	
	Aluminum	31.5 ug/L	16.6U ug/L	Not calculable
	Barium	10.2 ug/L	10.55 ug/L	3
	Calcium	460 ug/L	454 ug/L	1
	Iron	83.3 ug/L	51.1 ug/L	48
	Lead	1.9 ug/L	1.2U ug/L	Not calculable
	Magnesium	286 ug/L	300 ug/L	5
	Manganese	3.0 ug/L	3.0 ug/L	Ö
	Sodium	1670 ug/L	1670 ug/L	0
	Zinc	3.4 ug/L	3.8 ug/L	11
	Cyanide	ND	ND	<u>-</u>
WF046	Client ID	31 G00101	31G00101D	
	Laboratory ID	ME241003	ME241004	
	Collection Date	7/15/97	7/15/97	
	Aluminum	96.0 ug/L	91.1 ug/L	5
	Barium	22.6 ug/L	22.5 ug/L	0.4
	Calcium	857 ug/L	851 ug/L	0.7
	Copper	1.3U ug/L	1.4 ug/L	Not calculable
	Iron	120 ug/L	103 ug/L	15
	Magnesium	662 ug/L	675 ug/L	2
	Manganese	9.7 ug/L	9.9 ug/L	2
	Potassium	1910 ug/L	2200 ug/L	15
	Sodium	1760 ug/L	1890 ug/L	7
	Vanadium	1.8 ug/L	1.7U ug/L	Not calculable
	Zinc Cyanide	3.5 ug/L ND	9.8 ug/L ND	95
WF047	Client ID	39W034	39W034D	
	Laboratory ID Collection Date	ME243005 7/15/97	ME243006 7/15/97	
	Aluminum	94,0 ug/L	76.3 ug/L	21
	Barium	22.9 ug/L	22.8 ug/L	0.4
	Calcium	1030 ug/L	1010 ug/L	2
	Copper	8.2 ug/L	1.3U ug/L	Not calculable
	iron	747 ug/L	751 ug/L	0.5
	Magnesium	871 ug/L	854 ug/L	2
	Manganese Sodium	12.5 ug/L 2210 ug/L	12.6 ug/L	0.8
	Zinc	14.7 ug/L	2090 ug/L 3.0 ug/L	132
WF051	Client ID	16G00101	16G00101D	
WF031	Laboratory ID	ME340009	ME340010	
	Collection Date	7/24/97	7/24/97	
	Barium	20.5 ug/L	20.7 ug/L	1
	Calcium	514 ug/L	520 ug/L	1
	Copper	1.7 ug/L	1.7 ug/L	0
	Iron	11.2 ug/L	14.7 ug/L	27
	Magnesium	617 ug/L	623 ug/L	1
	Manganese	3.2 ug/L	3.0 ug/L	6
	Sodium	2130 ug/L	2110 ug/L	1
	Zinc	3.2 ug/L	8.2 ug/L	88

A Commence of the Commence of

SDG	inorganic Analytes			RPD
WF053	Client ID Laboratory ID Collection Date	15G00602 ME367004 7/27/97	15G00602D ME367005 7/27/97	
	Aluminum	16.6U ug/L	29.9 ug/L	Not calculable
	Barium	13.0 ug/L	13.0 ug/L	0
	Calcium	676 ug/L	675 ug/L	0.1
	Chromium	3.3 ug/L	4.2 ug/L	24
	Iron	33.8 ug/L	92.6 ug/L	93
	Magnesium	504 ug/L	490 ug/L	3
	Manganese	2.3 ug/L	2.7 ug/L	16
	Sodium	2870 ug/L	2740 ug/L	5
	Zinc	3.1 ug/L	3.4 ug/L	9
WF053	Client ID	15G00703	15G00703D	
	Laboratory ID	ME404003	ME404004	
	Collection Date	7/30/97	7/30/97	
	Aluminum	43.6 ug/L	108 ug/L	14
	Antimony	17.3U ug/L	21.2 ug/L	Not calculable
	Barium	6.6 ug/L	6.2 ug/L	6
	Calcium	587 ug/L	549 ug/L	7
	Chromium	10.6 ug/L	13.4 ug/L	23
	Copper	2.9 ug/L	4.5 ug/L	43
	Iron	107 ug/L	115 ug/L	7
	Lead	0.93U ug/L	5.1 ug/L	Not calculable
	Magnesium	280 ug/L	266 ug/L	5
	Manganese	6.9 ug/L	6.5 ug/L	6
	Nickel	10.9 ug/L	20.3 ug/L	60
	Sodium	2040 ug/L	1820 ug/L	11
	Zinc	5.2 ug/L	6.1 ug/L	16
WF054	Client ID	15G00801	15G00801D	
	Laboratory ID	ME441002	ME441003	
	Collection Date	8/4/97	8/4/97	
	Aluminum	143 ug/L	116 ug/L	21
	Arsenic	2.0 ug/L	1.1U ug/L	Not calculable
	Barium	34.7 ug/L	37.3 ug/L	7
	Calcium	1870 ug/L	2010 ug/L	7
	Copper	5.2 ug/L	2.6 ug/L	67
	Iron	4760 ug/L	4940 ug/L	4
	Magnesium	1370 ug/L	1470 ug/L	7
	Manganese	84.6 ug/L	91.4 ug/L	8
	Mercury	0.04U ug/L	. 0.07 ug/L	Not calculable
	Sodium	1830 ug/L	1960 ug/L	7
	Thallium	0.89U ug/L	0.90 ug/L	Not calculable
	Zinc	8.5 ug/L	6.6 ug/L	1 25

Summary of Analytes Exceeding Instrument Calibration Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes

SDG	Date	Analyte	Initial Calibration r	Continuing Calibration %R	Qualifier
WF022	All	Metals Cyanide	<u>:</u>	-	None None
WF023	All	Metals Cyanide		-	None None
WF024	All	Metals Cyanide	-	-	None None
WF025	All	Metals Cyanide	·	-	None None
WF026	All	Metals Cyanide	-	-	None None
WF027	Ali	Metals Cyanide	-	-	None None
WF028	All	Metals Cyanide	-	-	None None
WF029	All	Metais Cyanide		· -	None None
WF030	All	Metals Cyanide	-	- -	None None
WF031	All	Metals Cyanide	-	-	None None
WF031B	All	Metals Cyanide	-	-	None None
WF032	All	Metals Cyanide		-	None None
WF033	All	Metals Cyanide	-	-	None None
WF034	Ali	Metals Cyanide	-	-	None None
WF035	Ali	Metals Cyanide	:	· -	None None
WF036	All	Metals Cyanide		-	None None
WF037	All	Metals Cyanide	•	-	None None
WF041	All	Metals Cyanide	-	<u>:</u> -	None None
WF045	All	Metals Cyanide	-	:	None None
WF046	All	Metals Cyanide	:	-	None None
WF047	All	Metais	-	-	None
WF051	All	Metals		-	None

The carried and the second section of the second section of the

Summary of Analytes Exceeding Instrument Calibration Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes

SDG	Date	Analyte	Initial Calibration r	Continuing Calibration %R	Qualifier	
WF053	All	Metais	•	-	None	
WF054	All	Metais		-	None	

Notes: r = correlation coefficient for initial calibrations

%R = percent recovery for continuing calibrations

- J = the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample because QC criteria were not met (validation "J").
- UJ = the analyte was not detected above the reported sample IDL. However, the reported sample is approximate: the analyte concentration may not reliably be presumed to be less than the IDL value.
- R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

		Inorganic Analytes	
SDG	Analyte	Concentration	Associated Samples
WF022	Aluminum Iron Lead Sodium Zinc	6.240 ug/L 12.320 ug/L 0.500 ug/L 38.890 ug/L 3.660 ug/L	All samples in SDG WF022
WF023	Arsenic Iron Lead Sodium Zinc	-0.500 ug/L 5.980 ug/L 1.200 ug/L 34.400 ug/L 1.200 ug/L	All samples in SDG WF023
WF024	Aluminum Iron Lead Sodium	10.600 ug/L 13.190 ug/L 0.500 ug/L 37.550 ug/L	All samples in SDG WF024
WF025	Aluminum Beryllium Iron Selenium Zinc	13.650 ug/L -0.320 ug/L 7.390 ug/L 0.650 ug/L 1.610 ug/L	All samples in SDG WF025
WF026	Aluminum Calcium Iron Magnesium Mercury Sodium Zinc Mercury	17.380 ug/L 119.520 ug/L 10.050 ug/L 22.940 ug/L 0.140 ug/L 41.280 ug/L 2.510 ug/L	All samples in SDG WF026 All samples in SDG WF026
WF027	Aluminum Antimony Arsenic Calcium Sodium Vanadium	18.000 ug/L 9.280 ug/L 0.500 ug/L 94.550 ug/L 28.990 ug/L 1.280 ug/L	All samples in SDG WF027
	Mercury	0.21 ug/L	All samples in SDG WF027
WF028	Aluminum Antimony Calcium Magnesium Mercury Potassium Sodium Zinc	51.600 ug/L -10.930 ug/L 113.470 ug/L 45.540 ug/L 0.140 ug/L 498.120 ug/L 43.870 ug/L 1.230 ug/L	All samples in SDG WF028

The second secon

Summary of Method Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes			
SDG	Analyte	Concentration	Associated Samples
WF029	Aluminum	10.6 ug/L	All samples in SDG WF029
	Barium	3.0 ug/L	i i
	Cobatt	2.7 ug/L	
	iron	21.4 ug/L	
	Vanadium	1.4 ug/L	
	Cobalt	2.7 ug /L	All samples in SDG WF029
	Vanadium	1.6 ug/L	
	Mercury	-0.1 ug/L	All samples in SDG WF029
	Iron	5.3 ug/L	All samples in SDG WF029
	Vanadium	1.6 ug/L	
	Calcium	153.810 ug/L	All samples in SDG WF029
	Cobatt	2.390 ug/L	
	Iron	11.590 ug/L	
	Sodium	37.260 ug/L	
	Zinc	1.630 ug/L	
/F030	Calcium	59.580 ug/L	All samples in SDG WF030
	tron	6.080 ug/L	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
	Sodium	54.620 ug/L	
F031	Mercury	0.030 ug/L	All samples in SDG WF031
	Potassium	-617.8 ug/L	,
	Silver	-1.2 ug/L	
	Thallium	3.3 ug/L	
	Mercury	0.047 ug/L	All samples in SDG WF031
	Potassium	34.4 ug/L	
	Silver	-1.6 ug/L	
	Thallium	3.7 ug/L	
	Mercury	0.055 ug/L	All samples in SDG WF031
	Potassium	542.9 ug/L	
	Silver	-1.4 ug/L	
	Mercury	0.070 ug/L	All samples in SDG WF031
	Potassium	-21.4 ug/L	
	Silver	-1.3 ug/L	
	Thallium	3.5 ug/L	
	Mercury	0.047 ug/L	All samples in SDG WF031
	Potassium	-411.210 ug/L	Jampies III es a 111 oct
	Mercury	0.085 ug/L	All samples in SDG WF031
	Potassium	955.8 ug/L	
	Silver	-2.5 µg/l	

-2.5 ug/L

3.2 ug/L

0.127 ug/L

0.130 ug/L

-0.030 ug/L

-335.53 ug/L

-1.420 ug/L

All samples in SDG WF031

All samples in SDG WF031

All samples in SDG WF031

Silver

Thallium

Mercury

Mercury

Mercury

Silver

Potassium

Summary of Method Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes

SDG	Analyte	Concentration	Associated Samples
WF031 cont.	Arsenic	-6.4 ug/L	Ali samples in SDG WF031
	Chromium	-0.4 ug/L	
	Mercury	0.034 ug/L	
	Potassium	171.0 ug/L	
	Thallium	5.1 ug/L	
	Vanadium	1.4 ug/L	
	vanadium	1.4 ug/L	
	Mercury	0.016 ug/L	All samples in SDG WF031
	Potassium	342.4 ug/L	
	Silver	-1.2 ug/L	
	Thallium	5.2 ug/L	
	Vanadium	0.8 ug/L	
	Chromium	-0.7 ug/L	All samples in SDG WF031
	Mercury	0.011 ug/L	7.11. Sumples 11. SS 2 77. SS .
	Potassium		
	Thallium	308.7 ug/L	
	[6.2 ug/L	
	Vanadium	0.7 ug/L	
	Barium	-0.2 ug/L	All samples in SDG WF031
	Chromium	-0.6 ug/L	
	Mercury	-0.021 ug/L	
	Potassium	377.6 ug/L	·
	Thallium	7.2 ug/L	}
	manum	/ .2 ug/L	
	Mercury	0.014 ug/L	All samples in SDG WF031
	Arsenic	-6.7 ug/L	All samples in SDG WF031
	Barium	-0.2 ug/L	
	Chromium	-0.8 ug/L	
	Mercury	-0.032 ug/L	
	Nickel	-1.4 ug/L	İ
	Potassium	441.5 ug/L	
	Thallium	5.7 ug/L	+
	Vanadium	0.6 ug/L	
UE OO L D	+		
VF031B	Copper	604 ug/L	All samples in SDG WF031B
	Aluminum	-19.5 ug/L	All samples in SDG WF031B
	Barium	0.4 ug/L	
	Copper	4.4 ug/L	
	Manganese	0.4 ug/L	
	Barium	0.4 ug/L	All samples in SDG WF031B
	Copper	6.6 ug/L	.,,
	Iron	3.5 ug/L	
	Mercury	0.0 ug/L	
	Nickel		_
	L L	9.5 ug/L	
	Sodium	10.6 ug/L	
	Barium	25.130 ug/L	All samples in SDG WF031B
	Beryllium	-0.830 ug/L	
	Calcium	129.890 ug/L	
	Copper	8.310 ug/L	1
	Iron	8.680 ug/L	
	Magnesium	25.430 ug/L	
	Manganese	0.490 ug/L	
	Silver	1 -	
		2.970 ug/L	1
	Sodium	84.450 ug/L	·
	Vanadium	2.060 ug/L	
	Zinc	3.100 ug/L	
	Cyanide	-0.981 ug/L	•

ABOUT A STANSON AND A TO SOUTH TO THE

Table XIII

Inorganic Analytes				
SDG	Analyte	Concentration	Associated Samples	
VF032	Copper	4.5 ug/L	All samples in SDG WF032	
	Manganese	0.5 ug/L	· ·	
	Mercury	0.0242 ug/L		
	Potassium	-1595.8 ug/L		
	Beryllium	0.2 ug/L	All samples in SDG WF032	
	Cobalt	0.3 ug/L		
	Copper	5.5 ug/L		
	Manganese	0.7 ug/L		
	Mercury	0.0265 ug/L	1	
	Sodium	17.3 ug/L		
	Beryllium	0.2 ug/L	All samples in SDG WF032	
	Copper	4.9 ug/L		
	Manganese	0.6 ug/L		
	Mercury	0.0255 ug/L		
	Potassium	1914.8 ug/L	!	
	Sodium	11.6 ug/L		
	Beryllium	0.2 ug/L	All samples in SDG WF032	
	Copper	5.6 ug/L	1	
	Manganese	0.6 ug/L	<u> </u>	
	Mercury	-0.0178 ug/L		
	Sodium	17.4 ug/L		
	Barium	1.210 ug/L	All samples in SDG WF032	
	Chromium	2.750 ug/L	, dap	
	Copper	3.390 ug/L		
	Manganese	0.410 ug/L		
	Mercury	0.015 ug/L		
	Sodium	856.490 ug/L		
	Zinc	2.310 ug/L		
	Barium	0.3 ug/L	All samples in SDG WF032	
	Beryllium	0.1 ug/L		
	Cobalt	0.4 ug/L		
	Copper	5.8 ug/L		
	Manganese	0.2 ug/L		
	Barium	0.3 ug/L	All samples in SDG WF032	
	Beryllium	0.1 ug/L	,	
	Copper	5.8 ug/L		
	Manganese	0.4 ug/L		
	Mercury	-0.0874 ug/L		
	Nickel	2.0 ug/L		
	Sodium	11,5 ug/L	1	
	Sanitary .		All	
	Barium	0.2 ug/L	All samples in SDG WF032	
	Beryllium	0.1 ug/L		
	Copper	5.6 ug/L		
	Manganese	0.5 ug/L		
	Thallium	2.6 ug/L		
	Barium	0.3 ug/L	All samples in SDG WF032	
	Beryllium	0.3 ug/L	· ·	
	Cobalt	0.6 ug/L		
	Copper	7.0 ug/L		
	Manganese	0.8 ug/L		
	Nickel	1.4 ug/L		
	Thallium	4.3 ug/L	1	

Summary of Method Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes				
SDG	Analyte	Concentration	Associated Samples	
WF032 cont.	Aluminum	107.660 ug/L	All samples in SDG WF032	
747 002 COIII.	Antimony	4.320 ug/L		
	1	1.760 ug/L	•	
	Barium			
	Cadmium	1.660 ug/L		
	Calcium	105.840 ug/L		
	Cobalt	0.430 ug/L		
	Copper	12.450 ug/L		
	Iron	54.350 ug/L		
	Magnesium	103.090 ug/L		
	1 -	1		
	Manganese	0.280 ug/L		
	Sodium	154.770 ug/L		
	Zinc	9.120 ug/L		
	Antimony	4.3 ug/L	All samples in SDG WF032	
	Barium	0.4 ug/L		
		· ·		
	Beryllium	0.3 ug/L		
	Copper	5.2 ug/L		
	Manganese	0.6 ug/L		
	Sodium	10.2 ug/L	All samples in SDG WF032	
WF033	Barium	0.3 ug/L	All samples in SDG WF033	
	Beryllium	0.1 ug/L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	l .	, -		
	Cobatt	0.4 ug/L		
	Copper	5.8 ug/L		
	Manganese	0.2 ug/L	•	
	Mercury	0.07 ug/L		
	Potassium	-1595.8 ug/L		
	Basis and	0.2	All complex in SDG ME022	
	Barium	0.3 ug/L	All samples in SDG WF033	
	Beryllium	0.1 ug/L		
	Copper	5.8 ug/L		
	Manganese	0.4 ug/L		
	Mercury	0.04 ug/L		
	Potassium	655.4 ug/L		
	Barium	0.2 ug/L	All samples in SDG WF033	
	Beryllium	0.1 ug/L		
	Copper	5.6 ug/L		
	Manganese	0.5 ug/L		
	1 -	-		
	Mercury	0.05 ug/L		
	Potassium	1914.8 ug/L		
	Thallium	2.6 ug/L		
	Barium	0.3 ug/L	All samples in SDG WF033	
	Beryllium	0.3 ug/L		
	1 -			
	Cobalt	0.6 ug/L	1	
	Copper	7.0 ug/L		
	Manganese	0.8 ug/L		
	Potassium	425.8 ug/L		
	Thallium	4.3 ug/L		
		The state of the s		
	Aluminum	164.460 ug/L	All samples in SDG WF033	
	Barium	1.220 ug/L	1	
	Calcium	107.040 ug/L		
	Copper	2.900 ug/L	1	
	Iron	33.430 ug/L		
	Magnesium	82.790 ug/L	İ	
	Manganese	0.330 ug/L		
	Potassium	1602.780 ug/L		
	1	•		
	Sodium	221.450 ug/L		
	Zinc	1.660 ug/L		

ino	raan	ic A	hnair	/tes

Inorganic Analytes				
SDG	Analyte	Concentration	Associated Samples	
WF033 cont.	Mercury	0.06 ug/L	All samples in SDG WF033	
	Barium	0.4 ug/L	All samples in SDG WF033	
	Beryllium	0.3 ug/L		
	Copper	5.2 ug/L		
	Manganese	0.6 ug/L	1	
	Mercury	0.05 ug/L		
	Potassium	163.8 ug/L	1	
	Antimony	4.810 ug/L	All samples in SDG WF033	
	Barium	0.460 ug/L		
	Copper	2.870 ug/L		
	Manganese	0.330 ug/L	1	
	Potassium	509.990 ug/L		
	Sodium	137.200 ug/L	1	
	Zinc	3.200 ug/L		
	Barium	0.8 ug/L	All samples in SDG WF033	
		0.6 ug/L		
	Cadmium	0.8 ug/L		
	Chromium	0.9 ug/L		
	Cobatt	1.1 ug/L		
	Manganese	1.0 ug/L		
	Potassium	1734.0 ug/L		
	Thallium	2.4 ug/L		
	Vanadium	1.1 ug/L		
	vanadium	1.1 ug/L		
	Barium	1.2 ug/L	All samples in SDG WF033	
<u> </u>	Beryllium	0.8 ug/L		
	Cadmium	0.9 ug/L		
	Chromium	1.2 ug/L		
	Cobalt	1.1 ug/L		
	Manganese	1.3 ug/L		
	Potassium	1605.5 ug/L		
	Thallium	3.4 ug/L		
	Vanadium	1.8 ug/L		
	Barium	1.1 ug/L	All samples in SDG WF033	
	Beryllium	0.8 ug/L	1	
	Cadmium	0.8 ug/L		
	Chromium	1.1 ug/L		
	Cobatt	1.1 ug/L		
	Manganese	1.2 ug/L	<u>[</u>	
	Potassium	768.8 ug/L		
	Thallium	3.2 ug/L		
	Vanadium	1.7 ug/L		
	Barting		All annuals in CDC MITODO	
	Barium	0.7 ug/L	All samples in SDG WF033	
	Beryllium	0.7 ug/L		
	Cadmium	0.6 ug/L	<u> </u>	
	Chromium	0.9 ug/L	1	
	Cobalt	0.8 ug/L		
	Manganese	1.0 ug/L		
	Potassium	314.6 ug/L		
	Vanadium	. 1.2 ug/L		

inorga		

Beryllium	SDG	Analyte	Concentration	Associated Samples
Beryllium	WF033 cont.	Barium	1.0 ug/L	All samples in SDG WF033
Cadmium		Beryllium	0.6 ug/L	
Chromium		1 *		
Cobat 1.0 ug/L Manganese 1.0 ug/L Rest		· ·		·
Manganese		i e		1
Potassium		•	_	
Thaillum			_	
Vanadium		1	· ·	
Barium 0.9 ug/l. 0.7 ug/L 0.7 ug/L 0.7 ug/L 0.7 ug/L 0.7 ug/L 0.7 ug/L 0.9 ug/L		•	_	
Beryllium		Vanadium	1.2 ug/L	
Cadmium				All samples in SDG WF033
Chromium		Beryllium	0.7 ug/L	
Cobalt		Cadmium	0.7 ug/L	
Cobalt		Chromium		
Manganese		i .		
Potassium 722.1 ug/L 3.4 ug/L 3.4 ug/L 1.2 ug/L		l e		
Thallium		_		
Vanadium 1.2 ug/L		· ·	1	
Copper S.8 ug/L O.023 ug/L All samples in SDG WF034 O.023 ug/L Copper S.8 ug/L O.4 ug/L O.17 ug/L All samples in SDG WF034 O.4 ug/L O.17 ug/L All samples in SDG WF034 O.107 ug/L All samples in SDG WF034 O.107 ug/L All samples in SDG WF034 O.109 ug/L O.30 ug/L All samples in SDG WF034 O.30 ug/L O.30 ug/L All samples in SDG WF034 O.30 ug/L O.30 ug/L All samples in SDG WF034 O.30 ug/L O.42 ug/L O.42 ug/L O.42 ug/L O.42 ug/L O.42 ug/L O.45 ug/L		Thallium	3.4 ug/L	
Mercury C.023 ug/L Copper S.8 ug/L O.4 ug/L O.017 ug/L		Vanadium	1.2 ug/L	
Copper Manganese Mercury	WF034	Copper	5.8 ug/L	All samples in SDG WF034
Manganese Mercury 0.4 ug/L 0.017 ug/L All samples in SDG WF034 Beryllium Copper 5.6 ug/L Manganese Mercury 0.5 ug/L 0.030 ug/L All samples in SDG WF034 Beryllium Copper 7.0 ug/L Copper 7.0 ug/L Manganese Mercury Sodium 10.2 ug/L Mercury 10.042 ug/L Sodium 10.2 ug/L 2.870 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.220 ug/L		Mercury	0.023 ug/L	
Manganese Mercury 0.4 ug/L 0.017 ug/L All samples in SDG WF034 Beryllium Copper 5.6 ug/L Manganese Mercury 0.5 ug/L 0.030 ug/L All samples in SDG WF034 Beryllium Copper 7.0 ug/L Copper 7.0 ug/L Manganese Mercury Sodium 10.2 ug/L Mercury 10.042 ug/L Sodium 10.2 ug/L 2.870 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.200 ug/L 3.220 ug/L		Copper	5.8 ug/L	All samples in SDG WF034
Mercury D.017 ug/L Seryllium D.1 ug/L S.6 ug/L D.5 ug/L D.5 ug/L D.030 ug/L S.6 ug/L D.030 ug/L Seryllium D.030 ug/L Seryllium D.030 ug/L Sodium D.042 ug/L D.0460 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L Sodium D.2 ug/L			1	7 th dampies in obd 111 664
Beryllium		· ·	_	
Section		Mercury	0.017 ug/L	
Manganese Mercury 0.5 ug/L 0.030 ug/L Beryllium Copper 7.0 ug/L Manganese Mercury Sodium 10.2 ug/L Copper 2.870 ug/L Sodium 17.200 ug/L Sodium 137.200 ug/L 66G03002 66G0302 66G0302 66G01801 37.200 ug/L 30G00301 30G0		Beryllium	0.1 ug/L	All samples in SDG WF034
Manganese Mercury 0.5 ug/L 0.030 ug/L Beryllium Copper 7.0 ug/L Manganese Mercury Sodium 10.2 ug/L Copper 2.870 ug/L Sodium 17.200 ug/L Sodium 137.200 ug/L 66G03002 66G0302 66G0302 66G01801 37.200 ug/L 30G00301 30G0		Copper	5.6 ug/L	
Mercury 0.030 ug/L		1 ''		
Copper 7.0 ug/L 0.8 ug/L 0.8 ug/L 0.042 ug/L 0.042 ug/L 0.042 ug/L 0.042 ug/L 0.042 ug/L 0.042 ug/L 0.0460 ug/L 66G02001 66G00302 66G01801 0.200 ug/L 0.200 ug/L 0.2000301 0.2000301 0.327 ug/L 0.327 ug/L 0.024 ug/L 0.024 ug/L All samples in SDG WF034 0.6 ug/L 0.6 ug/L 0.026 ug/L Mercury 0.040 ug/L All samples in SDG WF034 Mercury 0.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L O.040 ug/L All samples in SDG WF034 O.040 ug/L		1 -	, -	
Copper 7.0 ug/L 0.8 ug/L 0.8 ug/L 0.042 ug/L 0.042 ug/L 0.042 ug/L 0.042 ug/L 0.042 ug/L 0.042 ug/L 0.0460 ug/L 66G02001 66G00302 66G01801 0.200 ug/L 0.200 ug/L 0.2000301 0.2000301 0.327 ug/L 0.327 ug/L 0.024 ug/L 0.024 ug/L All samples in SDG WF034 0.6 ug/L 0.6 ug/L 0.026 ug/L Mercury 0.040 ug/L All samples in SDG WF034 Mercury 0.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L All samples in SDG WF034 O.040 ug/L O.040 ug/L All samples in SDG WF034 O.040 ug/L		Beryllium	0.3 ug/l	All samples in SDG WF034
Manganese Mercury Sodium 0.8 ug/L 0.042 ug/L 0.042 ug/L 10.2 ug/L Barium Copper Sodium 0.460 ug/L 66G02001 66G0302 66G01801 37.200 ug/L 3.200 ug/L 3.200 ug/L 30G00301 66R02201 30G00301 66R02201 30G00301D Zinc Cyanide -1.327 ug/L 30G00401 66R02201 30G00301D Mercury 0.024 ug/L All samples in SDG WF034 All samples in SDG WF034 All samples in SDG WF034 All samples in SDG WF034 Mercury Mercury 0.026 ug/L 0.026 ug/L All samples in SDG WF034 All samples in SDG WF034		1	,	complete in cod in com
Mercury Sodium 0.042 ug/L 66G02001 Barium 0.460 ug/L 66G02001 Copper 2.870 ug/L 66G0302 Sodium 137.200 ug/L 66G01801 Zinc 3.200 ug/L 30G00301 Cyanide -1.327 ug/L 30G00401 66R02201 30G00301D Mercury 0.024 ug/L All samples in SDG WF034 Beryllium 0.3 ug/L All samples in SDG WF034 Copper 5.2 ug/L 0.6 ug/L Mercury 0.026 ug/L All samples in SDG WF034		1	-	
Sodium		1 -		
Barium		1	-	
Copper Sodium 137.200 ug/L 66G00302 66G01801 3.200 ug/L 3.200 ug/L 3.0G00301 3.0G00301 3.0G00401 66R02201 3.0G00301D		Sodium	10.2 ug/L	
Sodium Zinc 3.200 ug/L 3.200 ug/L 3.000301 3.000301 3.000401 66R02201 3.000301D		Barium	0.460 ug/L	66G02001
Sodium Zinc 3.200 ug/L 3.200 ug/L 3.000301 3.000301 3.000401 66R02201 3.000301D		Copper	2.870 ug/L	66G00302
Zinc 3.200 ug/L 30G00301 Cyanide -1.327 ug/L 30G00401 66R02201 30G00301D Mercury 0.024 ug/L All samples in SDG WF034 Beryllium 0.3 ug/L All samples in SDG WF034 Copper 5.2 ug/L 0.6 ug/L Manganese 0.6 ug/L 0.026 ug/L Mercury 0.040 ug/L All samples in SDG WF034		Sodium	137,200 ug/L	66G01801
Cyanide -1.327 ug/L 30G00401 66R02201 30G00301D Mercury 0.024 ug/L All samples in SDG WF034 Beryllium 0.3 ug/L All samples in SDG WF034 Copper 5.2 ug/L Manganese 0.6 ug/L Mercury 0.026 ug/L Mercury 0.040 ug/L All samples in SDG WF034		1		1
Mercury 0.024 ug/L All samples in SDG WF034		3	_	1
30G00301D		Cyanide	-1.327 ug/L	
Mercury 0.024 ug/L All samples in SDG WF034 Beryllium 0.3 ug/L All samples in SDG WF034 Copper 5.2 ug/L All samples in SDG WF034 Manganese 0.6 ug/L 0.026 ug/L Mercury 0.040 ug/L All samples in SDG WF034				
Beryllium 0.3 ug/L All samples in SDG WF034 Copper 5.2 ug/L Manganese 0.6 ug/L Mercury 0.026 ug/L Mercury 0.040 ug/L All samples in SDG WF034				30G00301D
Copper 5.2 ug/L Manganese 0.6 ug/L Mercury 0.026 ug/L Mercury 0.040 ug/L All samples in SDG WF034		Mercury	0.024 ug/L	All samples in SDG WF034
Copper 5.2 ug/L Manganese 0.6 ug/L Mercury 0.026 ug/L Mercury 0.040 ug/L All samples in SDG WF034		Beryllium	0.3 ug/L	All samples in SDG WF034
Manganese 0.6 ug/L Mercury 0.026 ug/L Mercury 0.040 ug/L All samples in SDG WF034				
Mercury 0.026 ug/L Mercury 0.040 ug/L All samples in SDG WF034		1		
Mercury 0.040 ug/L All samples in SDG WF034		, -		
				All samples in SDG WF034
		Mercury	0.033 ug/L	All samples in SDG WF034

<u> </u>		Inorganic Analytes	
SDG	Analyte	Concentration	Associated Samples
WF034 cont.	Arsenic	-13.610 ug/L	66G01101
	Barium	1.700 ug/L	66G01301
	Beryllium	-0.710 ug/L	66G00501
		108.610 ug/L	66G00501F
	Calcium	· ·	000000017
	Copper	1.700 ug/L	
	Lead	-8.620 ug/L	
	Manganese	0.790 ug/L	
	Selenium	10.810 ug/L	
	Sodium	70.400 ug/L	
	Zinc	3.200 ug/L	
	Beryllium	0.2 ug/L	All samples in SDG WF034
	Silver	3.3 ug/L	
	Sodium	11.9 ug/L	
	Beryllium	0.2 ug/L	All samples in SDG WF034
	1 ,	_	All samples in 300 WF004
	Manganese	0.4 ug/L	
	Silver	2.2 ug/L	
	Sodium	12.2 ug/L	
	Beryllium	0.5 ug/L	All samples in SDG WF034
	Copper	1.9 ug/L	
	Manganese	0.6 ug/L	
	Sodium	20.0 ug/L	
	Beryllium	0.1 ug/L	All samples in SDG WF034
	1 *		All samples in 3DG WF034
	Silver	2.6 ug/L	
	Sodium	17.3 ug/L	
	Beryllium	0.2 ug/L	All samples in SDG WF034
	Manganese	0.4 ug/L	
	Sodium	9.7 ug/L	
WF035	Barium	0.8 ug/L	All samples in SDG WF035
	Beryllium	0.6 ug/L	`
	Manganese	1.0 ug/L	
		,	1
	Mercury	0.0239 ug/L	
	Thallium	2.4 ug/L	
	Barium	1.2 ug/L	All samples in SDG WF035
	Beryllium .	0.8 ug/L	1
	Manganese	1.3 ug/L	
	Mercury	0.0256 ug/L	
	Thallium	3.4 ug/L	
	Barium	4.4	All complex in SDC WESS
		1.1 ug/L	All samples in SDG WF035
	Beryllium	0.8 ug/L	1
	Manganese	1.2 ug/L	
	Mercury	0.0401 ug/L	
	Thallium	3.2 ug/L	**
	Barium	0.7 ug/L	All samples in SDG WF035
	Beryllium	0.7 ug/L	
	Manganese	1.0 ug/L	
	Mercury	0.334 ug/L	
	·	_	All complex in ODG MESS
	Aluminum	101.120 ug/L	All samples in SDG WF035
	Barium	0.410 ug/L	
	Iron	56.400 ug/L	
	Manganese	0.430 ug/L	
	Sodium	152.450 ug/L	1
	Sociani	132.430 ug/L	t .

Inorganic Analytes					
SDG	Analyte	Concentration	Associated Samples		
WF035 cont.	Barium	1.0 ug/L	All samples in SDG WF035		
	Beryllium	0.6 ug/L			
	Manganese	1.0 ug/L			
	Mercury	0.0250 ug/L			
	Thallium	2.2 ug/L			
	B. sives	0.0	All annuals in CDC MISORS		
	Barium	0.9 ug/L	All samples in SDG WF035		
	Beryllium	0.7 ug/L			
	Manganese	1.0 ug/L	j		
	Thallium	3.4 ug/L			
	Barium	0.570 ug/L	All samples in SDG WF035		
	Beryllium	-0.910 ug/L			
	Calcium	109.820 ug/L			
	Copper	5.470 ug/L			
	Manganese	0.720 ug/L			
	Zinc	, -			
	Zinc	4.400 ug/L			
	Manganese	0.6 ug/L	All samples in SDG WF035		
	Manganese	0.4 ug/L	All samples in SDG WF035		
	Barium	0.4 ug/L	All samples in SDG WF035		
	Beryllium	-0.2 ug/L			
	Manganese	0.6 ug/L			
	Manganese	3.5 tg, E			
	Beryllium	-0.2 ug/L	All samples in SDG WF035		
	Manganese	0.6 ug/L	, , , , , , , , , , , , , , , , , , , ,		
	Beryllium	-0.2 ug/L	All samples in SDG WF035		
	Manganese	0.4 ug/L			
WF036	Aluminum	17.7 ug/L	All samples in SDG WF036		
	Barium	0.8 ug/L	!		
	Beryllium	0.6 ug/L			
	Cadmium	0.8 ug/L	İ		
		1 -			
	Chromium	0.9 ug/L			
	Cobalt	1.1 ug/L			
	Manganese	1.0 ug/L			
	Mercury	0.0265 ug/L			
	Thallium	2.4 ug/L			
	Vanadium	1.1 ug/L			
	Aluminum	18.4 ug/L	All samples in SDG WF036		
	Barium	1.2 ug/L	samples in 55 a 711 600		
	Beryllium	0.8 ug/L	1		
	Cadmium	0.9 ug/L			
	Chromium	1.2 ug/L			
	Cobalt	1.1 ug/L			
	Manganese	1.3 ug/L			
	Mercury	0.0251 ug/L			
	Thallium	3.4 ug/L			
	Vanadium	1.8 ug/L	i		

ın	ore	aan	110	Αn	aı	VI	BS.

Inorganic Analytes				
SDG	Analyte	Concentration	Associated Samples	
WF036 cont.	Aluminum	14.7 ug/L	All samples in SDG WF036	
	Barium	1.1 ug/L		
	Beryllium	0.8 ug/L		
	Cadmium	0.8 ug/L		
	Chromium	1.1 ug/L		
	Cobalt	1.1 ug/L		
	Manganese	1.2 ug/L		
	Mercury	0.0165 ug/L		
	Thallium	3.2 ug/L		
	Vanadium	1.7 ug/L		
	Barium	0.7 ug/L	All samples in SDG WF036	
	Beryllium	0.7 ug/L		
	Cadmium	0.6 ug/L		
	Chromium	0.9 ug/L		
	J	, -		
	Cobalt	0.8 ug/L		
	Manganese	1.0 ug/L	Į.	
	Mercury	0.0157 ug/L		
	Vanadium	1.2 ug/L		
	Aluminum	63.950 ug/L	All samples in SDG WF036	
	Barium	0.730 ug/L		
	Chromium	0.490 ug/L		
	Manganese	0.430 ug/L		
	Mercury	0.014 ug/L		
	Potassium	1817.440 ug/L	{	
	Cyanide	-1.333 ug/L		
	Barium	1.0 ug/L	All samples in SDG WF036	
	Beryllium	0.6 ug/L		
	Cadmium	0.6 ug/L		
	Chromium	0.9 ug/L		
	Cobalt	_		
	-	1.0 ug/L		
	Manganese	1.0 ug/L		
	Thallium	2.2 ug/L		
	Vanadium	1,2 ug/L		
	Aluminum	91.5 ug/L	All samples in SDG WF036	
	Barium	0.9 ug/L		
	Beryllium	0.7 ug/L	1	
	Cadmium	0.7 ug/L		
	Chromium	_		
		0.9 ug/L		
	Cobalt	1.0 ug/L		
	Manganese	1.0 ug/L		
	Thallium	3.4 ug/L		
	Vanadium	1.2 ug/L		
WF037	Copper	6.4 ug/L	All samples in SDG WF037	
	Aluminum	-19.5 ug/L	All samples in SDG WF037	
	Barium	0.4 ug/L		
	Copper	4.4 ug/L	1 • • • • • • • • • • • • • • • • • • •	
	Barium	0.4 ug/L	All samples in SDG WF037	
	Copper	6.6 ug/L		

۱n	2	~3	2717	Δna	ivtes

SDG	Analyte	Concentration	Associated Samples
WF037 cont.	Barium Beryllium Calcium Copper Iron Magnesium Manganese Silver Sodium Vanadium Zinc Cyanide	25.130 ug/L -0.830 ug/L 129.890 ug/L 8.310 ug/L 8.680 ug/L 25.430 ug/L 0.490 ug/L 2.970 ug/L 84.450 ug/L 2.060 ug/L 3.100 ug/L -0.981 ug/L	All samples in SDG WF037
WF041	Cyanide	-0.6 ug/L	All samples in SDG WF041
	Barium	0.5 ug/L	All samples in SDG WF041
:	Sodium Cyanide	12.2 ug/L -0.4 ug/L	All samples in SDG WF041
	Barium Sodium	0.7 ug/L 16.3 ug/L	All samples in SDG WF041
	Beryllium Calcium Copper Iron Lead Sodium Thallium Zinc Cyanide	-1.010 ug/L 133.200 ug/L 3.740 ug/L 9.490 ug/L 1.260 ug/L 93.470 ug/L 1.310 ug/L 19.070 ug/L -1.002 ug/L	All samples in SDG WF041
	Barium Chromium Copper Magnesium Silver Vanadium	-0.6 ug/L -2.9 ug/L -1.7 ug/L -22.9 ug/L -2.8 ug/L -3.0 ug/L	All samples in SDG WF041
	Copper Thallium Vanadium	6.4 ug/L 1.4 ug/L -1.9 ug/L	All samples in SDG WF041
	Cobalt Thallium Cyanide	8.9 ug/L 1.6 ug/L -0.4 ug/L	All samples in SDG WF041
	Beryllium Calcium Iron Selenium Sodium Vanadium Zinc	-0.830 ug/L 105.800 ug/L 3.860 ug/L -3.230 ug/L 15.150 ug/L -2.240 ug/L 0.940 ug/L	All samples in SDG WF041
	Selenium Thallium	-3.4 ug/L -1.3 ug/L	All samples in SDG WF041
	Lead Selenium Cyanide	1.2 ug/L -2.6 ug/L -0.4 ug/L	All samples in SDG WF041

Company of the second s

Inorganic Analytes				
SDG	Analyte	Concentration	Associated Samples	
WF041 cont.	Seienium Thallium	-3.1 ug/L 1.3 ug/L	All samples in SDG WF041	
	Selenium Cyanide	-2.8 ug/L -0.5 ug/L	All samples in SDG WF041	
	Thallium Cyanide	-1.0 ug/L -0.4 ug/L	All samples in SDG WF041	
	Cyanide	0.4 ug/L	All samples in SDG WF041	
	Cyanide	0.4 ug/L	All samples in SDG WF041	
	Cyanide	0.4 ug/L	All samples in SDG WF041	
WF045	Cyanide	-0.6 ug/L	All samples in SDG WF045	
	Cyanide	-0.6 ug/L	All samples in SDG WF045	
	Manganese	0.4 ug/L	All samples in SDG WF045	
	Vanadium	1.8 ug/L	All samples in SDG WF045	
	Beryllium Calcium Iron Sodium Vanadium Zinc	-0.860 ug/L 136.80 ug/L 5.390 ug/L 32.780 ug/L -1.730 ug/L 3.340 ug/L	All samples in SDG WF045	
	Cyanide Mercury	-1.013 ug/L 0.1 ug/L	All samples in SDG WF045	
	Cyanide	-0.6 ug/L	All samples in SDG WF045	
	Thallium Cyanide	1.1 ug/L -0.6 ug/L	All samples in SDG WF045	
	Cyanide	-0.6 ug/L	All samples in SDG WF045	
	Aluminum Barium Beryllium Calcium Iron Sodium Thallium Zinc Cyanide	17.320 ug/L 0.450 ug/L -0.550 ug/L 121.820 ug/L 6.770 ug/L 45.700 ug/L -1.390 ug/L 2.510 ug/L -0.899 ug/L	All samples in SDG WF045	
	Beryllium Manganese Sodium	0.2 ug/L 0.5 ug/L 17.2 ug/L	OWG00401 OWG00201	
	Beryllium Manganese Sodium Zinc	0.2 ug/L 0.7 ug/L 12.2 ug/L 1.0 ug/L	OWG00401 OWG00201	

Inorga		

SDG	Analyte	Concentration	Associated Samples
WF045 cont.	Barium	0.9 ug/L	OWG00401
	Beryllium	0.5 ug/L	OWG00201
	Chromium	3.0 ug/L	
	1	1.0 ug/L	
	Manganese		
	Sodium	19.9 ug/L	
	Thallium	1.2 ug/L	
	Vanadium	2.0 ug/L	
	Zinc	1.6 ug/L	
	Cyanide	-0.377 ug/L	OWG00401 OWG00201
	Beryllium	0.2 ug/L	OWG00401
	Sodium	11.0 ug/L	OWG00201
	Selenium	-2.2 ug/L	OWG00401 OWG00201
	Thallium	-1.0 ug/L	OWG00401
			OWG00201
WF046	Beryllium	0.2 ug/L	All samples in SDG WF046
	Sodium	17.2 ug/L	
	Beryllium	0.2 ug/L	All samples in SDG WF046
	Mercury	0.040 ug/L	· · · · · · · · · · · · · · · · · · ·
	Sodium	12.2 ug/L	
	Soulum	12.2 dg/L	
	Beryllium	0.5 ug/L	All samples in SDG WF046
	Mercury	0.043 ug/L	· ·
	Sodium	19.9 ug/L	
	Aluminum	17.320 ug/L	All samples in SDG WF046
		_	All samples in SDG WF040
	Barium	0.450 ug/L	
	Beryllium	-0.550 ug/L	
	Calcium	121.820 ug/L	
	Iron	6.770 ug/L	
	Sodium	45.700 ug/L	
	Thallium	-1.390 ug/L	
	Zinc	2.510 ug/L	
	Boron	-0.377 ug/L	
	Beryllium Sodium	0.2 ug/L 11.0 ug/L	All samples in SDG WF046
WF047	Beryllium	0.2 ug/L	All samples in SDG WF047
	Manganese	0.5 ug/L	
	Mercury	0.1 ug/L	
	Sodium	17.2 ug/L	
	Beryllium	0.2 ug/L	All samples in SDG WF047
	Manganese	0.7 ug/L	
	Sodium	12.2 ug/L	
	Zinc	1.0 ug/L	
	Barium	0.9 ug/L	All samples in SDG WF047
	Beryllium	0.5 ug/L	
	Chromium	3.0 ug/L	
	Manganese	1.0 ug/L	
	Sodium	19.9 ug/L	
	Thallium	1.1 ug/L	1
	Vanadium	2.0 ug/L	1
	Zinc	1.6 ug/L	1

A Part of the Land

Inorganic Analytes					
SDG	Analyte	Concentration	Associated Samples		
WF047 cont.	Aluminum	17.320 ug/L	All samples in SDG WF047		
**** 0-11 00.11.	Barium	0.450 ug/L	'		
	Beryllium	-0.550 ug/L			
	Calcium	121.820 ug/L			
	iron	6.770 ug/L			
	Sodium	45.700 ug/L			
	Thallium	-1.390 ug/L			
	Zinc	2.510 ug/L			
	Beryllium	0.2 ug/L	All samples in SDG WF047		
	Sodium	11.0 ug/L			
	Selenium	-2.2 ug/L	All samples in SDG WF047		
WF051	Barium	1.0 ug/L	All samples in SDG WF051		
	Beryllium	0.2 ug/L			
	Chromium	3.4 ug/L			
	Copper	1.5 ug/L			
	Manganese	0.5 ug/L			
	Silver	2.8 ug/L			
	Vanadium	2.4 ug/L			
	Manganese	-0.5 ug/L	All samples in SDG WF051		
	Mercury	0.04 ug/L	i		
	Vanadium	1.8 ug/L			
	Arsenic	1.1 ug/L	All samples in SDG WF051		
	Mercury	0.04 ug/L			
	Selenium	-1.9 ug/L			
	Manganese	-0.5 ug/L	All samples in SDG WF051		
	Mercury	0.07 ug/L			
	Beryllium	-0.800 ug/L	All samples in SDG WF051		
	Calcium	140.860 ug/L			
	iron	5.470 ug/L			
	Sodium	36.740 ug/L			
	Zinc	1.980 ug/L			
	Mercury	0.08 ug/L	All samples in SDG WF051		
	Silver	-2.4 ug/L			
	Aluminum	16.800 ug/L	All samples in SDG WF051		
	Barium	0.600 ug/L			
	Beryllium	-0.680 ug/L			
	Calcium	127.440 ug/L			
	Chromium	3.050 ug/L			
	Cobalt	2.850 ug/L			
	Copper	2.120 ug/L			
	Iron	10.740 ug/L			
	Manganese	0.690 ug/L			
	Silver	3.040 ug/L			
	Sodium	54.160 ug/L			
	Vanadium	2.700 ug/L			
	Zinc	2.710 ug/L			
	Calcium	42.0 ug/L	All samples in SDG WF051		

Summary of Method Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

Inorganic Analytes				
SDG	Analyte	Concentration	Associated Samples	
VF051 cont.	Barium	0.6 ug/L	All samples in SDG WF051	
	Beryllium	0.4 ug/L	·	
	Cobatt	2.6 ug/L		
	Copper	1.7 ug/L		
	Manganese	0.9 ug/L		
	Zinc	1.2 ug/L	ļ `	
	Manganese	0.7 ug/L	All samples in SDG WF051	
		1.100	All	
	Arsenic	-1.130 ug/L	All samples in SDG WF051	
	Beryllium	-0.720 ug/L	1	
	Calcium	131.080 ug/L		
	Iron	12.060 ug/L		
	Zinc	4.540 ug/L		
	Lead	-1,3 ug/L	All samples in SDG WF051	
	Lead	-1.4 ug/L	All samples in SDG WF051	
	Magnesium	0.5 ug/L	All samples in obd W 051	
	Wagnesian	0.0 ug / 2		
	Lead	-1.6 ug/L	All samples in SDG WF051	
	Aluminum	18.640 ug/L	All samples in SDG WF051	
	Barium	0.490 ug/L		
	Beryllium	-0.760 ug/L		
	Calcium	134.210 ug/L		
	Chromium	3.850 ug/L		
	iron	35.410 ug/L		
	Manganese	0.500 ug/L		
	Sodium	35.200 ug/L		
	Zinc	2.300 ug/L		
	Lead	-2.0 ug/L	All samples in SDG WF051	
	Vanadium ·	2.0 ug/L		
	Barium	0.9 ug/L	All samples in SDG WF051	
	Beryllium	0.3 ug/L		
	Lead	-2.0 ug/L		
	Manganese	0.7 ug/L		
	Sodium	9.2 ug/L		
	Sodium	15.0 ug/L	All samples in SDG WF051	
	Arsenic	-1.6 ug/L	All samples in SDG WF051	
NF053	Aluminum	18.640 ug/L	All samples in SDG WF053	
	Barium	0.490 ug/L		
	Beryllium	-0.760 ug/L		
	Calcium	134.210 ug/L		
	Chromium : Chromium	3.850 ug/L	1	

35.410 ug/L

0.500 ug/L

35.200 ug/L 2.330 ug/L

Iron

Manganese

Sodium Zinc

Inorgani	ic Ana	lytes
----------	--------	-------

SDG	Analyte	Concentration	Associated Samples
VF053 cont.	Barium	-0.760 ug/L	All samples in SDG WF053
	Calcium	138.650 ug/L	
	Chromium	3.750 ug/L	
	Copper	3.390 ug/L	
	iron	14.500 ug/L	
	Manganese	0.490 ug/L	
	Nickel	8.370 ug/L	
	Sodium	42.790 ug/L	
	Zinc	2.940 ug/L	
	Aluminum	26.970 ug/L	All samples in SDG WF053
	Beryllium	-0.710 ug/L	
	Calcium	151.990 ug/L	
	Iron	16.430 ug/L	!
	Manganese	0.580 ug/L	
	Silver	_	
	I I	4.360 ug/L	
	Sodium	52.750 ug/L	
	Zinc	3.720 ug/L	
	Beryllium	-0.970 ug/L	All samples in SDG WF053
	Calcium	130.780 ug/L	
	Copper	1.480 ug/L	
	iron	19.510 ug/L	
	Lead	-1.380 ug/L	
	Manganese	0.780 ug/L	
	Sodium	13.170 ug/L	
	Zinc	6.090 ug/L	
	Aluminum	52.990 ug/L	All samples in SDG WF053
	Arsenic	1.300 ug/L	
	Beryllium	-0.940 ug/L	
	Calcium	198.990 ug/L	
	Chromium	6.790 ug/L	
	Copper	2.230 ug/L	
	Iron	38.980 ug/L	
	Lead	-1.460 ug/L	
	Manganese	1.000 ug/L	
	Sodium	60.080 ug/L	
	Zinc	2.040 ug/L	
VF054	Mercury	0.1 ug/L	All samples in SDG WF054
	Manager	04	All appropriate in CDC M/T054
	Mercury	0.1 ug/L	All samples in SDG WF054
	Mercury	0.1 ug/L	All samples in SDG WF054
	Beryllium .	-0.980 ug/L	All samples in SDG WF054
	Calcium	110.890 ug/L	
	Iron	9.300 ug/L	
	Mercury	0.052 ug/L	
	Vanadium	-2.660 ug/L	
	Zinc	2.260 ug/L	i

	
Inorganic	Analytes

SDG	Parameter		Concentration	Qualifier
WF022	Client ID: Laboratory ID: Collection Date: Type:	BKR01001 RB858002 7/16/96 Equipment rinsate		
	Sodium Aluminum Calcium Iron Magnesium Mercury Zinc		43.4 ug/L 55.9 ug/L 69.0 ug/L 23.9 ug/L 39.7 ug/L 0.10 ug/L 1.2 ug/L	None 23.9U ug.L' None 43.4U ug/L' None None 1.2U ug/L'
WF022	Client ID: Laboratory ID: Collection Date: Type:	BKF01001 RB858010 7/17/96 Source blank		
	Sodium		61.3 ug/L	61.3U ug/L ¹
WF023	Client ID: Laboratory ID: Collection Date: Type:	01R01101 RB887005 7/23/96 Equipment rinsate		
	Aluminum Iron Zinc Cyanide		13.3 ug/L 10.8 ug/L 1.2 ug/L 2.6 ug/L	None 10.8U ug/L' 1.2U ug/L' None
WF024	Client ID: Laboratory ID: Collection Date: Type:	15R01201 RB920005 7/31/96 Equipment rinsate		
	Aluminum Iron Sodium Cyanide		13.8 ug/L 10.5 ug/L 55.4 ug/L 2.6 ug/L	13.8U ug/L¹ 10.5U ug/L¹ 55.4U ug/L¹ None
WF025	Client ID: Laboratory ID: Collection Date: Type:	15R01301 RB956011 8/7/96 Equipment rinsate		
	Iron Sodium Zinc		5.3 ug/L 26.6 ug/L 1.8 ug/L	5.3U ug/L¹ None 1.8U ug/L¹
WF026	Client ID: Laboratory ID: Collection Date: Type:	15R01401 RB980012 8/14/96 Equipment rinsate		
	Iron Zinc Cyanide		14.8 ug/L 1.1 ug/L 1.8 ug/L	14.8U ug/L¹ 1.1U ug/L¹ None

Table XIV

The State of the second of the

				0
SDG	Parameter		Concentration	Qualifier
NF027	Client ID:	16R01501		
	Laboratory ID:	RC016012		
	Collection Date:	8/21/96		
	Туре:	Equipment rinsate		
	Arsenic		0.50 ug/L	0.50U ug/L1
	Calcium		64.0 ug/L	64.0U ug/L¹
	Lead		0.80 ug/L	None
	Sodium		26.9 ug/L	26.9U ug/L'
	Zinc		1.8 ug/L	None
WF028	Client ID:	11R01601		
	Laboratory ID:	RC044016	•	
	Collection Date:	8/28/96		
	Type:	Equipment rinsate		
	Calcium		67.2 ug/L	67.2U ug/L ¹
	Sodium		30.8 ug/L	30.8U ug/L'
	Cyanide		1.5 ug/L	None
WF029	Client ID:	13R01701		
	Laboratory ID:	RC092008		
	Collection Date:	9/11/96		
	Туре:	Equipment rinsate		
	Calcium		66.4 ug/L	66.4U ug/L¹
	Sodium		25.4 ug/L	25.4U ug/L¹
	Zinc		1.8 ug/L	1.8U ug/L ¹
WF030	Client ID:	66R01801		
	Laboratory ID:	RC121010		
	Collection Date:	9/18/96		
	Туре:	Equipment rinsate		
	Calcium		55.7 ug/L	55.7U ug/L¹
	iron		9.2 ug/L	9.2U ug/L'
	Selenium		0.68 ug/L	None
	Sodium		24.9 ug/L	24.9U ug/L¹
	Zinc		2.0 ug/L	None
WF031	Client ID:	05R01901		
	Laboratory ID:	MB928011		
	Collection Date:	9/25/96		
	Type:	Equipment rinsate		
	Barium		0.34 ug/L	None
	Manganese		0.34 ug/L 0.38 ug/L	None
	Mercury		0.06 ug/L	0.06U ug/L¹
	Zinc		2.0 ug/L	None
WF032	Client ID:	06R02001		
**FU3Z	Laboratory ID:	MC011006		
	Collection Date:	10/2/96		
	Type:	Equipment rinsate		
		·		
	Barium		2.8 ug/L	2.8U ug/L¹
	Chromium		2.5 ug/L	2.5U ug/L.1
	Copper		2.9 ug/L	2.9U ug/L ¹
	Manganese Mercury		0.48 ug/L 0.01 ug/L	0.48U ug/L ¹
	Sodium		365 ug/L	0.01U ug/L¹ None
	Zinc		3.0 ug/L	3.0U ug/L¹
	Cyanide		1.4 ug/L	0.50 ug/L

Table XIV

Summary of Field Blank Contamination Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton Florida

		Inorganic Analytes		
SDG	Parameter		Concentration	Qualifier
WF033	Client ID: Laboratory ID: Collection Date: Type:	66R02101 MC085007 10/9/96 Equipment rinsate		
	''			
	Barium		1.6 ug/L 0.32 ug/L	1.6U ug/L¹ 0.32U ug/L¹
	Beryllium Chromium		0.55 ug/L	0.55U ug/L ¹
	Cobalt		0.84 ug/L	0.84U ug/L ¹
	Manganese		2.4 ug/L	2.4U ug/L ¹
	Potassium		777 ug/L	777U ug/L¹
	Sodium Vanadium		334 ug/L	334U ug/L'
	Zinc		0.63 ug/L 1.4 ug/L	0.63U ug/L¹ 1.4U ug/L¹
WF034	Client ID: Laboratory ID:	66R0201 MC153007		
	Collection Date:	10/16/96		
	Туре:	Equipment rinsate		
	Barium		0.56 ug/L	0.56 ug/L1
	Manganese		0.44 ug/L	0.44 ug/L ¹
	Mercury Sodium		0.02 ug/L 119 ug/L	0.02 ug/L¹ 119 ug/L¹
•	Zinc		2.2 ug/L	2.2 ug/L ¹
WF035	Client ID:	66R02301		
WF035	Laboratory ID:	MC214006		
	Collection Date:	10/23/96		
	Туре:	Equipment rinsate		
	Aluminum		30.7 ug/L	30.7 ug/L ¹
	Barium		1.3 ug/L	1.3 ug/L ¹
	Calcium		101 ug/L	101 ug/L ¹
	Manganese Mercury		0.94 ug/L 0.03 ug/L	0.94 ug/L¹ 0.03 ug/L¹
	Sodium		100 ug/L	100 ug/L ¹
	Zinc		2.4 ug/L	2.4 ug/L¹
WF036	Client ID:	54R02401		
	Laboratory ID:	MC262007		
	Collection Date:	10/30/96		
	Туре:	Equipment rinsate		
	Aluminum		14.8 ug/L	14.8 ug/L¹
	Barium	•	0.59 ug/L	0.59 ug/L'
	Chromium		0.48 ug/L	0.48 ug/L ¹
	Manganese Potassium		0.32 ug/L 756 ug/L	0.32 ug/L¹ 756 ug/L¹
	Sodium		756 ug/L 265 ug/L	/56 ug/L None
	Zinc		1.4 ug/L	None
WF037	Client ID:	15F00201		
	Laboratory ID:	MC424010		
	Collection Date:	12/2/96		
	Туре:	Source blank		
	Barium		1.2 ug/L	None
	Calcium		111 ug/L	None
	Copper Manganese		6.8 ug/L 0.43 ug/L	None None
	Sodium		95.7 ug/L	None
	Zinc		2 6 ug/l	None

2.6 ug/L

None

Zinc

Table XIV

inorga	nic /	\nai	ytes
--------	-------	------	------

SDG	Parameter		Concentration	Qualifier
WF041	Client ID:	35F00301		
	Laboratory ID:	MD908002		
	Collection Date:	6/11/97		
	Туре:	Source blank		
	Barium		0.78 ug/L	None
	Calcium		164 ug/L	164U ug/L ¹
	Copper		10.3 ug/L	10.3U ug/L ¹
	tron	•	35.6 ug/L	35.6U ug/L¹
	Lead		1.0 ug/L	1.0U ug/L'
	Manganese		0.88 ug/L	None
	Sodium		129 ug/L	129U ug/L ¹
	Zinc		13.3 ug/L	13.3U ug/L ¹
WF041	Client ID:	35R03001		
	Laboratory ID:	MD908003		
	Collection Date:	6/11/97		
	Туре:	Equipment rinsate		
	Barium		1.0 ug/L	None
	Calcium		165 ug/L	165U ug/ L 1
	Copper		4.9 ug/L	4.9U ug/L¹
	Iron		10.7 ug/L	10.7U ug/L¹
	Manganese		1.2 ug/L	None
	Sodium		148 ug/L	148U ug/L¹
	Thallium		1.7 ug/L	1.7U ug/L ¹
	Zinc		15.8 ug/L	15.8U ug/L ¹
WF045	Client ID:	OWR03401		
	Laboratory ID:	ME149002		
	Collection Date:	7/7/97		
	Туре:	Equipment rinsate		
	Barium		0.44 ug/L	0.44U ug/L1
	Calcium		133 ug/L	133U ug/L¹
	Copper		1,8 ug/L	None
	Iron		7.1 ug/L	7.1U ug/L'
	Sodium		60.4 ug/L	60.4U ug/L ¹
	Zinc		1.7 ug/L	1.7U ug/L¹
WF046	Client ID:	31R03301		
	Laboratory ID:	MW241002		
	Collection Date:	7/15/97		
	Туре:	Equipment rinsate		
	Barium		1.1 ug/L	1.1U ug/L ¹
	Calcium		126 ug/L	126U ug/L'
	Iron		4.4 ug/L	4.4U ug/L ¹
	Manganese		0.40 ug/L	None
	Sodium		65.6 ug/L	65.6U ug/L1
	Zinc		5.4 ug/L	5.4U ug/L¹

DG	Parameter		Concentration	Qualifier
VF051	Client ID:	16R03601		
	Laboratory ID:	ME340005		
	Collection Date:	7/23/97		
	Type:	Equipment rinsate		
	Calcium		166 ug/L	166U ug/L¹
	Copper		1.7 ug/L	1.7U ug/L1
	iron		12.7 ug/L	12.7U ug/L'
	Lead		1.2 ug/L	None
	Manganese		0.68 ug/L	0.68U ug/L'
	Sodium		48.9 ug/L	48.9U ug/L¹
	Zinc		2.6 ug/L	2.6U ug/L¹
WF053	Client ID:	15R03701		
	Laboratory ID:	ME367002		
	Collection Date:	7/27/97		
	Туре:	Equipment rinsate	•	
	Barium		1.6 ug/L	None
	Calcium		134 ug/L	134U ug/L¹
	Chromium		4.2 ug/L	4.2U ug/L1
	Copper		2.1 ug/L	2.1U ug/L ¹
	iron		18.4 ug/L	None
	Manganese		0.69 ug/L	0.69U ug/L ¹
	Sodium		83.0 ug/L	83.0U ug/L¹
	Zinc		5.0 ug/L	5.0U ug/L¹
WF054	Client ID:	15R03801		
	Laboratory ID:	ME441005		
	Collection Date:	8/5/97		
	Type:	Equipment rinsate		
	Cadmium		4.7 ug/L	
	Calcium	•	159 ug/L	159U ug/L¹
	Copper		1.3 ug/L	None
	Iron		13.3 ug/L	13.3U ug/L¹
	Manganese		0.48 ug/L	None
	Mercury		0.05 ug/L	0.05U ug/L¹
	Sodium		20.0 ug/L	None
	Zinc		1.8 ug/L	None
WF054	Client ID:	30R03901		
	Laboratory ID:	ME450002		
	Collection Date:	8/6/97		
	Туре:	Equipment rinsate		
	Aluminum		16.7 ug/L	None
	Barium		0.78 ug/L	None
	Calcium		150 ug/L	150U ug/L
	Copper		3.7 ug/L	None
	Iron	e *	14.0 ug/L	14.0U ug/L
	Manganese	-	0.58 ug/L	None
	Sodium		67.0 ug/L	None
	Zinc		4.4 ug/L	None

Table XV Sample Event PARCC Summary Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton, Florida

SDG	Fraction	Precision ¹	Accuracy ²	Representativeness	Completeness (%)	Comparability
WF022	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF023	Valarias	Acceptable	Acceptable	Acceptable	100	Acceptable
WF023	Volatiles Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	1	1	Acceptable	Acceptable	100	
	Metals Cyanide	Acceptable Acceptable	Acceptable	Acceptable	100	Acceptable Acceptable
	Toyanac	1.000				
NF024	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
VF025	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF026	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
020	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
		Source Control of the Control				
V F027	Volatiles	Acceptable	Acceptable	Acceptable	99.0	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF028	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metais	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF029	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
NF030	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals Cyanide	Acceptable Acceptable	Acceptable Acceptable	Acceptable Acceptable	100	Acceptable Acceptable
	1 - /					
WF031	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metais	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Unacceptable	Acceptable	0	Acceptable
MEDG 4 D	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
WF031B	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
WF031B		I *	Acceptable	Acceptable	100	Acceptable
WF0318	Pesticides/PCBs	Acceptable			The second secon	1 4
WF031B	Pesticides/PCBs Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
WF031B	1	'	Acceptable Acceptable	Acceptable Acceptable	100	Acceptable
	Metals Cyanide	Acceptable Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals Cyanide Volatiles	Acceptable Acceptable Acceptable	Acceptable Acceptable	Acceptable Acceptable	100	Acceptable Acceptable
	Metals Cyanide Volatiles Semivolatiles	Acceptable Acceptable Acceptable Acceptable	Acceptable Acceptable Acceptable	Acceptable Acceptable Acceptable	100 100 100	Acceptable Acceptable Acceptable
WF0318	Metals Cyanide Volatiles	Acceptable Acceptable Acceptable	Acceptable Acceptable	Acceptable Acceptable	100	Acceptable Acceptable

Table XV Sample Event PARCC Summary Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton, Florida

SDG	Fraction	·Precision1	Accuracy ²	Representativeness	Completeness (%)	Comparability
WF033	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
*** 033	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticioes/PCBs		Acceptable	Acceptable	100	Acceptable
	1 1	Acceptable	, ,	Acceptable	1	
	Metals	Acceptable	Acceptable		100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF034	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
	1					
WF035	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metais	Acceptable	Acceptable	Acceptable	100	Acceptable
_	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
MEDDE	Volatiles	Agentable	Acceptable	Acceptable	100	Acceptable
WF036	1	Acceptable	í ·	,		·
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF037	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
VVFU3/		Acceptable	· ·	1 ' ' '		'
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides/PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Unacceptable	Acceptable .	0	Acceptable
WF038	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
WF039	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
WF040	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
***************************************	Tomasso	Лосерави				Посрас
WF041	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides & PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
		'	1	1	100	,
	Metals	Acceptable	Acceptable	Acceptable	1	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF042	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
WF043	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
WF044	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
WF045	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides & PCBs	Unacceptable	Unacceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF046	Voletion	Acceptable	Agrentable	Acceptable	100	Acceptable
** 040	Volatiles	\$ · · · · · · · · · · · · · · · · · · ·	Acceptable	Acceptable	i	
	Semivolatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Pesticides & PCBs	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
	Cyanide	Acceptable	Acceptable	Acceptable	100	Acceptable
WF047	Volatries	Acceptable	Acceptable	Acceptable	97.0	Acceptable
VVFU4/	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
WF048	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
ME0.40	T V-1-NI	A	A	A	05.0	
WF049	Volatiles Semivolatiles	Acceptable Acceptable	Acceptable Acceptable	Acceptable Acceptable	95.2 100	Acceptable Acceptable
		T	T		1	T T
WF051	Volatiles Metals	Acceptable Acceptable	Acceptable Acceptable	Acceptable Acceptable	100	Acceptable Acceptable
				<u> </u>		i e
WF052	Volatiles	Acceptable	Acceptable	Acceptable	94.3	Acceptable

The state of the s

Table XV Sample Event PARCC Summary Groundwater and Subsurface Soil Investigation, Phase IIB NAS Whiting Field, Milton, Florida

SDG	Fraction	Precision'	Accuracy ²	Representativeness	Completeness (%)	Comparability
WF053	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
WF054	Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable
	Metals	Acceptable	Acceptable	Acceptable	100	Acceptable
WF055	. Volatiles	Acceptable	Acceptable	Acceptable	100	Acceptable

¹Cumulative of sampling and analytical components

Notes:

All completeness is expressed as the ratio of number of sample results considered usable (i.e., not qualified as rejected) to the total number of sample results.

% = percent

²Analytical component.

Samples results rejected for database purposes were not used in the completeness calculation.

APPENDIX B
GEOPHYSICAL DATA

APPENDIX C
MONITORING WELL AND TEST PIT LOGS

LITHOLOGIC LOG FOR WELL NUMBER (SITE 15)

Description	Depti (ft	Thickness (ft)	
Clay, red, gray, tan; sand, fine to medium grained	0 -	42.0	42.0
Sand, fine to coarse grained, buff; clay, light gray	42.0 -	65.0	23.0
Sand, fine to coarse grained, buff; gravel, mafics	65.0 -	72.0	7.0

Geraghty & Miller, Verification Study, 1986

CLIENT: SOUTHNAVFACENGCOM					LOG of WELL: WHF-15-2D			BORING NO.		
					Ta		PROJ	ECT NO: RI PHASE		
CONTRACTOR:			rotect		DATE STARTED:			COMPLTD: 07/18	/83	
METHOD: MUD					CASE SIZE: 2 in. SCREEN INT.: 104.6-109.6 F MONITOR INST.: 0VA TOT DPTH: 110FT. WELL DEVELOPMENT DATE:		 			
TOC ELEV: 60			 ,					TO \$ 19.33 FT.		
LOGGED BY: 1	I. Roka			WELL DEVELOPMENT DATE:			SITE: 15 - S.W. Landfill			
E LABORATE	SAMPLE SAMPLE SAMPLE	RECOVERY	HEADSPACE (ppm)	SOIL/ROCK DESCRI AND COMMENT		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/8-IN	WELL DATA	
5—		24/24	вкс	SAND - rust brown, fine to mediur loose, slightly moist, subrounded.	n, poorly graded,		SP	2,3,4,5	7" Z" Z" Z" Z" Z" Z".	
10—	<u>/</u>	22/24	2	Same as above. CLAY - brown, soft, plastic, moist SILT SAND - black, fine, loose, s		(1/1)	SM	1,1,2,1	" " " " " " " " " " " " " " " " " " "	
15—		24/24	BKG	CLAYEY SAND - gray, fine, poorb slightly moist.	y graded, loose,		sc	2,2,2,2		
20		24/24	0.4	SAND - white, fine, silt, poorly gr moist.	aded, medium dense,		SP/SM	11,13,17,13		
25—		24/12	BKG	SANDY SILT - brown, saturated. SAND - yellowish tan, fine to med saturated.	lium, poorly graded,		SM/SP	WOR,6,4		
30—				FROM WHF-15-MW-2I SAND - orange to red to white, of SAND - orangish brown, fine, poor		• • •	SW			
35—				SAND - light tan, fine to medium, saturated.	poorly graded,		SP			

TITLE: NAVAL AIR STATION WHITING FIELD LOG of WELL: WHF-15-2D					BORING NO.			
CLIENT: SOUTHNAVFACENGCOM		,		PROJECT N	D: RI PHASE II	A		
CONTRACTOR: Groundwater Protection	n Inc.	DATE STARTED	: 07/17/93	3 COMPLTD: 07/18/93				
METHOD: MUD ROTARY	CASE SIZE: 2 in.	SCREEN INT.: 1	04.6-109.6	PROTECTION	LEVEL: D			
TOC ELEV.: 60.07 FT.	MONITOR INST.: OVA	TOT DPTH: 110F	TOT DPTH; 110FT.					
LOGGED BY: N. Roka	WELL DEVELOPMENT DATE	•		SITE: 15 - S	.W. Landfill			
DEPTH THE TIMES SANPLE SANPLE SANPLE HEADSPACE (ppm)	SOIL/ROCK DESCRIPTION AND COMMENTS Continued from PAGE 1		LITHOLOGIC SYMBOL	SOIL CLASS	DWS/8-IN	WELL DATA		
1 111 1 1	AND – gray, fine, silty, well gra			SP				
	AND – gray, fine to medium, tra raded, saturated.	ace coarse, poorly		SP				
50—	AND – light brown, medium, well	graded, saturated.		SP		"		
	AND – light tan, fine, poorly gr ESUME WHF–15–MW–2D	aded, saturated.		SP				
	AND – light tan, fine to medium edium dense, saturated, suban	· •		SP 13	3,11,10,12			
BKG S	ame as above, loose.			SP	4,5,5,9			
1.2	ame as above, medium dense.			SP	4,8,9,11			
75—	ame as above, dense.			SP 10,	18,28,42			
2.6				SP /	4,4,8,11			

CLIENT: SOUTHNAVFACENGCOM							BORING NO. PROJECT NO: RI PHASE IIA			
CONTRACTOR: Groundwater Protection Inc. DATE STARTED: 07/17/93						/17/93				
METHOD: MUD				CASE SIZE: 2 in.	SCREEN INT.: 104.6-109.6 F PROTE			· · · · · · · · · · · · · · · · · · ·		
TOC ELEV.: 60.07 FT. MONITOR INST.: OVA					TOT OPTH: NOFT.		DPTH TO ¥ 19.33 FT.			
LOGGED BY: N. Roka WELL DEVELOPMENT DA					101 21 111 101 1		SITE: 15 - S.W. Landfill			
L LABORAT SAMPLE		RECOVERY	HEADSPACE (ppm)	SOIL/ROCK DESCRIP AND COMMENTS Continued from PA		LITHOLOGIC	SOIL CLASS	BLOWS/6-IN	WELL DATA	
		10/24		Same as above, medium dense.			SP			
35— - -		24/24	10	same as above, dense.			SP	48,22,23,20		
90		0/24	BKG	NO RECOVERY				6,8,15,22	"	
95—		24/24	3	Same as above, medium dense.			SP	4,6,8,12		
00-		12/24	21	Same as above, dense.			SP	10,15,22,29		
05-		24/24	5	Same as above, loose.			SP	3,4,5,8		
10-										
- - - - -						•			:	
20										

n seur europa de la companya della companya della companya de la companya della c

	HITING	TELD	LOG of Wi	ELL: WHF-15-25		BORI	ING NO.	
LIENT: SOUTHNAVFACENGCO	M					PROJ	ECT NO: RI PHASE	IIA
CONTRACTOR: Groundwater Pro	otection	Inc.	D	ATE STARTED: 0	2/4/93	,	COMPLTD: 02/4/	'93
ETHOO: HSA		CASE SIZE: 2	S	CREEN INT.: 15-	30 FT	PROTE	ECTION LEVEL: D	
OC ELEV: 60.18 FT.		MONITOR INST.: OVA		OT DPTH: 37FT.			TO \$ 19.34 FT.	
OGGED BY: R.Neison	·	WELL DEVELOPMENT	DATE:			SITE:	15 - S.W. Landfill	
SANDLE ID. SANDLE ID.	(wdd)		DESCRIPTION DMMENTS		LI THOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
5—	OES	E WHF-15-2D FOR ADDI SCRIPTIONS. -Y - gray, firm, moist, so		HOLOGICAL		SC	2,2,2,4	
12/24	CLA	YEY SAND – gray, firm	, moist.		<u></u>	SC	2,7,10,10	
0	SAP	ID - gray, fine, poorly (graded, salu	rated.		SP	3,4,4,4	

TITLE: NAVAL AIR STATION WHITING	FIELD LOG of	WELL: WHF-15-3D		BORING N	0.	
CLIENT: SOUTHNAVFACENGCOM				PROJECT I	NO: RI PHASE II	Δ
CONTRACTOR: Groundwater Protection	Inc.	DATE STARTED: 01/23	3/93	CO	MPLTD: 01/25/9	3
METHOD: MUD ROTARY	CASE SIZE: 2	SCREEN INT.: 108-118	8 FT.	PROTECTIO	N LEVEL: D	
TOC ELEV.: 69.61 FT.	MONITOR INST.: OVA	TOT DPTH: 119FT.	1	DPTH TO \$	26.2 FT.	
LOGGED BY: R. Nelson	WELL DEVELOPMENT DATE:			SITE: 15 -	S.W. Landfill	
DEP TH F T. F T. OI BTAWES SAMPLE SAMPLE SAMPLE HECOVERY HEADSPACE (PPM)	SOIL/ROCK DESCRIPT AND COMMENTS	ION CO	SYMBOL	SOIL CLASS	_OWS/6-IN	WELL DATA
5— - - 14/24 0 S/	NDEY CLAY - red, moist.	-	so	C/CL	2,3,3,4	
	ND - red, fine, poorly graded, tra ist.	ace clay, slightly		SP	5,5,8,10	
15—	ND - SAA.			5P	6,8,8,12	
20-	ND/GRAVEL - red, well graded, s	ightly moist.	000	3W	10.8,10,11	
12/24 (3	ND (3") — reddish brown, fine, po ") — purple, very fine, poorly grad llow to tan, coarse, poorly graded	led. SAND (9") ~	Ç	SP	2.3.3,4	
- 24/24 gr	ND (1.5') — reddish brown, very fi aded, saturated. SAND (6'') — wh dium to coarse, well graded, satur	ite to purple,	5	5P	3,3,3,3	
	ND - light purple, fine to medium, turated, sub-rounded.	poorly graded,		SP	6,7,8,8	
40-	PAGE 1 of 15M	403D APP 511	/IBON''	45NF 41 - 3	SERVICES, IN	

TITLE: NAVAL AIR STATION WHITIN	NG FIELD	LOG of	F WELL: WHF-15-3D		BOR	ING NO.		
CLIENT: SOUTHNAVFACENGCOM					PRO	JECT NO: RI PHASE	IIA	17
CONTRACTOR: Groundwater Protecti	on Inc.		DATE STARTED:	01/23/93		COMPLTD: 01/25/	93]
METHOD: MUD ROTARY	CASE SIZE: 2		SCREEN INT.: 10	8-118 FT.	PROT	ECTION LEVEL: D		
TOC ELEV.: 69.61 FT.	MONITOR INST.: 0VA		TOT DPTH: 119FT.		DPTH	TO ¥ 26.2 FT.]
LOGGED BY: R. Nelson	WELL DEVELOPMENT	DATE:			SITE	: 15 - S.W. Landfill]
DEPTH FT. FT. CI STANDED SAMPLE SAMPLE RECOVERY HEADSPACE (ppm)	SOIL/ROCK AND CO Continued	OMMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA	
1 1 1 1 1	SAND - SAA, 1" bands of roottom of spoon.	red fine s	and at top and		SP	6,6,7,9		
- 12/24	SAND (8") – orange to bro trace coarse, saturated. I medium, well graded.			• • •	SW	7.8,5,6		
	SAND (10") – white, mediur coarse, saturated. SAND			• • •	SW	6,5,5,4		K
	SAND – white to tan, very saturated.	fine, poo	rly graded,		SP	3,2,5,6		
	SAND – yellow to brown, fi coarse, saturated.	ine, poorl	y graded, trace		SP	8,11,?,11		
65— - - - - - - - - - - - - - - - - - - -	SAND - fine, poorly grade	d, satura	ted.		SP	12,16,16,16		
	SAND – yellow to brown, m saturated, sub-rounded.	nedium, po	orly graded.		sp	3,4,3,6		
	SAND – yellow to brown, m saturated, sub-rounded.	nedium, we	ell graded.		SP	11,12,16,23		A
80—	PAGE 2	2 of 15M	WO3D ARR	ENVIRO	VMENT	TAL SERVICES.	INC	

.

ITLE: NAVAL A				LOG of	WELL: WHF-15-3D		BORI	NG NO.	
LIENT: SOUTH	NAVFACEN	SCOM		·			PROJ	ECT NO: RI PHASE	IIA
ONTRACTOR: G	roundwater	Protec	tion Inc.		DATE STARTED: 0	1/23/93		COMPLTD: 01/25	5/93
ETHOD: MUD RO	DTARY		CASE SIZE: 2		SCREEN INT.: 108	3-118 FT.	PROTE	ECTION LEVEL: D	<u>, .</u>
OC ELEV.: 69.6	1 FT.		MONITOR INST.: OVA		TOT DPTH: 119FT.		DPTH	TO ¥ 26.2 FT.	
OGGED BY: R.	Nelson		WELL DEVELOPMENT	DATE:			SITE:	15 - S.W. Landfill	
L LABORATOR		HEADSPACE (ppm)	SOIL/ROCK AND C Continued	OMMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
	12/2	40	SAND – yellow to brown, m saturated, 2" lamina of pu				SP	17,21,23,21	
5—	14/2	2	SAND - yellow brown, fine lamina of purple, medium sa	_			SP	N/A	1 2 1 2 1 2 1 2
0-	20/2	0 4	CLAY (16") - purple to ye saturated. SAND (4") - y graded, trace clay, satura	ellow brow			СН	· N/A	
5—	18/24	0	SAND - yellow brown, very silt, moist.	y fine, poo	rly graded, trace		SM	N/A	
	18/2	1 1	SAND - SAA.				SM	N/A	
5—	14/2	0	SAND (4") - yellow to bro (4") - purple to yellow, pl (6") - purple to yellow-br	astic, satu			SP	N/A	
0-	14/24	5	SAND - yellow to brown, f	ine to coa	rse, saturated.		SP	N/A	
5	20/2	5 4 N/A	SAND - purple, medium, po sub-rounded.				SP	N/A	
	20/2		SAND (10") - SAA. CLAY yellow sand interbedded.	(10") - pu	rple, stiff, fine		SP	N/A	

- The Control of th

	ATION WHITING	FIELD	LOG of WELL: WHF -15-	-3I··	BOR	ING NO.	
CLIENT: SOUTHNAVFA	CENGCOM				PRO	JECT NO: RI PHASE	IIA
CONTRACTOR: Grounds	water Protection	Inc.	DATE STARTE	E D : 02/2/93		COMPLTD: 02/2	/93
METHOD: MUD ROTARY		CASE SIZE: 2	SCREEN INT.:	75-85 FT	PROT	ECTION LEVEL: D	
TOC ELEV.: 69.72 FT.		MONITOR INST.: OVA	TOT DPTH: 87	FT.	DPTH	TO ¥ 26.86 FT.	
LOGGED BY: G. Kanch	ibhatla	WELL DEVELOPMENT DA	ATE:		SITE	: 15 — S.W. Landfill	
DEPTH CT. TABORATORY SAMPLE ID: SAMPLE	RECOVERY HEADSPACE (ppm)	SOIL/ROCK DE AND COM		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
5—		E WHF-15-3D FOR LITHO	LOGICAL DESCRIPTION				

TITLE: NAVAL AIR STATION WHITING		LOG of WELL: WH	F-15-3I	BORIN	NG NO.	
LIENT: SOUTHNAVFACENGCOM				PROJE	CT NO: RI PHASE	IIA
ONTRACTOR: Groundwater Protection	n Inc.	DATE ST	ARTED: 02/2/93		COMPLTD: 02/2/	/93
ETHOD: MUD ROTARY	CASE SIZE: 2	SCREEN	INT.: 75-85 FT	PROTE	CTION LEVEL: D	
OC ELEV.: 69.72 FT.	MONITOR INST.: OVA	TOT DPT	H: 87FT.	DPTH 1	TO ¥ 26.86 FT.	
OGGED BY: G. Kanchibhatla	WELL DEVELOPMENT D	ATE:		SITE:	15 - S.W. Landfill	
LEFTH F T. COLENT SAMPLE SAMPLE HEADSPACE (ppm)	SOIL/ROCK D AND COM Continued f	MENTS	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
55						
	AND - purple, fine, poorly AND - purple, medium, well			SP	2,3,2,2	
	AND – light purple, fine, si aturated.	lty, poorly graded	,	SP	5.8,9,12	
5						

NISA IL

TITLE: NAVAL AIR STATION WHITING	L06 e	of WELL: WHF-15-3S		BORI	NG NO.	
CLIENT: SOUTHNAVFACENGCOM	· · · · · · · · · · · · · · · · · · ·			PROJ	ECT NO: RI PHASE	IIA
CONTRACTOR: Groundwater Protection	Inc.	DATE STARTED: 02	/1/93		COMPLTD: 02/1/	93
METHOD: HSA	CASE SIZE: 2"	SCREEN INT.: 20-	35 FT	PROTE	CTION LEVEL: D	
TOC ELEV.: 69.87 FT.	MONITOR INST.: OVA	TOT DPTH: 37FT.		DPTH	TO ¥ 26.24 FT.	
LOGGED BY: G. Kanchibhatla	WELL DEVELOPMENT DATE:			SITE:	15 - S.W. Landfill	
DEPTH TT. SAMPLE SAMPLE HEADSPACE (ppm)	SOIL/ROCK DESCRIP AND COMMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
5	ND – reddish brown, fine to med	lium, poorly graded.		SP	5,6,6,6	24 24 24 24 24 24 24 24 24 24 24 24 24 2
dry				SP	3,4,4,5	
- sa	ND – gray to white, medium, pod urated. ND – fine, silty, saturated.	orly graded,		SP	3,2,2,3	
30—						
35—			use a management of the second			B
40	PAGE 1 of 15				TAL SERVICES.	

NTRACTOR: Groundweter Protection Inc. CASE SIZE: 2" SCREEN INT.: 92-107 FT. PROTECTION LEVEL: D CELEV: M3.54 FT. MONITOR INST: OVA TOT DPTH: 112FT. DPTH TO \$ 98.8 FT. GEED BY: G. Kanchibhatia MELL DEVELOPMENT DATE: SITE: 15 - S.M. Landfill LABORATORY SAMPLE ID: 3 50 50 50 50 50 50 50 50 50 50 50 50 50	TLE: NAVAL AIR STATION WHITING		WELL: WHF-15-4			ING NO.	
CASE SIZE: 2" SCREEN INT.: 92-107 FT. PROTECTION LEVEL: D DC ELEV.: 143.54 FT. MONITOR INST.: OVA TOT DPTH: 112FT. DGED BY: G. Kanchibhatla L.: LABORATORY DESCRIPTION AND COMMENTS SOIL/ROCK DESCRIPTION AND COMMENTS SOIL/ROCK DESCRIPTION AND COMMENTS SOIL/ROCK DESCRIPTION AND COMMENTS SOIL/ROCK DESCRIPTION AND COMMENTS SAND - dark brown, fine, poorly graded, dry, loose, same organic content. SAND - reddish brown, fine, poorly graded, dry, loose, same organic content. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, same organic content. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, same organic content. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, same organic content. SAND - white, very fine, poorly graded, moderately dense, trace amounts of sitt at 21 ft. bis. SAND - white, very fine, poorly graded, moderately dense, trace amounts of coarse to very coarse sand. SAND - white with bands of reddish brown fine to SP 8,7,11,14	LIENT: SOUTHNAVFACENGCOM	1			PRO		
TOC ELEV: 143.54 FT. MONITOR INST:: OVA MELL DEVELOPMENT DATE: SITE: 15 - S.M. Landfill E. LABDRATORY D. S. SAND - dark brown, fine, poorly graded, dry, loose, some organic content. SAND - reddish brown, fine, poorly graded, dry, loose, loose. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, some organic content. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, some organic content. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, some organic content. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, some organic content. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, some organic content. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, some organic content. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, some organic content. SAND - dark tan and yellowish orange bands, fine, poorly graded, moderately dense, dry, loose, some organic content. SAND - white, very fine, poorly graded, moderately dense, trace amounts of coarse to very coarse and. SAND - white with bands of reddish brown fine to specific poorly graded, moderately dense, trace amounts of coarse to very coarse and.		<u> </u>	<u> </u>				/93
NELL DEVELOPMENT DATE: SITE: 15 - S.M. Landfill Soll/ROCK DESCRIPTION AND COMMENTS SOll/ROCK DESCRIPTION AND COMMENTS SOll/ROCK DESCRIPTION AND COMMENTS SOll/ROCK DESCRIPTION AND COMMENTS SOll/ROCK DESCRIPTION AND COMMENTS BLOWS/6-IN BLOWS/6-IN BLOWS/6-IN SAND - dark brown, fine, poorly graded, dry, loose, SP LLL1 SAND - reddish brown, fine, poorly graded, dry, loose, SP LLL1 SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, SP LLL1 SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, loose, SP LLL1 SAND - dark tan and yellowish orange bands, fine, SP 8.7.11,14 SAND - white, very fine, poorly graded, moderately dense, dry. SAND - white with bands of reddish brown fine to SP 8.7.11,14 SAND - white with bands of reddish brown fine to SP				/ FT.			
SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, losse. SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, losse. SP SAND - dark tan and yellowish orange bands, fine, poorly graded, dry, losse, same as above, trace amounts of silt at 21 ft. bis. SP SAND - white, very fine, poorly graded, moderately dense, dry. SAND - white with bands of reddish brown fine to SP SP SAND - white with bands of reddish brown fine to SP SP SAND - white with bands of reddish brown fine to SP SP SAND - white with bands of reddish brown fine to SP SAND - white with bands of reddish brown fine		 	TOT DPTH: 112FT.				
SAND - dark brown, fine, poorly graded, dry, loose. SAND - dark brown, fine, poorly graded, dry, loose. SP		WELL DEVELOPMENT DATE:				; is - 5.W. Landill	
SAND - reddish brown, fine, poorly graded, dry, SAND - reddish brown, fine, poorly graded, dry, SP 2,2,3,2	RECOVERY (Ppm)		ION	SYMBOL	SOIL CLASS		WELL DATA
SAND - reddish brown, fine, poorly graded, dry, SAND - reddish brown, fine, poorly graded, dry, SP 2,2,3,2							
8/24 0 loose. 2,2,3,2 SAND - dark tan and yellowish orange bands, fine, poorly graded, dry. 5P 6,8,9,10 SAND - dark tan and yellowish orange bands, fine, poorly graded, dry. 5P 6,8,9,10 24/24	5 < 1 sc		ded, dry, loose,		SP	1,1,11	
1/24 0 poorly graded, dry. 6/24	3/		graded, dry,		SP	2,2,3,2	
SAND - very fine to fine, poorly graded, moderately dense, trace amounts of silt at 21 ft. bls. SP 4,6,10,12 SAND - white, very fine, poorly graded, moderately dense, dry. SAND - very fine to fine, poorly graded, moderately dense, trace amounts of coarse to very coarse sand. SAND - white with bands of reddish brown fine to SP	1/24 0 pc		ge bands, fine,		SP	6,8,9,10	
20/24 0 dense, dry. SAND - very fine to fine, poorly graded, moderately dense, trace amounts of coarse to very coarse sand. SAND - white with bands of reddish brown fine to		me as above, trace amounts of si	It at 21 ft. bis.		SP	4,6,10,12	
20/24 0 dense, trace amounts of coarse to very coarse sand. SAND - white with bands of reddish brown fine to			ded, moderately		SP	8,7,11,14	
SAND WHITE WILLIAM DAILOS OF FEDURAL THE TO THE TO	- 20/24 0 de	nse, trace amounts of coarse to			SP	8,7,11,14	
- - - - - - - - - -		ND - white with bands of reddishedium, poorly graded, loose, dry.	brown fine to		SP	5,6,10,13	

TITLE: NAVAL AIR STATION WHITIN	NG FIELD	LOG of WELL: WHF-15-4		BORING	5 NO.	
CLIENT: SOUTHNAVFACENGCOM				PROJEC	T NO: RI PHASE	IIA
CONTRACTOR: Groundwater Protecti	ion Inc.	DATE STARTED:	02/18/93		COMPLTD: 04/29	9/93
METHOD: HSA	CASE SIZE: 2"	SCREEN INT.: 9	2-107 FT.	PROTEC	TION LEVEL: D	
TOC ELEV.: 143.54 FT.	MONITOR INST.: OVA	TOT DPTH: 112FT		DPTH TO	⊋ 98.8 FT.	
LOGGED BY: G. Kanchibhatla	WELL DEVELOPMENT	DATE:		SITE: 15	- S.W. Landfill	
DEPTH F1. 7. CLAUDANABRY SAMPLE SAMPLE RECOVERY HEADSPACE (ppm)	AND C	DESCRIPTION OMMENTS from PAGE 1	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
20/24 0	Same as above, trace coa	arse.		SP	5,8,11,14	
45—————————————————————————————————————	Same as above.			SP	8,13,23,27	
	SAND – white, fine, trace slightly moist, poorly grade			SP	6,11,15,17	
55— 20/24 0	Same as above.			SP	14,10,14,21	212121
60-	Same as above, white to t	an.		SP	10,15,21,29	
	SAND – white to tan, fine moderately dense, slightly			SP	22,28,29,28	
70	SAND – white, very fine to moderately dense, dry.	o fine, poorly graded,		SP	17,11,25,52	
	SAND – white, very fine to graded, loose, dry,	o fine, purple bands, poorly		SP	18,27,31,28	
80		2 of 15MW04S ABB		SP	L SERVICES.	

FACENGCO ndwater Pro- FT. nchibhatla		Inc. CASE SIZE: 2"		DATE STARTED: 0	2/18/93	11.00.	COMPLTD: 04/29	
nchibhatla		CASE SIZE: 2"						
nchibhatla				SCREEN INT.: 92-	-107 FT.	PROTE	CTION LEVEL: D	
nchibhatla		MONITOR INST.: OVA		TOT DPTH: 112FT.		OPTH '	TO ¥ 98.8 FT.	
_ <u>.</u> .		WELL DEVELOPMENT					15 - S.W. Landfill	
RECOVERY	(ppm)	SOIL/ROCK AND CO	OMMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
20/24	0 00					SP	22,12,12,14	
16/24						SP	16,31,39,29	<i>> ></i>
18/24			_			SP	22,22,42,27	
20/24	0 po	orly graded top 8", ove ange to purple, moist 8"	r SANDY (', over SAN	CLAY, yellow		SP	7,15,31,33	
16/24	1		, poorly gr	aded, saturated,		SP	DROP,16,15	
24/24	_ Sa	me as above, trace silt,	, saturated	d to wet.		SP		
24/24	_ Sa	me as above, fine, light	. brown.			SP		
	WH	IF-15-4 WAS REDRILLEI	D ON 4/29	3/93.				٠.
	18/24 18/24 20/24 16/24	18/24 O SA poor or a fine service serv	trace silt. SAND - white to tan and poorly graded, dry, moder SAND - white to tan, fine, silt, loose to moderate de silt, loose to moderate de fine, purple, slightly moist, sandy clay. SAND - white to tan, very poorly graded top 8", over orange to purple, moist 8" fine, purple, slightly moist, sandy clay. SAND - white to tan, fine, trace sandy clay. Same as above, trace silt.	trace silt. SAND - white to tan and purple, ver poorly graded, dry, moderately dense of silt, loose to moderate density, slight orange to purple, moist 8", over SAND orange to purple, moist 8", over SAND orange to purple, slightly moist, dense. SAND - white to tan, fine, poorly graded to tan, fine,	trace silt. SAND - white to tan and purple, very fine to fine, poorly graded, dry, moderately dense. SAND - white to tan, fine, poorly graded with some silt, loose to moderate density, slightly moist. SAND - white to tan, very fine to fine, some silt, poorly graded top 8", over SANDY CLAY, yellow orange to purple, moist 8", over SAND, very fine to fine, purple, slightly moist, dense. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. Same as above, trace silt, saturated to wet.	trace silt. SAND - white to tan and purple, very fine to fine, poorly graded, dry, moderately dense. SAND - white to tan, fine, poorly graded with some silt, loose to moderate density, slightly moist. SAND - white to tan, very fine to fine, some silt, poorly graded top 8", over SANDY CLAY, yellow orange to purple, moist 8", over SAND, very fine to fine, purple, slightly moist, dense. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. Same as above, trace silt, saturated to wet.	trace silt. SAND - white to tan and purple, very fine to fine, poorly graded, dry, moderately dense. SAND - white to tan, fine, poorly graded with some silt, loose to moderate density, slightly moist. SAND - white to tan, very fine to fine, some silt, poorly graded top 8", over SAND CLAY, yellow orange to purple, moist 8", over SAND, very fine to fine, purple, slightly moist, dense. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay.	trace silt. SAND - white to tan and purple, very fine to fine, poorly graded, dry, moderately dense. SAND - white to tan, fine, poorly graded with some silt, loose to moderate density, slightly moist. SAND - white to tan, very fine to fine, some silt, poorly graded top 8", over SANDY CLAY, yellow orange to purple, moist 8", over SAND, very fine to fine, purple, slightly moist, dense. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, trace sandy clay. SAND - white to tan, fine, poorly graded, saturated, sp. DROP,16,15 SAND - Same as above, trace silt, saturated to wet. SP Same as above, fine, light brown.

Water Prote HEADSPACE 15/24 0	CASE SIZE: 6 in. MONITOR INST.: 0VA WELL DEVELOPMENT	DATE: ODESCRIPTI COMMENTS		6-66 FT.	PROTE DPTH	ECT NO: RI PHASE COMPLTD: 02/0 ECTION LEVEL: D TO \$\frac{9}{6}4.63 FT. 15 - S.W. Landfill BLOWS/6-IN 3.5,5,7	
RECOVERY O HEADSPACE	CASE SIZE: 6 in. MONITOR INST.: OVA WELL DEVELOPMENT SOIL/ROCK AND C	DATE: ODESCRIPTI COMMENTS	SCREEN INT.: 5 TOT DPTH: 68F1	56-66 FT.	SOIL CLASS	ECTION LEVEL: D TO 64.63 FT. 15 - S.W. Landfill BLOWS/6-IN	
RECOVERY O HEADSPACE	MONITOR INST.: OVA WELL DEVELOPMENT SOIL/ROCK AND C	DATE: OBSCRIPTI	TOT DPTH: 68F1	Γ,	SOIL CLASS	TO	MELL DATA
RECOVERY O HEADSPACE	WELL DEVELOPMENT SOIL/ROCK AND C	DATE:	ON		E: SOIL CLASS	15 - S.W. Landfill BLOWS/6-IN	MELL DATA
RECOVERY O HEADSPACE	SOIL/ROCK AND C	DESCRIPTI COMMENTS		SYMBOL SYMBOL	₹ SOIL CLASS	BLOWS/6-IN	MELL DATA
15/24 0	SILTY SAND - dark red, t	COMMENTS		SYMBOL SYMBOL	SM		MELL DATA
		fine, medium	i dense, da m p.			3.5,5,7	
24/24 0	Same as above.				SM		
						7,7,7,7	
12/24 0	SAND - reddish tan to wh	nite, fine, lo	ose, dry.		SP	2,5,8,11	
24/24 0	Same as above, more whit	te sand.			SP	4,5,7,10	
24/24 0	SAND - white, very fine t	o fine, loosi	e, dry.		SP	5,5,6,7	
20/24 0	Same As Above, banded o	dark red an	đ white.		SP	5,11,12,15	
15/24 0	SAND — fine, banded rust	and white,	damp.		SP	6,9,12,12	
	24/24 0	SAND - white, very fine to SAND - white, very fine to Same As Above, banded to SAND - fine, banded rust	24/24 0 SAND - white, very fine to fine, loos 20/24 0 Same As Above, banded dark red an 15/24 0 SAND - fine, banded rust and white,	SAND - white, very fine to fine, loose, dry. Same As Above, banded dark red and white. SAND - fine, banded rust and white, damp.	SAND - white, very fine to fine, loose, dry. Same As Above, banded dark red and white. SAND - fine, banded rust and white, damp.	Same as above, more white sand. SP SAND - white, very fine to fine, loose, dry. SP SP SP SP SP SP SP SP SP S	24/24 0 Same as above, more white sand. 24/24 0 SAND - white, very fine to fine, loose, dry. SP 5,5,6,7 20/24 0 Same As Above, banded dark red and white. SP 5,11,12,15 SP 6,9,12,12

TOC ELEV.: 104.32 FT.	CLIENT: SOUTHNAVE	ACENG	СОМ					PROJE	ECT NO: RI PHASE	IIA
TOC ELEY: 104.32 FT. MONITOR INST.: 0VA TOT DPTH: 68FT. DPTH TO § 64.63 FT. LOGGED BY: N. Haglin NELL DEVELOPMENT DATE: SITE: 15 - S.M. Landfill SOIL/ROCK DESCRIPTION AND COMMENTS Continued from PAGE 1 14/24 0 SAND - white, some pink, fine, trace coarse sand, loose, damp. SAND - purple, fine to medium, some coarse sand, loose, damp. 24/24 0 SAND - purple, grey, tan, and yellow, fine sand lenses, firm, plastic, moist. CLAY - Grey included red, some sandy tenses, plastic. CLAY - Grey mottled red, some sandy tenses, plastic. CLAY - Grey mottled red, some sandy tenses, plastic. CLAY - Grey mottled red, some sandy tenses, plastic. 11,4,5 Same As Above too 18" over SAND, white, very fine, some silt, dry. SSM 18,30,36,46 24/24 0 SAND - brown, medium, wet, over very fine, sand, white, damp (bottom 6"). SAND - brown to white, fine to medium, some clayey SP 12,14,10,12	CONTRACTOR: Groun	dwater f	Protect	on Inc.		DATE STARTED:	02/05/93		COMPLTD: 02/08	3/93
LOGGED BY: N. Haglin WELL DEVELOPMENT DATE: SITE: 15 - S.H. Landfill SOL/ROCK DESCRIPTION AND CONNENTS Continued from PAGE 1 14/24 0 SAND - white, some pink, fine, trace coarse sand, loose, damp. SAND - purple, fine to medium, some coarse sand, loose, wet. 24/24 0 CLAY - purple, grey, tan, and yellow, fine sand lenses, firm, plastic, moist. CLAY - Grey, highly plastic, firm, traces of purple very fine sand and yellow silt. CLAY - Grey motiled red, some sandy lenses, plastic, firm. Same As Above top 18" over SAND, white, very fine, some silt, dry. SAND - Top B" orown, medium, wet, over 8" of sandy clay, brown, wet, ower 8" of sandy white, damp (bottom 6"). SAND - Top B" orown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine. SAND - Top B" orown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine. SAND - Top B" orown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine. SAND - Top B" orown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine. SAND - Top B" orown, medium, some clayey sand, loose, wet.	METHOD: Mud Rot			CASE SIZE: 6 in.		SCREEN INT.: 56	-66 FT.	PROTE	CTION LEVEL: D	
Sol/Rock DeScription AND COMMENTS Continued from PAGE 1 14/24 O SAND - white, some pink, fine, trace coarse sand, loose, damp. 24/24 O SAND - purple, fine to medium, some coarse sand, loose, damp. 24/24 O SAND - purple, fine to medium, some coarse sand, loose, wet. 24/24 O CLAY - purple, grey, tan, and yellow, fine sand lenses, firm, plastic, moist. 24/24 O CLAY - Grey, highly plastic, firm, traces of purple very fine sand and yellow sitt. 24/24 O CLAY - Grey mottled red, some sandy lenses, plastic, firm. 24/24 O Same As Above too 18" over SAND, white, very fine. Some sitt, dry. 24/24 O Sitty SAND - brown, medium, wet, over very fine sand, white, damp libottom 6"). 24/24 O SAND - Top 8" brown, medium, wet, over 8" of sandy clay, Drown, wet, over 8" of sand, white, very fine. SP 12,14,10,12 SAND - brown to white, fine to medium, some clayey sand, loose, wet.	TOC ELEV.: 104.32 F	Τ.		MONITOR INST.: 0VA		TOT DPTH: 68FT.		DPTH	T O ♀ 64.63 FT.	
14/24 O SAND - white, some pink, fine, trace coarse sand, loose, damp. 24/24 O SAND - purple, fine to medium, some coarse sand, loose, wet. 24/24 O CLAY - Grey, highly plastic, firm, traces of purple very fine sand and yellow sit. 24/24 O CLAY - Grey motitled red, some sandy lenses, plastic, firm. 24/24 O Same As Above top 18" over SAND, white, very fine, some silt, dry. 24/24 O SILTY SAND - brown, medium, wet, over very fine sand, white, damp (bottom 6"). 24/24 O SAND - Top 8" brown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sandy clay, brown, wet, over 8" of sandy clay, brown, wet, over 8" of sandy clay, brown, wet, over 8" of sandy clay, brown, wet, over 8" of sandy clay, brown, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine, damp. SAND - brown to white, fine to medium, some clayey sand, loose, wet.	OGGED BY: N. Hagi	in		WELL DEVELOPMENT	DATE:			SITE:	15 – S.W. Landfill	
14/24 O SAND - white, some pink, fine, trace coarse sand, loose, damp. SP 3,7,8,7	L LABORATORY Z SAMPLE ID. W	RECOVERY	HEADSPACE (ppm)	AND CO	MMENTS		SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
24/24 0 SAND - purple, fine to medium, some coarse sand, loose, wet. CLAY - purple, grey, tan, and yellow, fine sand lenses, firm, plastic, moist. CLAY - Grey, highly plastic, firm, traces of purple very fine sand and yellow silt. CLAY - Grey mottled red, some sandy lenses, plastic, firm. 24/24 0 CLAY - Grey mottled red, some sandy lenses, plastic, firm. 24/24 0 Same As Above top 18" over SAND, white, very fine, some silt, dry. 24/24 0 SILTY SAND - brown, medium, wet, over very fine sand, white, damp (bottom 6"). SAND - Top 8" brown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sandy clay, brown, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine. SAND - brown to white, fine to medium, some clayey sand, loose, wet.]	14/24	0	SAND - white, some pink, f					3,7.8,7	
24/24 0 SAND - purple, fine to medium, some coarse sand, loose, wet. 24/24 0 CLAY - purple, grey, tan, and yellow, fine sand lenses, firm, plastic, moist. 24/24 0 CLAY - Grey, highly plastic, firm, traces of purple very fine sand and yellow silt. 24/24 0 CLAY - Grey mottled red, some sandy lenses, plastic, firm. 24/24 0 Same As Above top 18" over SAND, white, very fine. some silt, dry. 24/24 0 SILTY SAND - brown, medium, wet, over very fine sand, white, damp (bottom 6"). SAND - Top 8" brown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sandy white, very fine. SAND - Top 8" brown, medium, wet, over 9" of sandy clay, brown, wet, over 8" of sand, white, very fine. SAND - brown to white, fine to medium, some clayey sand, loose, wet.										
24/24 0 CLAY - Grey, highly plastic, firm, traces of purple very fine sand and yellow silt. 24/24 0 CLAY - Grey highly plastic, firm, traces of purple very fine sand and yellow silt. 24/24 0 Same As Above top 18" over SAND, white, very fine, some silt, dry. 24/24 0 SILTY SAND - brown, medium, wet, over very fine sand, white, damp (bottom 6"). SAND - Top 8" brown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine, damp. SAND - Top 8" brown, wet, over 8" of sand, white, very fine, damp. SAND - Brown to white, fine to medium, some clayey sand, loose, wet.	45-	24/24	1 0 1		dium, some	e coarse sand,	• • •		4,3,3,5	
24/24 0 CLAY - Grey, highly plastic, firm, traces of purple very fine sand and yellow silt. 24/24 0 Same As Above top 18" over SAND, white, very fine. some silt, dry. 24/24 0 SILTY SAND - brown, medium, wet, over very fine sand, white, damp (bottom 6"). 24/24 0 SAND - Top 8" brown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sandy white, very fine, damp. 24/24 < 1 SAND - brown to white, fine to medium, some clayey sand, loose, wet.	1	24/24		=	and yello	w, fine sand		CL	2,3,2,4	
firm. 24/24 0 Same As Above top 18" over SAND, white, very fine, some silt, dry. 24/24 0 SILTY SAND - brown, medium, wet, over very fine sand, white, damp (bottom 6"). 24/24 0 SAND - Top 8" brown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine, damp. SAND - brown to white, fine to medium, some clayey sand, loose, wet.	50-	24/24				aces of purple		CL	1,2,3,6	
some silt, dry. 24/24 0 SILTY SAND - brown, medium, wet, over very fine sand, white, damp (bottom 6"). 24/24 0 SAND - Top 8" brown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine, damp. SP 12,14,10,12		24/24	1 0 1		some san	dy lenses, plastic,			1,1,4,5	
18,30,36,48 24/24 0 SAND - Top 8" brown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine, damp. SAND - brown to white, fine to medium, some clayey sand, loose, wet.	55—	24/24		some silt, dry.					10,12,14,18	
24/24 0 SAND - Top 8" brown, medium, wet, over 8" of sandy clay, brown, wet, over 8" of sand, white, very fine, damp. SAND - brown to white, fine to medium, some clayey sand, loose, wet.		24/24				over very fine		SM	18,30,36,46	
70————————————————————————————————————	50	24/24		clay, brown, wet, over 8" o		· · · · · · · · · · · · · · · · · · ·		SP	12,14,10,12	
	65—	14/24			e to med	ium, some clayey		5P	14,14,11,10	
75—	70—									L
	75—									

	R STATION	I WHIT	ING FIELD	LOG of	WELL: WHF-15-6D		BOR	ING NO.	
CLIENT: SOUTHN	AVFACENG	СОМ					PRO	JECT NO: RI PHASE	IIA
CONTRACTOR: Gr	oundwater	Protec	tion Inc.		DATE STARTED:	02/5/93		COMPLTD: 02/8/	/93
METHOD: MUD RO	TARY		CASE SIZE: 2"		SCREEN INT.: 110	-120 FT.	PROT	ECTION LEVEL: D	
TOC ELEV.: 75.14	F.T.		MONITOR INST.: OVA		TOT DPTH: 122FT.		DPTH	TO ¥ 35.33 FT.	
OGGED BY: R.Ne	elson		WELL DEVELOPMENT	DATE:			SITE:	15 - S.W. Landfill	,
LABORATORY SAMPLE ID.	SAMPLE	HEADSPACE (ppm)	SOIL/ROCK AND C	DESCRIPT OMMENTS	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
5—	16/24	0	SANDY SILT - reddish bro slightly moist.	own, mediu	im, poorly graded,		SM	3,3,3,3	
0	20/24	1	Same as above.				SM	3,3,3,5	
5—	18/24	4	SAND - reddish brown, fin saturated. SAND - white to gray, fine				SP	7,11,12,15	
0-	14/24		SAND - reddish brown, fin wet.				SP	5,9,10,12	
5—	18/24	120	SAND - light purple, fine,	poorly gra	ided, silt, wet.		SP	5,8,8,7	
0	14/24	160	SAND - orangish brown to poorly graded.	gray, fine	e, trace silt,		SP	4,5,5,6	
5—	8/24	3	SAND - tan, fine, poorly g	raded, sill	t y .		SP	PUSHED	
1		160	SAND - gray, fine, poorly				SP	PUSHED	

.

TITLE: NAVAL AIR STATION WHITING	FIELD LOG of	WELL: WHF-15-6D	BORI	NG NO.	
CLIENT: SOUTHNAVFACENGCOM			PROJ	ECT NO: RI PHASE	IIA
CONTRACTOR: Groundwater Protection	Inc.	DATE STARTED: 02/5/9	3	COMPLTD: 02/8/9	93
METHOD: MUD ROTARY	CASE SIZE: 2"	SCREEN INT.: 110-120 F	T. PROTE	ECTION LEVEL: D	
TOC ELEV.: 75.14 FT.	MONITOR INST.: OVA	TOT DPTH: 122FT.	DPTH	TO ¥ 35.33 FT.	
LOGGED BY: R.Nelson	WELL DEVELOPMENT DATE:			15 - S.W. Landfill	
DEP TH FT. TI. SAMPLE SAMPLE RECOVERY HEADSPACE (ppm)	SOIL/ROCK DESCRIPTY AND COMMENTS Continued from PA	THOI	SOIL CLASS	BLOWS/6-IN	WELL DATA
22 5a				PUSHED	
6/24	me as above.		SP	. 001125	
50— 2 Sa	me as above, medium.		SP	PUSHED	
	ND – light tan, fine to medium, por ice coarse	orly graded, wet,	SP	7,14,21,18	
60 - 5 SA	ND - purple, fine, poorly graded.	wet.	SP	7,9,9,10	
	ND – light brown to light purple, m orly graded, wet.	edium to coarse,	SP	11,13,8,10	
12/24	ND — light brown, medium to coars ND — gray to white, fine, poorly g		SP	8,7,4,6	
75— 0 SA we	ND – light brown, medium to coars t.	e, well graded,	SP	10,7,6,7	
1.5 SA we	ND – light brown, medium grained, t.	well graded,	• 5W	7,7,8,5	
	me as above, 3 in. clay layer, me ple, poorly graded.	dium sand, light	• SW	5,6,11,11	
90	PAGE 2 of 15M	WO6D ABB ENVIE	RONMENT	AL SERVICES.	INC.

TITLE: NAVAL AIR STATION WHITING	FIELD	LOG o	WELL: WHF-15-61	ם כ	BORI	NG NO.	
CLIENT: SOUTHNAVFACENGCOM					PROJ	ECT NO: RI PHASE	IIA
CONTRACTOR: Groundwater Protection	Inc.		DATE STARTED:	02/5/93		COMPLTD: 02/8	/93
METHOD: MUD ROTARY	CASE SIZE: 2"		SCREEN INT.: 11	10-120 FT.	PROTE	CTION LEVEL: D	
TOC ELEV.: 75.14 FT.	MONITOR INST.: OVA		TOT DPTH: 122F	Т.	DPTH	TO ¥ 35.33 FT.	
LOGGED BY: R.Nelson	WELL DEVELOPMENT	DATE:			SITE:	15 - S.W. Landfill	
DEPTH FT. CI STANDE SAMPLE SAMPLE HEADSPACE (ppm)	SOIL/ROCK AND C Continued	OMMENTS		LI THOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
1.5 SAI	ND – light brown to pur	ple, medic	m, well graded.		SW	2.7,8,9	
- 24/24	ND – light brown, mediu me as above, fine.	m, well gra	aded, wet.	. • .	SW	3,4,8,11	
14/24 4 SAN	ND - light brown, fine, p	poorly gra	oded, wet.		SP	25,15,15,14	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND – light brown to ligh ided.	nt purple,	medium, poorly		SP	21,16,18,19	
10 0 SAN	ND - light brown, fine, p	poorly gra	ded, wet.		SP	30,37,34,38	
12/24 San	ND — light brown, fine t me as above, medium. me as above, purple.	o medium,	poorly graded.		SP	21,20,18,19	
5—							
							:
35—		3 of 15M	MOSD *55	ENVIRON		AL SERVICES.	INC

TITLE: NAVAL AIR ST			LOG of	WELL: WHF-15-6S		BORI	NG NO.	
CLIENT: SOUTHNAVFA						PROJ	ECT NO: RI PHASE	
CONTRACTOR: Ground	water Protection	n Inc.		DATE STARTED: 0	·	r 	COMPLTD: 02/8/	93
METHOD: HSA		CASE SIZE: 2"		SCREEN INT.: 25	-40 FT.	PROTE	CTION LEVEL: D	
TOC ELEV.: 74.35 FT.		MONITOR INST.: OVA		TOT DPTH: 41FT.		DPTH	TO ¥ 34.32 FT.	
LOGGED BY: R. Nelsor)	WELL DEVELOPMENT	DATE:			SITE:	15 - S.W. Landfill	
L LABORATORY HALL SAMPLE ID. W	RECOVERY HEAUSPACE (ppm)	SOIL/ROCK AND CO	DESCRIPT DMMENTS	ION	LI THOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
5—	SE	EE WHF-15-6D FOR LITH	OLOGIC D	ESCRIPTIONS.				

A CONTRACTOR OF THE STATE OF TH

			LOG of WELL:	WHF-15-7S		BORIN	IG NO.	
IENT: SOUTHNAVFACENGO	СОМ					PROJE	CT NO: 02534.09	
NTRACTOR: ABB Environm	ental Serv	ices, Inc.	DATE	STARTED: 0	4/10/96		COMPLTD: 04/11.	/96
THOD: Hollow Stem Auger		CASE SIZE: 2 inches	SCRE	EN INT.: 15 f	eet	PROTE	CTION LEVEL: D	
C ELEV.: 120.18 FT.		MONITOR INST.: FID	TOT	PTH: 86FT.		DPTH T	O ♀ 67.5 FT.	
GGED BY: F. Risk		WELL DEVELOPMENT	DATE: 04/10/96			SITE: 1	5	
SAMPLE SAMPLE	HEADSPACE (ppm)	AND CO	DESCRIPTION DMMENTS	-	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
	F]N	SANDY SILT: Yellowish orange, I	noist, with some plant m	atter organics.		ML		
	CLA	Y: Dark brown, some silt, low plast	city, moist.		(CL		
	CLA	Y: Moderate reddish brown, some :	silt, little sand, nonplast	ic, moist.				
	0 incr	IY CLAY: With minor percentage or easing sand with depth reddish br DY SILT: Light yellow, fine sand, r	DWN.	c, moist,				
		DY SILT: Light yellow, increasing		ist.		SM		
	SIL	IY FINE SAND: Light yellow, incre	asing fine sand with dep	ith moist.				
	SAN	DY SILT: Pale yellowish orange, m	oist.			ML		
	1		•					
	SIL	(Y FINE SAND: Pale yellowish oran	ige, some silt, moist.			SM		
	Fine	to medium SAND: Pale yellowish o	'ange, some coarse san	d, moist.		SW		

TITLE: NAS Whiting Field	LOG	of WELL: WHF-15-7S		BORIN	G NO.	
IENT: SOUTHNAVFACENGCOM				PROJE	CT NO: 02534.09	
CONTRACTOR: ABB Environmental Services	ices, Inc.	DATE STARTED:	04/10/96		COMPLTD: 04/11	/96
METHOD: Hollow Stem Auger	CASE SIZE: 2 inches	SCREEN INT.: 15	feet	PROTEC	TION LEVEL: D	
TOC ELEV.: 120.18 FT.	MONITOR INST.: FID	TOT DPTH; 86FT.		DPTH T	O ¥ 67.5 FT.	
LOGGED BY: F. Risk	WELL DEVELOPMENT DATE:		· · · · · · · · · · · · · · · · · · ·	SITE: 15		
DEPTH FT. OI STANDE SAMPLE SAMPLE RECOVERY HEADSPACE (ppm)	SOIL/ROCK DESCRIAND COMMENT	PAGE 1	LITHOLOGIC	SOIL CLASS	BLOWS/6-IN	MELL DATA
61— 62— 63— 63— 64— 65— 66— 67— 68— 69— 70— 71— 72— 73— 74— 75— 76— 77— 78— 79— 00— 32— 83— 84— 85— 86— 87— 88— 15 t	IJUM SAND: Pale yellowish orange, some fine E SAND: Pale yellowish orange, some medium E SAND: Light brown, some medium and coal ie as above. IJUM SAND: Some fine sand, moist, light brow IJY CLAY: 1 to 13 inches, stiff, moist, modera IJY SILT: 13 to 15 inches, some sand, moist, IJY SILT: 13 to 15 inches, some sand, moist, IJY SILT: 13 to 15 inches, some sand, moist, IJY SILT: 13 to 15 inches, some sand, moist, IJY SILT: 13 to 15 inches, some sand, moist, IJY SILT: 13 to 15 inches, some sand, moist, IJY SILT: 13 to 15 inches, some sand, moist, IJY SILT: 13 to 15 inches, some sand, moist, IJY SILT: 13 to 15 inches, some sand, moist, IJY SILT: 14 to 15 inches, some sand, moist, IJY SILT: 15 to 15 inches, some sand, moist, IJY SILT: 1	sand, moist. se sand, moist. se sand, moist. te reddish brown. gray to purple. ellowish orange.		SP SP	9,18.20,19	RESERVE TO THE PARTY OF THE PAR
	PAGE 2 of W	HF157S ABB	ENVIRO	NMENTA	L SERVICES.	INC.

gradients (1997) (Market Britania et al. 1997) (1997) (1997) (1997)

TLE: NAS Whiting Field	LOG of WELL: WHF-15-7I	· · · · · · · · · · · · · · · · · · ·	BORI	NG NO.	
IENT: SOUTHNAVFACENGCOM			PROJE	ECT NO: 02534.09	
NTRACTOR: ABB Environmental Services, Inc.	DATE STARTED:	04/11/96	1	COMPLTD: 04/13	3/96
THOD: OVA Mud Rolary CASE SIZE: 2 inches	SCREEN INT.: 10	feet	PROTE	CTION LEVEL: D	
DC ELEV.: 119.85 FT. MONITOR INST.: FID				TO Ç FT.	
GGED BY: F. Risk WELL DEVELOPMENT	DATE: 04/13/96		SITE:	15	
	CDESCRIPTION COMMENTS	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
FINE SANDY SILT: Yellowish orange, CLAY: Moderate reddish brown, some SILTY CLAY: With minor percentage sand with depth, reddish brown. SANDY SILT: Light yellow, fine sand, SANDY SILT: Light yellow, increasing O SILTY FINE SAND: Light yellow, increasing SANDY SILT: Pale yellowish orange, SILTY FINE SAND: Pale yellowish orange,	e silt, little sand, nonplastic, moist. sand soft, nonplastic, moist, increasing moist. g fine sand with depth, moist. easing fine sand with depth.		SW		
Fine to medium SAND: Pale yellowish	orange, some coarse sand, moist.				

TLE: NAS Whiting Field	LOG of	WELL: WHF-15-7I	BORING NO.	
IENT: SOUTHNAVFACENGCOM			PROJECT NO: 02534.0	09
NTRACTOR: ABB Environmental Servi	ices, Inc.	DATE STARTED: 04/11/96	COMPLTD: 04	/13/96
THOD: DUT MAD Rotary	CASE SIZE: 2 inches	SCREEN INT.: 10 feet	PROTECTION LEVEL: (
C ELEV.: 119.85 FT.	MONITOR INST.: FID	TOT DPTH: 117FT.	DPTH TO ♀ FT.	
GGED BY: F. Risk	WELL DEVELOPMENT DATE: 04/	13/96	SITE: 15	
FT. OI STANDERS SAMPLE SAMPLE HEADSPACE (ppm)	SOIL/ROCK DESCRIPTI AND COMMENTS Continued from PAC	ТНО	SOIL CLASS Brom2/e-1v	WELL DATA
FINE FINE Same MEDI O 1-13 i 13-15-24	um SAND: Pale yellowish orange, some fine sand, E SAND: Pale yellowish orange, some medium sand E SAND: Light brown, some medium and coarse sa e as above. IUM SAND: Some fine sand, moist, light brown. inches: SILTY CLAY, stiff, moist, moderate reddi 5 inches: SANDY SILT, some sand, moist, gray to 4 inches: Medium to coarse sand, pale yellowish to medium SILTY SAND: Pale yellowish orange, s et, wet. /ELY SILT: Pale purple, minor percent clay, dens	moist. In moist. In	SW 17,17,34,30	

E 27

114.

TITLE: NAS Whiting Fi	eld			LOG of	WELL: WHF-15-7D		BOR	ING NO.	·
CLIENT: SOUTHNAVE	CENGO	ЮМ					PRO	JECT NO: 02534.09	
CONTRACTOR: ABB Er	vironme	ental Serv	ices, Inc.	and to	DATE STARTED: 0	04/12/96	-	COMPLTD: 04/13/	96
METHOD: Mud Rotary			CASE SIZE: 2 inches		SCREEN INT.: 10	feet	PROT	ECTION LEVEL: D	
TOC ELEV.: 119.49 FT.			MONITOR INST.: FID		TOT DPTH: 146FT.		DPTH	TO \$ FT.	
OGGED BY: F. Risk			WELL DEVELOPMENT	DATE: 4/	13/96		SITE	: 15	
L LABORATORY AND SAMPLE ID. AS	RECOVERY	HEADSPACE (ppm)	SOIL/ROCK AND CO	DESCRIPT DMMENTS	ION ,	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
1—2—		FIN	E SANDY SILT: Yellowish orange, I	moist, with so	ne plant matter organics.	• • •	S₩		
3—		CLA	Y: Dark brown, some silt, low plast	icity, moist.					
5—		CLA	Y: Moderate reddish brown, some :	silt, little sand	l, nonplastic, moist.	• •			
6—7—									
8	.								
10			TY CLAY: With minor percentage sa	and, soft, non	-plastic, increasing sand				
12—		With	depth.			• • •			
14						• • •			
15— 16—		SAN	IDY SILT: Light yellow fine sand, m	noist.		• • •			
17—									
19—		S.1.	my cti recent collection is accorded	4:- a d 114	double maint	. • .			
21—		SAN	IDY SILT: Light yellow, increasing	tine sand with	i depth, moist.				
22-		I							
24—						• • •			
26—						• • •			
28			en en en en en en en en en en en en en e		A CONTRACTOR OF THE CONTRACTOR				
30—	0								
31—		SIL	TY FINE SAND: Light yellow, increa	asing fine SAI	ND with depth.	. • .			
33—									
35—									
37			•			• • •			
18-						• • •			
10-41-		SAN	IDY SILT: Pale yellowish orange, m	ioist,					
12—						• •			
4						. • .			
15—									
7									
9—			TV FINE CAND, Date methods		:_	• • •			
51		SIL	TY F3NE SAND: Pale yellowish orar	nge, some sit,	muist.	• • •			
52—						• • •			
54—		Fine	to medium SAND: Pale yellowish o	range, some i	coarse sand moist.				
56—		"""	yeneman o			. • .			
58			•						
59						• • •			Ш

TITLE: NAS Whiting Field		LOG of	WELL: WHF-15-7D		BORING	3 NO.	
LIENT: SOUTHNAVFACENGCOM					PROJEC	CT NO: 02534.09	9
CONTRACTOR: ABB Environmental Servi	ces, Inc.	54 m //	DATE STARTED: 04	4/12/96		COMPLTD: 04/1	3/96
METHOD: Mud Rotary	CASE SIZE: 2 inches		SCREEN INT.: 10 f	eet .	PROTEC	TION LEVEL: D	
TOC ELEV.: 119.49 FT.	MONITOR INST.: FID		TOT OPTH: 146FT.		DPTH TO	Ο Ţ FT.	
LOGGED BY: F. Risk	WELL DEVELOPMENT D	ATE: 4/1	3/96		SITE: 15		
DEPTH FIT FIT FIT SAMPLE SAMPLE HEADSPACE (ppm)	SOIL/ROCK DI AND COM Continued fo	MENTS		LI THOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL OATA
T I NEDI	JM SAND: Pale yellowish orange, so				SW		m
66— 67— 68— 69— 70— 71— 72— 73— 74— 75— 76— 77— 78— 79— 80— 81— 82— 83— 84— 85— 86— 87— 13–15	SAND: Pale yellowish orange, some SAND: Light brown, some medium ci as above. UM SAND: Some fine sand, moist, light brows: SILTY CLAY, stiff, moist, moinches: SANDY SILT, some sand, moinches: Medium to coarse SAND, p	oarse sand ght brown. oderate redo	maist. dish brown. o purple.				
120	PAGE 2	of WHF	F157D ABB E	NVIRON	MENTA	L SERVICES	INC.

TITLE: NAS Whiting Field	l		LOG of WELL: WHF-15	i-70	BORIN	G NO.	i	
CLIENT: SOUTHNAVFACE	NGCOM				PROJE	CT NO: 02534.09		
CONTRACTOR: ABB Envir	onmental Serv	vices, Inc.	DATE START	ED: 04/12/96		COMPLTD: 04/13	3/96	
METHOD: Mud Rotary	- in the second	CASE SIZE: 2 inches	SCREEN INT.	: 10 feet	PROTE	CTION LEVEL: D		
TOC ELEV.: 119:49 FT.		MONITOR INST.: FID	TOT DPTH: 14	16FT.	DPTH T	0 Ţ FT.		
LOGGED BY: F. Risk		WELL DEVELOPMENT	DATE: 4/13/96	er om er om green om Mennyster, i p	SITE: 1	5		
DEPTH LICENSTANDER FILE SAMPLE ID. SAMPLE SAMPLE ID. SA	RECOVERY HEADSPACE (ppm)	AND CO	DESCRIPTION DMMENTS from PAGE 2	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA	
121— 122— 123— 124— 125— 126— 127— 128— 129— 130— 131— 133— 133— 1334— 135— 136— 137— 138— 139— 140— 141— 142— 1441— 1442— 1443— 1444— 1445— 1446— 1447— 148— 149— 150— 151— 1554— 1555— 1566— 157— 158— 169— 160— 161—	Gracia Gra	avely MEDIUM SAND: Yellowish oran y, very dense, wet. avely medium SAND: Light yellowish .T: Pale yellow orange, some sand, ND: Light yellowish orange, some gr D OF BORING AT 145.5 FEET BELO	ge, some siit gravel, little siit, trac orange, some gravel, very dense, little clay, hard, moist. avel, dense, wet.		SW ML SW	1,26,31 refusal	WAYA	
162— 163— 164— 165— 1666— 166— 168— 169— 170— 171— 172— 173— 174— 175— 176— 1775— 1779— 180—								

ONTRACTOR: ABB Environmental Services, Inc. DATE STARTED: 05/23/96 COMPLTD: 05/23/96 ETHOD: Mul Rolary CASE SIZE: 2 inches SORGEN INT.: 15 feet RROTECTION LEVEL: D OC ELEV: 80.0 FT. MINITOR INST.: FID TOT DPTH: 55FT. DPTH T0 7, 38.7 FT. DOGGED BY: F. Risk WELL DEVELOPMENT DATE: 05/23/96 SIZE: 15 LABORATORY SAME: Red and SILT: Yellowish orient, roots, roots. FINE SAMD: Red and brown, roots, roots. FINE SAMD: Red and brown, roots, roots. FINE SAMD: Red and brown, roots, roots. FINE SAMD: Upin brown, well sarred, roots. FINE SAMD: Upin brown, well sarred, roots.	ITLE: NAS Whiting Field		LOG of W	IELL: WHF-15-8S			NG NO.	
ETHOD: Mud Rotary CASE SIZE: 2 inches SCREEN INT.: 15 feet PROTECTION LEVEL: D CELEV.: 80.0 FT. MONITOR INST.: FID TOT DPTH: SSFT. DPTH: TO 7 36.7 FT. DPTH: TO 7 36.7 FT. SITE: IS LABORATORY STATE STATE: SOLL/ROCK DESCRIPTION AND COMMENTS SAMPLE ID. STATE: SSAMPLE ID.	LIENT: SOUTHNAVFACENGCOM		—————			PROJE		
MONITOR INST.: FID TOT DPTH: SSFT. DPTH TO \$ 39.7 FT. DGGED BY: F. Risk WELL DEVELOPMENT DATE: 05/23/98 SITE: IS LABORATORY # SPECIAL PROOF DESCRIPTION AND COMMENTS LABORATORY # SPECIAL PROOF DESCRIPTION AND COMMENTS FINE SAMPLE ID. # SPECIAL				······································				3/96
DOSCID BY: F. Risk WELL DEVELOPMENT DATE: 05/23/98 SITE: 15 LABORATORY WELL DEVELOPMENT DATE: 05/23/98 SOIL/ROCK CESCALPTION DEVELOPMENTS DEVELO	ETHOD: Mud Rotary	CASE SIZE: 2 inches	5	SCREEN INT.: 15 1	eet	PROTE	CTION LEVEL: D	
LABORATORY SAMPLE ID. SAMPLE ID. SOLL/ROCK DESCRIPTION AND COMMENTS FINE SAMC Redden brown, roost. FINE SAMC Redden brown, poorty sorted, most. FINE SAMC Light allow, will sorted most. FINE SAMC Light allow, will sorted most.		MONITOR INST.: FID		FOT DPTH: 55FT.		DPTH 1	「O ♀ 39.7 FT.	
FINE SAND: Readson brown, noise. FINE SAND: Readson brown, poortry sorted, most. FINE SAND: Light brown, well sorted, most. FINE SAND: Light brown, well sorted, most. FINE SAND: Light brown, well sorted, most. FINE SAND: Light brown, well sorted, most.	DGGED BY: F. Risk	WELL DEVELOPMENT D	DATE: 05/2	23/96		SITE: 1	15 	
FINE SANC: Reddish brown, noist. FINE SANC: Reddish brown, noist. SP HEDIUM SANC: Reddish brown, poorly sorted, noist. FINE SANC: Light brown, well corted, noist. FINE SANC: Light brown, well corted, noist.	SAMPLE SAMPLE SAMPLE HEADSPACE (ppm)			IN	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
	FINE 2	E SAND: Reddish brown, moist. IUM SAND: Reddish brown, poorly so	 orted, moist.			SP		

TITLE: NAS Whiting Field	LOG o	FWELL: WHF-15-81	BORING NO.
CLIENT: SOUTHNAVFACENGCOM			PROJECT NO: 02534.09
CONTRACTOR: ABB Environmental Ser	vices, Inc.	DATE STARTED: 05/10/96	COMPLTD: 05/10/96
METHOD: Mud Rotary	CASE SIZE: 2 inches	SCREEN INT.: 10 feet	PROTECTION LEVEL: D
TOC ELEV.: 79.48 FT.	MONITOR INST.: FID	TOT OPTH: 85FT.	DPTH TO \$ FT.
LOGGED BY: J. Beauchamp	WELL DEVELOPMENT DATE: 5/	10/96	SITE: 15
DEPTH FIT. GI STAMPS SAMPLE SAMPLE RECOVERY (PDII)	SOIL/ROCK DESCRIPT AND COMMENTS	LITHOLOGIC SYMBOL	SOIL CLASS THE PATA WELL DATA
1— 2— 3— 0 4— 5— 6— 7— 8— 9— 10— 11— 12— 13— 14— 15— 16—			
17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30—			

RECOVERY DE MODDINA DE MODIONI DE MODINA DE	CASE SIZE: 2 inches MONITOR INST.: FID WELL DEVELOPMENT DAT SOIL/ROCK DES AND COMME Continued from	SCREEN INT TOT DPTH: 8 E: 5/10/96 CRIPTION NTS		PROTECTION L DPTH TO \$\foatsigma\$ F SITE: 15	LTD: 05/10/96
эмр	CASE SIZE: 2 inches MONITOR INST.: FID WELL DEVELOPMENT DAT SOIL/ROCK DES AND COMME	SCREEN INT TOT DPTH: 8 E: 5/10/96 CRIPTION NTS	.: 10 feet	PROTECTION L DPTH TO \$\frac{1}{2} \text{ F}^2 SITE: 15	LEVEL: [] T. VIVO
	MONITOR INST.: FID WELL DEVELOPMENT DAT SOIL/ROCK DES AND COMME	TOT DPTH: 8 E: 5/10/96 CRIPTION NTS	SFT.	DPTH TO \$ F	T. VI VO T
	WELL DEVELOPMENT DAT SOIL/ROCK DES AND COMME	E: 5/10/96 CRIPTION NTS		SITE: 15	(S/6-IN]
	SOIL/ROCK DES	CRIPTION NTS	LITHOLOGIC		
RECOVERY HEADSPACE (ppm)	AND COMME	NTS	LITHOLOGIC	SOIL CLASS	
0					
0					
		0	0		

TITLE: NAS Whiting Field	LC	OG of WELL: WHF-15-1	ВІ	BORING NO.		
CLIENT: SOUTHNAVFACENGCOM				PROJECT NO: 025	34.09	-
CONTRACTOR: ABB Environmental Serv	vices, Inc.	DATE STARTED	0: 05/10/96	COMPLTD:	05/10/96	
METHOD: Mud Rotary	CASE SIZE: 2 inches	SCREEN INT.:	10 feet	PROTECTION LEVE	EL: D	1
TOC ELEV.: 79.48 FT.	MONITOR INST.: FID	TOT DPTH: 85F	т.	DPTH TO T FT.		
LOGGED BY: J. Beauchamp	WELL DEVELOPMENT DATE	: 5/10/96		SITE: 15		
DEPTH FT. SAMPLE SAMPLE HEADSPACE (ppm)	SOIL/ROCK DESC AND COMMEI Continued from	NTS	LITHOLOGIC SYMBOL	SOIL CLASS Broms/e-	ZZ WELL DATA	
61— 62— 63— 64— 65— 66— 67— 68— 69— 70— 71— 72— 73— 74— 75— 76—						
77— 78— 79— 80— 81— 82— 83— 84— 85— 0	ND: Medium grained, some silt, well-graded	d, light brown, saturated.		20,22,34,	37	
86— 87— 88— 89— 90—	•					

	T.: 10 Feet 115FT. 108W.S	PROTEC	CT NO: 02534.09 COMPLTD: 06/0 CTION LEVEL: D O \$\sumsymbol{\text{T}}\$ FT. BLOWS/6-IN	
CASE SIZE: 2 inches SCREEN IN OC ELEV.: 79.08 FT. MONITOR INST.: OVA TOT DPTH: DEGED BY: F. Risk WELL DEVELOPMENT DATE: 6/08/96 SOIL/ROCK DESCRIPTION AND COMMENTS 1	T.: 10 Feet 115FT.	OPTH T SITE: 15	CTION LEVEL: 0 O V FT.	
MONITOR INST.: OVA TOT DPTH: DGGED BY: F. Risk WELL DEVELOPMENT DATE: 6/08/96 L. LABORATORY A SAMPLE ID. W	115FT.	OPTH T SITE: 15	0 ♀ FT.	WELL DATA
MELL DEVELOPMENT DATE: 6/08/96 L LABORATORY H WY SOLL/ROCK DESCRIPTION AND COMMENTS SOLL/ROCK DESCRIPTION AND COMMENTS		SITE: 15	5	WELL DATA
L LABORATORY SOLL/ROCK DESCRIPTION AND COMMENTS H SAMPLE ID. SY STATE OF SOLL SOLL SOLL SOLL SOLL SOLL SOLL S	LITHOLOGIC	CLASS		WELL DATA
	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
7				

		L06 (of WELL: WHF-15-8D		BORIN	5 NU.				
CLIENT: SOUTHNAVFACEN	IGCOM		·		PROJE	CT NO: 02534.09				
CONTRACTOR: ABB Environ	nmental Services, Inc.		DATE STARTED:	06/07/96		COMPLTD: 06/08	3/96			
METHOD: Mud Rotary	CASE SIZE: 2 ii	nches	SCREEN INT.: 10	Feet	PROTEC	TION LEVEL: D				
TOC ELEV.: 79.08 FT.	MONITOR INST.	.: OVA	TOT DPTH: 115FT.		DPTH T	Σ FT.				
OGGED BY: F. Risk	WELL DEVELOP	MENT DATE: 6	/08/96		SITE: 15	SITE: 15				
SAMPLE ID: SAMPLE COVERY	HEADSPACE (ppm) Courtin	/ROCK DESCRIP AND COMMENTS Tued from P		LI ТНОLОGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA			
61— 62— 63— 63— 63— 65— 66— 67— 68— 67— 71— 72— 73— 74— 75— 76— 77— 78— 78— 79— 80— 81— 83— 83— 83— 83— 83— 83— 83— 83— 83— 83	Fine to very coarse SAND ye 1 END OF BORING # 115 FEET.				SW	8,11,10,18				

LITHOLOGIC LOG FOR WELL NUMBER (SITE 16)

Description	Dept (ft		Thickness (ft)
Sand, fine to medium grained, yellow; clay, yellow	0 -	9.0	9.0
Clay, red, white	9.0 -	15.0	6.0
Sand, fine to coarse grianed, white; gravel	15.0 ~	42.0	27.0

Geraghty & Miller, Verification Study, 1986

TITLE: NAVAL	AIR ST	ATION	WHITI	NG FIELD	LOG of	WELL: WHF-16-2D		BOR	ING NO. WHF-16-20)	
CLIENT: SOUTH	INAVFA	CENGO	ОМ					PRO	JECT NO: RI PHASE	IIA	
CONTRACTOR:	Ground	vater P	rotect	ion Inc.		DATE STARTED: 0	2/09/93		COMPLTD: 03/4	/93	
METHOD: MUD F	ROT.			CASE SIZE: N/A		SCREEN INT.: N/	4	PROT	ECTION LEVEL: D		
TOC ELEV.: N/	A FT.			MONITOR INST.: OVA		TOT DPTH: 262FT.	T. DPTH TO \$ FT.				
LOGGED BY: R	. Nelsor	, G.K.		WELL DEVELOPMENT	DATE: N/	A		SITE	: 16 – Wastewater P	int.	
E LABORATO	=	RECOVERY	HEADSPACE (ppm)	SOIL/ROCK AND CO	DESCRIPT DMMENTS	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA	
5		15/24		SAND - light brown, fine to dry.	o medium,	poorly graded,		SP	4,4,7,5		
10—		12/24	0	SILTY SAND – reddish bro	own, poorl	y graded, dry.		SP	4,3,5,4		
15—		12/24		SILTY SAND – reddish bro coarse, dry.	own, poorl	y graded, trace		SP	6,8,12,14		
20—	Z	16/24	1	SILTY SAND - SAA.				SP	5,6,7,9		
25—		14/24	0	SAND – white to tan, very to SANDY CLAY – white, y				SP	6,9,8,5		
30—		14/24	0	SAND - off-white, fine, po	porly grad	led, dry.		SP	9,11,12,14		
35—		16/24	0	SAND - SAA, saturated.				SP	6,6,7,9	* .	
40—			2		1 of 16N		ENVIRO	SP /	4,5,9,16 TAL SERVICES.		

TITLE: NAVAL AIR STATION WHITING	FIELD	LOG of	WELL: WHF-16-2D		BOR	ING NO. WHF-16-2D	
CLIENT: SOUTHNAVFACENGCOM					PRO	JECT NO: RI PHASE IIA	
CONTRACTOR: Groundwater Protectio	n Inc.		DATE STARTED: 0	02/09/93		COMPLTD: 03/4/93	
METHOD: MUD ROT.	CASE SIZE: N/A		SCREEN INT.: N/	A	PROT	ECTION LEVEL: D	
TOC ELEY: N/A FT.	MONITOR INST.: OVA	,	TOT DPTH: 262FT	•	DPTH	TO T FT.	
LOGGED BY: R. Nelson, G.K.	WELL DEVELOPMENT	DATE: N/	Α		SITE	: 16 - Wastewater Pint.	
DEPTH FI. FI. SAMPLE SAMPLE RECOVERY HEADSPACE (PPm)	SOIL/ROCK : AND CO Continued	DMMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	MELL DATA	
- 20/24	AND – light brown, fine, p AND – white, fine, poorly				SP		
	AND – ligh brown to tan, anded, saturated.	fine to me	edium, poorly		SP	15,16,11,9	
	AND – off-white, fine to a	medium, po	porly graded,		SP	6,7,7,11	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AND – off-white to light praded, saturated.	pink, fine	to medium, poorly		SP	7,8,9,11	
60————————————————————————————————————	AND - SAA.				SP	16,12,12,14	
	AND – purple, medium, pod aturated.	orly grade	ed, trace silt,		SP	dropped	
70— - - - 18/24	AND – off-white, fine, po	orly grade	ed, saturated.		SP	13,15,9,6	
75————————————————————————————————————	AND – light brown, fine, p	poorly gra	ded, saturated.		SP	13,15,15,15	
80	DACE.	2 of 16M		ENVISOR	SW	4,5,8,12 TAL SERVICES, INC.	

	NAVAL AIR			ING FIELD	LOG of	WELL: WHF-16-20)		ING NO. WHF-16-20		
	SOUTHNA			tion Ioo	· · · · · · · · · · · · · · · · · · ·	DATE STARTER	02/00/03	PRO	ECT NO: RI PHASE		
			riotec		·	DATE STARTED:		DOCT	COMPLTD: 03/4	/93	
	MUD ROT.		-	CASE SIZE: N/A		SCREEN INT.: N	······································	PROTECTION LEVEL: D OPTH TO \$ FT.			
	EV.: N/A FT			MONITOR INST.: 0VA	DATE: NI/	TOT DPTH: 262F	1.		10 y F1.	lln.t	
	BY: R. Ne	ison, G.K.		WELL DEVELOPMENT I	UATE: N/				10 - Mastewater P	wit.	
OFF T. SA	BORATORY &	RECOVERY	HEADSPACE (ppm)	SOIL/ROCK I AND CO Continued f	MMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/8-IN	WELL DATA	
		12/24		SAND - tan to brown, medi- saturated.	um, well g	raded,	•••	SW			
85—		12/24	2.5	SANO - light brown, fine to saturated.	coarse,	poorly graded.		SP	14,12,16,15		
90—		14/24	70	SAND - SAA, purple.				SP	10,14,21,26		
95—		14/24	19	SAND - light brown to tan, coarse poorly graded.	fine to m	edium, trace		SP	12,16		
00-		16/24	5.5	SAND - SAA, purple.				SP	16,19,22,17		
05		16/24	4	SAND - light brown, fine to saturated.	medium,	poorly graded,		SP	dropped		
110-		18/24	8.5					SP	19,21,26,28		
115		12/24	4	SAND - SAA.				SP	39,41,53,60	٠.	
20			N/A	·				SP /	33,42,51,56		

				LOG of	WELL: WHF-16-2D			ING NO. WHF-16-20			
CLIENT: SOUTHNAY						20/20/22	PRO	ECT NO: RI PHASE			
CONTRACTOR: Grou	· · · · · · · · · · · · · · · · · · ·	rotectio			DATE STARTED:			COMPLTD: 03/4	/93		
METHOD: MUD ROT.			CASE SIZE: N/A	***************************************	SCREEN INT.: N		PROTECTION LEVEL: D				
TOC ELEV: N/A FT			MONITOR INST.: OVA		TOT DPTH: 262FT.			DPTH TO \$ FT.			
.OGGED BY; R. Nel			WELL DEVELOPMENT	DATE: N/	A			16 - Wastewater P	Int.		
LABORATORY E	RECOVERY	HEADSPACE (ppm)	SOIL/ROCK AND CO Continued	OMMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/8-IN	WELL DATA		
	12/24	S	AND - light brown with 1" oorly graded, saturated.	purple le		74.74.7	SP				
25—	20/24	N/A s	ILTY SAND - fine to med	dium, poorl	y graded, soft.		SM	11,11,15,12			
0-	24/24	N/A S	ILTY SAND - mustard ye	llow, fine,	soft, saturated.		SM	1,2,1,1			
-	7 1 1	N/A S	ILTY SAND - SAA.				SM	dropped			
5—	24/24	N/A S	ILTY SAND -SAA, gray.				SM	dropped			
			tion is the property of the property of the second of the		and a state of the	72.72					
o <u>-</u>	24/24	ł	AND - SAA.				СН	7,12,13,14			
	24/24	N/A	LAY - gray, moderately : LAY - gray, moderately :					20,18,23,24			
4		0 0	LAY - gray, moderately:	stiff.				9,5,5,7			
5—	12/12	n i	LAY (3") - SAA. SANDY		ellowish orange.			9,10,9,8			
	23/24	s	AND (6") - yellowish ora	gray, mod	erately stiff.			13,12,11,12			
)—	22/24	1	:LAY (11") – gray, modera :LAY – SAA, high plasticit					14,14,15,16			
	7 55,64		ich i Ohn _{i j} ingn plasticit			=====		and the second s			
5—	24/24	0 0	LAY - SAA.				СН	6,7,8,15	1		
	24/24	0 0	LAY - SAA,			====	СН	14,12,11,14			

TITLE: NAVAL				LOG of	WELL: WHF-16-2D			ING NO. WHF-16-20	
LIENT: SOUTH							PRO	ECT NO: RI PHASE	
CONTRACTOR: (Groundwater P	rotection			DATE STARTED: 0	 		COMPLTD: 03/4	/93
METHOD: MUD F	ROT.		CASE SIZE: N/A		SCREEN INT.: N/	Α	PROT	ECTION LEVEL: D	
TOC ELEV.: N/A	A FT.		MONITOR INST.: OVA	·	TOT OPTH: 262FT.		DPTH	TO \$ FT.	
LOGGED BY: R	. Nelson, G.K.		WELL DEVELOPMENT	DATE: N/	4		SITE	: 16 - Wastewater f	Int.
LABORATO SAMPLE I	SAMPLE	HEAUSPACE (ppm)	SOIL/ROCK AND C Continued	OMMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/8-IN	WELL DATA
]	24/24						СН		
85—	24/24	0 C	LAY - SAA.				СН	12,12,12,16	gradini di di di di di di di di di di di di di
70	24/24	0 CI	LAY - SAA, some fine sa	ind.			СН	11,10,18,24	
75—	14/24	s	LAY (3") – gray, modera AND (9") – gray, fine to ery dense, saturated.				СН	60,85,refusi	
BO	24/24	0 s	ANDY CLAY - gray, low (plasticity.			CL	24,26,22,15	
85—	12/24		ANDY SILT – olive gray, oderately dense, moist.	very fine,	poorly graded,	7//	ML	29,41,46,52	
90	12/24	(a	ILT (6") – olive green, o 3") – light olive gray, ve ense, moist. SANDY SIL oist.	ry fine, po	orly graded, very		ML	57,59,55,70	
95—	08/24		AND – olive gray, fine, p ome silt, saturated.	oorly grad	ded, very dense,		SP	61,refusal	·
00	24/24		ANDY SILT – olive greer	n to gray,	very dense, shell	7.7.4	ML	60,82,96,ref	

TITLE: NAVAL AIR STATION WHITING	FIELD	LOG of WELL: WHF-	16-20	BORI	NG NO. WHF-16-2D		
CLIENT: SOUTHNAVFACENGCOM				PROJ	ECT NO: RI PHASE	IIA	-/
CONTRACTOR: Groundwater Protection	Inc.	DATE STAR	TED: 02/09/93		COMPLTD: 03/4/	93	
METHOD: MUD ROT.	CASE SIZE: N/A	SCREEN IN	T.: N/A	PROTE	CTION LEVEL: D		
TOC ELEV.: N/A FT.	MONITOR INST.: OVA	TOT DPTH:	262FT.	DPTH	TO ♀ FT.		
LOGGED BY: R. Nelson, G.K.	WELL DEVELOPMENT	DATE: N/A		SITE:	16 - Wastewater Pi	nt.	
DEPTH FT. FT. SAMPLE SAMPLE RECOVERY HEADSPACE (ppm)	- AND C	DESCRIPTION OMMENTS from PAGE 5	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA	
24/24 0 SA	NDY SILT – SAA, satur		7/7	ML ML	86,75,ref	у учен бие уч	
210— 0 CL	AY – dark gray, stiff, h	igh plasticity, dry.	====	СН	22,22,24,31		
215— 0 CL	AY - SAA.			СН	18,20,29,37		
220— CL	AY - SAA.			СН	18,20,28,43		
225—							•
30— 0 SA 24/24 sa	ND (6") - gray, fine to turated. CLAY (1.5") - g	medium, poorly graded gray, firm, plastic.		СН	33,31,48,ref		
235— 0 CL	AY - gray, moderately :	stiff, plastic.		СН	12,17,22,35	·.	
40—	PAGF	6 of 16MW2D A	ABB ENVIRON	MENT	AL SERVICES,	INC	

TLE: NAVAL AIR		********		LOG of	WELL: WHF-16-20)	BORI	NG NO. WHF-16-20)
IENT: SOUTHNA							PROJ	ECT NO: RI PHASE	IIA
NTRACTOR: Gro	undwater (Protect	ion Inc.		DATE STARTED:	02/09/93		COMPLTD: 03/4	/93
THOD: MUD ROT	•		CASE SIZE: N/A		SCREEN INT.: N	/A	PROTE	ECTION LEVEL: D	
C ELEV.: N/A F	т.		MONITOR INST.: OVA		TOT DPTH: 262F	т.	DPTH	TO FT.	·
GGED BY: R. Ne	elson, G.K.		WELL DEVELOPMENT	DATE: N/	Α		SITE:	16 – Wastewater P	Int.
LABORATORY SAMPLE ID.	SAMPLE	HEADSPACE (ppm)	SOIL/ROCK AND C Continued	OMMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-XN	WELL DATA
	24/24		CLAY - SAA.				СН	37,40,35,35	
	24/24	3	SILTY SAND - gray, dens	e, trace c	oarse, moist.		SM	52,50,refusl	
	12/24	N/A	SANDY SILT - gray, fine, fragments, saturated.	poorly gr	aded, shell		ML	23,35,53,ref	
	• •					, ,	,		

TITLE: NAVAL AIR STATIC	ON WHITING	FIELO	LOG of	WELL: WHF -	16-21	BORI	NG NO.	
CLIENT: SOUTHNAVFACEN	IGCOM			· · · · · · · · · · · · · · · · · · ·		PROJ	ECT NO: RI PHASE	IIA
CONTRACTOR: Groundwate	er Protection	Inc.		DATE STAR	TED: 02/18/93	<i>'</i>	COMPLTD: 02/18	3/93
METHOD: MUD ROTARY		CASE SIZE: 2"		SCREEN IN	T.: 117-127 FT	PROTE	CTION LEVEL: D	
TOC ELEV.: 80.71 FT.		MONITOR INST.: OVA		TOT DPTH:	127.5FT.	DPTH	TO ♀ 36.52 FT.	
LOGGED BY: R. Nelson		WELL DEVELOPMENT	DATE:			SITE:	16 - Open Dispos	al/Burn Are
DEP TH F1. F1. OI BIGMAS F1. SAMPLE SAMPLE	HEADSPACE (ppm)	SOIL/ROCK AND C	DESCRIPT	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
5		E WHF-16-2D FOR FUL	L LITHOLO	OGIC DATA.	7			
50—								
55—								
65—	1 1	PAGE	1 of 16N	4W2I 4	ABB FNVIRO	 VMFNT	AL SERVICES	INC

LIENT: SOUTH	HNAVFACEN	COM				PROJ	ECT NO: RI PHASE	IIA
ONTRACTOR:	 		tion Inc.	DATE STARTI	ED: 02/18/93	1	COMPLTD: 02/18	
METHOD: MUD I	ROTARY		CASE SIZE: 2"	SCREEN INT.	117-127 F.T	PROTE	ECTION LEVEL: D	
OC ELEV.: 80	.71 FT.		MONITOR INST.: OVA	TOT DPTH: 12	7.5FT.	DPTH	TO ¥ 36.52 FT.	
OGGED BY: R	l. Nelson		WELL DEVELOPMENT	DATE:		SITE:	16 - Open Disposa	al/Burn Are
L LABORATO	SAMPLE SAMPLE	HEADSPACE (ppm)	AND CO	DESCRIPTION MMENTS from PAGE 1	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
0-1								
5—								
15—	06/24		SAND - ligh brown, medium, purple lamina.	, poorly graded, saturat	ed,	SP	12,18,18,37	
0	08/24	N/A	SAND - SAA.			SP	38,30,60,48	
5—	16/24		SAND - tan, medium, poorly saturated, rounded.	graded, trace gravel,		SP	20,20,20,24	

11:

										+
TITLE: NAVAL A	IR STATIO	N WHITIN	G FIELD	LOG of	WELL: WHF-16-	3D	BOR	ING NO.		
CLIENT: SOUTH	NAVFACENC	SCOM						JECT NO: RI PHASE	IIA	7
CONTRACTOR: G	iroundwater	Protection	on Inc.	· · · · · · · · · · · · · · · · · · ·	DATE STARTE	D: 01/22/93		COMPLTD: 01/26		1
METHOD: MUD R	OTARY		CASE SIZE: 2"		SCREEN INT.:	105-115 FT	PROT	ECTION LEVEL: D		7
TOC ELEV.: 51.4	7 FT.		MONITOR INST.: 0VA		TOT DPTH: 115F	т.	DPTH	I TO ♀ 10.32 FT.		7
LOGGED BY: W.	Colby-Geo	rge	WELL DEVELOPMENT	DATE:			SITE	: 16 - S.W. Landfill		
L LABORATOR SAMPLE IO	SAMPLE	HEADSPACE (ppm)	SOIL/ROCK AND CO	DESCRIPT DMMENTS	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA	
5	/		SAND – light brown, well so	orted.			SP			
10			SAND – some fines, wet.				SP			\$
20-			SAND - SAA				SP			
25—		S	SAND - yellow to tan.	,			SP			
30		s	SAND - yellow to purple, fi	ine.			SP			
35—		S	GAA				SP /	,	*********	2
			PAGE	1 of 16M	IW3D AB	B ENVIRO	AWEN.	TAL SERVICES.	INC.	

MONITOR INST.: OVA TOT DPTH: 115FT. DPTH TO \$ 10.32 FT. OGGED BY: W. Colby-George WELL DEVELOPMENT DATE: SITE: 16 - S.W. Landfill SITE: 16 - S.W. Landfill SITE: 10 - S.W.	26/93 D
CASE SIZE: 2" SCREEN INT.: 105-115 FT PROTECTION LEVEL: C OC ELEV.: 51.47 FT. MONITOR INST.: 0VA TOT DPTH: 115FT. DPTH TO \$ 10.32 FT. SITE: 18 - S.M. Landfil SIL: LABORATORY A SOLL/ROCK DESCRIPTION AND COMMENTS Continued from PAGE 1 SAA SAA SAA SAND - white, medium. SAND - yellow brown, some fine, trace gravel. SP	D II
MONITOR INST.: OVA TOT DPTH: 115FT. DPTH TO \$ 10.32 FT. OGGED BY: W. Colby-George MELL DEVELOPMENT DATE: SITE: 16 - S.W. Landfill SULL LABORATORY SULL SAMPLE ID. SULL SAMPL	lł
SITE: 16 - S.M. Landfil LABORATORY AND COMMENTS SAA SAND - white, medium. SAND - yellow brown, some fine, trace gravel.	
SAND - white, medium. SAND - yellow brown, some fine, trace gravel.	
SAND - white, medium. SP SAND - yellow brown, some fine, trace gravel. SP	LL DATA
SAND - white, medium. SP SAND - yellow brown, some fine, trace gravel. SP	¥
SAND - Yellow brown, some time, trace graver.	
SAA SP	*
O	
SAA SP	* 2 * 2 * 2 * 2 *
SAA SP	
SAND - fine sand, purple gravel.	

TITLE: NAVAL AIR STATION WHITING		LOG of WELL: WHF-10	6-3D	BORI	ING NO.		
CLIENT: SOUTHNAVFACENGCOM	· · · · · · · · · · · · · · · · · · ·			PROJ	ECT NO: RI PHASE		1
CONTRACTOR: Groundwater Protection	T		ED: 01/22/93	<u> </u>	COMPLTD: 01/26	3/93 	_
METHOD: MUD ROTARY	CASE SIZE: 2"	SCREEN INT	.: 105-115 FT	PROTE	ECTION LEVEL: D		4
TOC ELEV.: 51.47 FT.	MONITOR INST.: OVA	TOT DPTH: 11	SFT.	DPTH	TO ¥ 10.32 FT.		_
OGGED BY: W. Colby-George	WELL DEVELOPMENT	DATE:		SITE:	16 - S.W. Landfill		
DEPTH OF THE THE THE THE THE THE THE THE THE THE	AND CO	DESCRIPTION DMMENTS from PAGE 2	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA	
SAN	ND - yellow, medium to	coarse, trace clay.	The Carlo Ca	SP	i Alband Land (2 day Catalhann Land Lague, Egypmeus A. La againe).		
55— 7	1			SP			-
0	A			SP			
SIL	TY SAND - gray, clay (6".		SM			
O	a, no clay.			SM			
5—————————————————————————————————————				SM			
0— SIL	TY SAND – gray, clay,	very plastic.		SM			
5—				SP			

CULTIVIT SOUTHNAVFACENGOON CONTRACTOR Groundwater Protection Inc. CONTRACTOR Groundwater Protection Inc. CONTRACTOR Groundwater Protection Inc. CONTRACTOR Groundwater Protection Inc. CONTRACTOR Groundwater Protection Inc. CONTRACTOR Groundwater Protection Inc. CONTRACTOR Groundwater Protection Inc. CONTRACTOR GROUNDWATER CONTRACTOR OF PROTECTION LEVEL D CONTRACTOR GROUNDWATER CONTRACTOR IN TOT OPTH-86FT. CONTRACTOR GROUNDWATER CONTRACTOR IN T	1	TITLE	:NAVAL AIR	STATIO	WHIT	ING FIELD	LOG o	WELL: WHF-18-3II		BOR	ING NO.		
CONTRACTOR: Groundwater Protection Inc. METHOD: MUD ROTARY CASE SIZE: SCREEN INT.: 75-80 FT PROTECTION LEVEL: 0 TOC ELEV.: \$1.31 FT. LOGGED BY: M. COIby-George MELL DEVELOPMENT DATE: STE: 18 - S.W. Lendfill SIXE: 18 -	(Catalogo	CLIE	T: SOUTHNA	VFACENO	COM					PRO	JECT NO: RI PHASE	IIA.	
TOC ELEV.: 91.31 FT. LOGGED BY: W. Colby-George WELL DEVELOPMENT DATE: STE: 18 - S.W. Lendfill SOIL/ROCK DESCRIPTION AND COMMENTS SOIL/ROCK DESCRIPTION AND COMMENTS SEE WHF-IB-3D FOR LITHOLOGICAL DESCRIPTION. SEE WHF-IB-3D FOR LITHOLOGICAL DESCRIPTION.						tion Inc.		DATE STARTED: 0	1/25/93		COMPLTD: 01/25	/93	
DISCRIPTION SEE WHF-18-3D FOR LITHOLOGICAL DESCRIPTION. SEE WHF-18-3D FOR LITHOLOGICAL DESCRIPTION. 15— 20— 30— 30— 30— 30— 30— 30— 30		METH	OD: MUD ROTA	ARY	······································	CASE SIZE: 2"		SCREEN INT: 75-	-80 FT	PROT	ECTION LEVEL: D		
SEE WHF-I8-3D FOR LITHOLOGICAL DESCRIPTION SEE WHF-I8-3D FOR LITHOLOGICAL DESCRIPTION 15— 25— 30—		TOC	LEV.: 51.31 F	т.		MONITOR INST: OVA		TOT DPTH: 80FT.		OPT:	I TO ¥ 13.38 FT.		
5— SEE WHF-IB-3D FOR LITHOLOGICAL DESCRIPTION. 15— 25— 25— 25— 25— 25— 25— 25— 25— 25— 2		LOGG	ED BY: W. Co	lby-Geo	rge	WELL DEVELOPMENT	DATE:			SITE	:18 - S.W. Landfill		
SEE WHF-I8-3D FOR LITHOLOGICAL DESCRIPTION. 10— 25— 30—		DEPTH FT.	INTERVAL SAMPLED	RECOVERY	HEADSPACE (ppm)	-		TON	LITHOL 061C SYMBOL	SOIL CLASS	BLOWS/8-IN	WELL	
PAGE 1 of 16MW3II ABB ENVIRONMENTAL SERVICES, INC.		10—											***

	FIELD	LOG of WELL: WHF-18-	311	BORI	NG NO.	
IENT: SOUTHNAVFACENGCOM				PROJ	ECT NO: RI PHASE	IIA
ONTRACTOR: Groundwater Protection	Inc.	DATE STARTE	D: 01/25/93		COMPLTD: 01/25	/83
THOD: MUD ROTARY	CASE SIZE: 2"	SCREEN INT:	75-80 FT	PROTE	CTION LEVEL: D	
OC ELEV.: 51.31 FT.	MONITOR INST: OVA	TOT DPTH: 80F	т.	OPTH	TO ¥ 13.38 FT.	
OGGED BY: W. Colby-George	WELL DEVELOPMENT DA	TE:		SITE:	18 - S.W. Landfill	
PT. PECOVERY HEADSPACE (ppm)	SOIL/ROCK DE AND COMM Continued fro	ENTS	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
	CONTINUES INC)				12 12 12 12 12 12 12 12 12 12 12 12 12 1
5—						
)— —						12121

,

	TITLE: NAVAL AIR STATION WHIT	TING FIELD LOG of	WELL: WHF-16-4D	BORING NO. N/A
	LIENT: SOUTHNAVFACENGCOM			PROJECT NO: RI PHASE IIA
1	CONTRACTOR: Groundwater Protec	ction Inc.	DATE STARTED: 02/02/93	COMPLTD: 02/18/93
	METHOD: MUD ROT.	CASE SIZE: 6" & 2"	SCREEN INT.: 109-119 FT	PROTECTION LEVEL: D
	TOC ELEV.: 52.95 FT.	MONITOR INST.: OVA	TOT OPTH: 121FT.	DPTH TO ¥ 14.16 FT.
	LOGGED BY: M. Alvarez	WELL DEVELOPMENT DATE:		SITE: 16 - Wastewater Pit.
	DEPTH FT. FT. CIT SAMPLE SAMPLE RECOVERY HEADSPACE (ppm)	SOIL/ROCK DESCRIPT. AND COMMENTS	Z LITHOLOGIC SYMBOL	SOIL CLASS SOIL CLASS WELL DATA
	5—	SILTY SAND - Light brown, poorly g plastic, loose, moist.	graded, slightly	SM 3,5,7,18
	10	Same As Above, yellowish brown, 1 in	n. clay lense.	SM
	15—	SAND - tan to reddish brown, fine to f sandy silt, loose, and wet.	o medium, 2" layer	SP SP
	20-	SAND - tan, fine, poorly graded, loo	ise, wet.	SP SP
	25—	SAND – tan, fine to coarse, little fin silt, well graded, loose, wet.	e gravel, trace	SW
	30-	SAND - tan, coarse, loose, poorly g	raded, wet.	SP
	35— 20/24 20	SAND – tan, coarse, some medium to graded, wet.	o fine sand, well	SW
	40—	Same As Above.		SW
		PAGE 1 of 16MI	NO4D ABB ENVIRO	NMENTAL SERVICES, INC.

	FIELD LOG of	WELL: WHF-16-4D	BORING NO. N/A	
IENT: SOUTHNAVFACENGCOM			PROJECT NO: RI PHAS	E IIA
ONTRACTOR: Groundwater Protection	Inc.	DATE STARTED: 02/02/93	COMPLTD: 02/	18/93
THOD: MUD ROT.	CASE SIZE: 6" & 2"	SCREEN INT.: 109-119 FT	PROTECTION LEVEL: D	
OC ELEV.: 52.95 FT.	MONITOR INST.: OVA	TOT DPTH: 121FT.	DPTH TO ¥ 14.16 FT.	
OGGED BY: M. Alvarez	WELL DEVELOPMENT DATE:		SITE: 16 - Wastewater	Plt.
FT. SAMPLE SAMPLE HEADSPACE (ppm)	SOIL/ROCK DESCRIPTION AND COMMENTS Continued from PAGE	THOI SYM	SOIL CLASS BLOMS/6-IN	WELL DATA
12/24 2 gra 08/24 2.5 SA 08/24 2.5 SA SA	ND - purple to yellow, fine, trace aded, wet. ND - pinkish tan, fine to medium, pt. me As Above. ND - tan to purple, fine to coarse agments.	poorly graded,	SP SP	
3— 24/24 0 CL/sar	AY – grey and red mottled firm, pl AY – grey, lenses of purple and or nd, firm, very plastic. ND – light tan, fine, poorly graded	range very fine	SP 3,5,4,3	212121212121212121
-	AY – light tan, low plasticity, shar to SAND, moderate reddish browl orly graded.	n, fine to medium,	CL/SP 1,1,2,4	21212121212121
	ND – yellowish orange, fine to som aded, wet.	ne medium, poorly	SP 11,22,24,27	

CLIENT: SOUT	THNAVEACE	NGCOM		IG of WELL: WHF-16-40			NG NO. N/A ECT NO: RI PHASE	11.4
CONTRACTOR			etion Inc.	DATE STARTED:	02/02/93	PROS	COMPLTD: 02/18	
METHOD: MUD			CASE SIZE: 6" & 2"	SCREEN INT.: 10		PROTE	CTION LEVEL: D	
TOC ELEV.: 5			MONITOR INST.: OVA	TOT OPTH: 121FT	***************************************		TO \$ 14.16 FT.	
LOGGED BY:		· · · · · · · · · · · · · · · · · · ·	WELL DEVELOPMENT DATE		<u> </u>		16 - Wastewater P	lt.
LABORAT SAMPLE		HEADSPACE (ppm)	SOIL/ROCK DESC AND COMMEN Continued from	RIPTION NTS	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
	12/	24	SAND – purple to brown, fine to graded, wet.	o medium, poorly		SP	4,8,10,14	
87—	24,	/24 0	SAND - tan to purple, fine, poo	rly graded.		SP	15,26,22,18	
92—	222	/24 0	SAND - tan to greyish brown, f wet, some coarse at 90 ft.	ine, poorly graded,		SP	14,18,18,15	
97—	18/	24 2	SAND – tan to purple, fine, poo	rly graded, wet.		SP	13,23,22,24	
02	23/	/24 2	SAND – tan to yellowish orange wet, some coarse.	e, fine, poorly graded,		SP	13,17,27,29	
07	06/	/24 0	Same As Above.			SP	5,4,3,3	
112 - - - -	20,	/24	SAND – greyish purple, yellow t graded, wet.	pands, fine, poorly		SP		
117—	07/	/24	SAND - yellowish orange, fine t sorted to 119 ft., over 3 in. of p over 9 in. of CLAY, grey, tight,	ourple angular gravel,		CL	DROP	

TITLE: NAVAL AIR STATION WHITING F	TELD LOG of WE	LL: WHF-16-4S	BORING NO.	
CLIENT: SOUTHNAVFACENGCOM			PROJECT NO: RI PHASE IIA	
CONTRACTOR: Groundwater Protection	Inc.	ATE STARTED: 02/03/93	COMPLTD: 02/04/93	
METHOD: HSA	CASE SIZE: 2" SO	CREEN INT.: 5-20 FT	PROTECTION LEVEL: D	
TOC ELEV.: 54.92 FT.	MONITOR INST.: OVA TO	OT DPTH: 21FT.	DPTH TO ¥ 16.66 FT.	
LOGGED BY: N. Haglin	WELL DEVELOPMENT DATE:		SITE: 16 - Open Disposal/Burn	n Area
DEPTH FT. SAMPLE SAMPLE HEADSPACE (ppm)	SOIL/ROCK DESCRIPTION AND COMMENTS	LITHOLOGIC	SOIL CLASS 9/SMOTB WELL DATA	
5-	TY SAND – fine, ash, glass, and mel TY SAND – reddish brown, fine, poo a 2" lens of light grey sandy clay it.	orly graded	6,9,12,14 SM 15,17,20,24	
10— - 12/24 0 Sam	e as above, grey silty lenses at de	epth.	SM 7,16,17,15	\$
15— - 22/24 0 Sam	e as above, tan to reddish brown, s	saturated.	SM 2,4,5,7	
20—				
25—				
30—				
35—				٠.
40-	PAGE 1 of 16MW4	45. 455 519750	NMENTAL SERVICES. INC	

. .

ITLE: NAS Whiting Field			LOG of	LOG of WELL: WHF-16-6S			BORING NO.			
LIENT: SOUTHNAVFACENG	9 - 12-21 - AT - ALL			r	·	PROJE	CT NO: 02534.09			
CONTRACTOR: ABB Environm				DATE STARTED:			COMPLTD: 04/2	6/96		
ETHOD: Hollow Stem Auger		CASE SIZE: 2 inches	\$	SCREEN INT.: 15	feet	PROTE	CTION LEVEL: []			
OC ELEV.: 56.57 FT.		MONITOR INST.: 0VA	1	TOT DPTH: 25FT.		DPTH T	OŢFT.			
OGGED BY: J. Beauchamp		WELL DEVELOPMENT	DATE: 4/	26/96 ·		SITE: 1	6			
SAMPLE TO SAMPLE	HEAUSPACE (ppm)	SOIL/ROCK AND C	OESCRIPT	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA		
1— 2— 3— 4— 5— 6— 7— 8— 9— 0— 111— 12— 13— 4— 15— 6— 7— 8— 9— 0— 21— 2— 3— 4— 5— 6— 7— 8— 9— 0— 21— 2— 3— 4— 5— 6— 7— 8— 9— 0— 21— 2— 3— 4— 5— 6— 7— 8— 9—	CLAY O As at SILT CLAY Fine	SAND, some silt, moist, light orall fine SAND, light orange, damp. EY SILT, wet, dark gray. Y CLAY, some silt, wet, moderate some clay, loose, moist, light gray. some silt, dry, light gray. SAND, some silt, moist, light gray. SAND, some silt, moist, greenish	e gray. ray.			ML CL SM	7,21,15,12			
0—		PAGE 1	of WHF	16-6S ABB	I I ENVIRON	MENT	\ \LSERVICES.	INC.		

TITLE: NAS Whiting Field	LOG of	WELL: WHF-16-61	BORING NO.	* 4		
CLIENT: SOUTHNAVFACENGCO	М		PROJECT NO: 02534	.09		
CONTRACTOR: ABB Environmen	ital Services, Inc.	DATE STARTED: 04/01/96	COMPLTD: 04/01/96			
METHOD: Mud Rotary	CASE SIZE: 2 inches	SCREEN INT.: 10 feet	PROTECTION LEVEL:	ם		
TOC ELEV.: 56.77 FT.	MONITOR INST.: FID	TOT DPTH: 60FT.	DPTH TO \$ FT.			
LOGGED BY: F. Rizk	WELL DEVELOPMENT DATE:		SITE: 16			
CEPTH FT. SAMPLE SAMPLE SAMPLE RECOVERY HEADSPACE	SOIL/ROCK DESCRIPT	ZZ LITHOLOGIC SYMBOL	SOIL CLASS	WELL DATA		
1— 2— 3— 4— 5— 6— 7— 8—	0-2.5 Feet: Fine SAND, light orange brown, wet, lit graded. Not logged.	1	SP			
9— 10— 11— 12— 13— 14— 15—						
16— 17— 18— 19— 20— 21—						
22— 23— 24— 25— 26— 27—						
28—29—30						

CONTRACTOR: ABB Environmental Services, Inc. METHOD: Mud Rotary CASE SIZE: 2 inches SCREEN INT.: 10 feet PROT TOT ELEV.: 56.77 FT. MONITOR INST.: FID TOT DPTH: 60FT. DPTH: 60FT.	BORING NO.			
METHOD: Mud Rotary CASE SIZE: 2 Inches SCREEN INT.: 10 feet PROT TOC ELEV:: 58.77 FT. MONITOR INST.: FID TOT DPTH: 80FT. DPTH LABORATORY B LABORATO	PROJECT NO: 02534.09			
MONITOR INST.: FID TOT DPTH: 60FT. DPTH COGGED BY: F. Rizk WELL DEVELOPMENT DATE: SITE	COMPLTD: 04/01/96	6		
### L LABORATORY ### ### ### ### ### ### ### #### ###	ROTECTION LEVEL: []			
## L LABORATORY ## SAMPLE ID. 18 1 10 10 10 10 10 10 10 10 10 10 10 10 1	PTH TO Ç FT.			
31— 32— 33— 33— 34— 35— 36— 37— 38— 39— 40— 41— 42— 43— 44— 44— 45— 46— 47— 46— 49— 50— 51— 52—	ITE: 16			
31— 32— 33— 34— 35— 36— 37— 38— 40— 41— 42— 43— 44— 45— 46— 47— 48— 49— 50— 51— 52—	BLOWS/6-IN NI-6/SWOJB	WELL DATA		
Coarse to fine SAND, well graded, minor pebbles Silty CLAY, gray, with pebbles, low plasticity. Gravelly SAND, coarse to fine, light prange to red brown.	12,12,12,12			

CLIENT: SOUTHNAVFACENSCOM CONTRACTOR: ABB Environmental Services, Inc. CASE SIZE: 2 inches CASE SIZE: 2 inches SCREEN INT.: 10 feet PROJECT NO: 02534 09 COMPLTIC: 04/09/96 COMPLTIC: 04/09/96 RETHOD: Hollow Stem Auger CASE SIZE: 2 inches CASE SIZE: 2 inches CASE SIZE: 2 inches SCREEN INT.: 10 feet PROJECT NO: 02534 09 PROJECT NO: 02534 09 COMPLTIC: 04/09/96 STE: 10 STE: 10 STE: 10 STE: 10 STE: 10 RECURS SAID, DOING SIZE: 14/09/96 STE: 10 RECURS SAID, DOING SIZE: 11, vet. yearwish-orange. SP RECURS SAID, Doing sorted, vet. light yetawish orange. Fire SAID, poorly sorted, vet. light yetawish orange. Fire SAID, poorly sorted, vet. light yetawish orange. SN Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page. Note Name and sorted as sand page.	TITLE: NAS Whiting Field	,	LOG of WEL	L: WHF-16-7S		BORING NO.			
METHOD: Hollow Stem Auger CASE SIZE: 2 inches SCREEN INT.: 10 feet PROTECTION LEVEL: D TOT DPTH: ISFT. OPTH TO T FT. LOGGED BY: F, Risk MELL DEVELOPMENT DATE: 4/06/96 SITE: 10 LABORATORY S SOL/ROCK DESCRIPTION AND COMMENTS SOL/ROCK DESCRIPTION AND COMMENTS NOT DETH: SFT. PROTECTION LEVEL: D STE: 10 SITE: 10 NOT DPTH: SFT. SITE: 10 NOT DPTH: SFT. SITE: 10 SOL/ROCK DESCRIPTION SOL/ROCK DESCRIPTION AND COMMENTS SOL/ROCK DESCRIPTION AND COMMENTS SOL/ROCK DESCRIPTION AND COMMENTS D SOL/ROCK DESCRIPTION SOL/ROCK DESCRIPTION SOL/ROCK DESCRIPTION SOL/ROCK DESCRIPTION AND COMMENTS D SOL/ROCK DESCRIPTION SOL/ROCK DESCRIPTION AND COMMENTS D SOL/ROCK DESCRIPTION AND COMMENTS D SOL/ROCK DESCRIPTION AND COMMENTS D SOL/ROCK DESCRIPTION AND COMMENTS D SOL/ROCK DESCRIPTION AND COMMENTS D SOL/ROCK D SOL/ROCK DESCRIPTION AND COMMENTS D SOL/ROCK DESCRIPTION AND COMMENTS D SOL/ROCK D SOL/ROC	CLIENT: SOUTHNAVFACENGCOM		erger in gerigerie.	tatis detaly to your managers in a position	Charles and an area	PROJE	CT NO: 02534.09)	
TOC ELEV. 38.27 FT. MONITOR INST.: FID TOT DPTH: ISFT. DPTH TO \$\frac{T}{2}\$ FT. LOGGED BY: F. Rick WELL DEVELOPMENT DATE: 4/08/98 SOIL_FROCK DESCRIPTION AND COMMENTS LABORATORY BY SOIL SOIL FROCK DESCRIPTION AND COMMENTS	CONTRACTOR: ABB Environmental Serv	ices, Inc.	DA	TE STARTED: 0	4/09/96		COMPLTD: 04/0	19/96	
LOGGED BY: F. Risk WELL DEVELOPMENT DATE: 4/G9/96 SITE: 16 SOIL/ROCK DESCRIPTION AND COMMENTS SOIL/ROCK DESCRIPTION AND COMMENTS SP BLOWS/6-IN BLOWS	METHOD: Hollow Stem Auger	CASE SIZE: 2 inches	sc	REEN INT.: 10	feet	PROTE	TION LEVEL: D		
LABORATORY	TOC ELEV.: 38.27 FT.	MONITOR INST.: FID	то	T DPTH: 15FT.		OPTH T	ΟŢ FT.		
### LABORATORY ### SOUL/ROCK DESCRIPTION AND COMMENTS 1	LOGGED BY: F. Risk	WELL DEVELOPMENT	DATE: 4/09/9	06	Andreas Service of Streets	SITE: 10	3		
Median SAND, poorly sorted, some sit, wet, light yellowish orange.	DEPTH FT. FT. CIT SAMPLE SAMPLE RECOVERY HEADSPACE (ppm)				ы в тиноговіс В тиноговіс	SOIL CLASS			
8— 9— 10— Fine SAND, well sorted, some silt, wet, dank gray. Fine SAND, well sorted, some silt, wet, dank gray. Note: Natural soil used as sand pack. Note: Natural soil used as sand pack.	2					SP	1,1,11	K323	
12— 13— Note: Natural soil used as sand pack. Note: Natural soil used as sand pack. Note: Natural soil used as sand pack.	9—					SM			
15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28—	12— Note	e: Natural soil used as sand pack.							
19— 20— 21— 22— 23— 24— 25— 26— 27— 28—	15——								
22— 23— 24— 25— 26— 27— 28—	19—20—								
25— 26— 27— 28—	22—	•							
	26—								
	29								

TITLE: NAS Whiting Field	LOG of	WELL: WHF-16-7I	BORING	NO.	
IENT: SOUTHNAVFACENGCOM			PROJECT	NO: 02534.09	
CONTRACTOR: ABB Environmental Serv	vices, Inc.	DATE STARTED: 04/25/96	(COMPLTD: 04/25/96	3
METHOD: Hollow Stem Auger	CASE SIZE: 2 inches	SCREEN INT.: 10 feet	PROTECT	ION LEVEL: D	
FOC ELEV.: 38.17 FT.	MONITOR INST.: FID	TOT DPTH: 45FT.	DPTH TO	Ţ FT.	
OGGED BY: F. Risk	WELL DEVELOPMENT DATE: 4/	09/96	SITE: 16		
DEPTH FT. GT. GT. GT. GT. COLVENDE RECOVERY HEADSPACE (ppm)	SOIL/ROCK DESCRIPT AND COMMENTS	SYMBOL SYMBOL	SOIL CLASS	DEONO/C III	WELL DATA
1— 2— 3— 4—	e SAND, pale-yellowish brown, poorly graded, no e SAND, poorly graded, brownish/black, no orga		SM		
9— 11— 12— 13— 15— 16—					
17— 18— 19— 20— 21— 22— 23—					
25— 26— 27— 38— 29— 30—					

ITLE: NAS Whiting Field	LOG of	WELL: WHF-16-7I	BORING NO.	; ;
LIENT: SOUTHNAVFACENGCOM			PROJECT NO: 02534.	09
ONTRACTOR: ABB Environmental Se	rvices, Inc.	DATE STARTED: 04/25/96	COMPLTD: 04	/25/96
ETHOD: Hollow Stem Auger	CASE SIZE: 2 inches	SCREEN INT.: 10 feet	PROTECTION LEVEL:	D
OC ELEV.: 38.17 FT.	MONITOR INST.: FID	TOT DPTH: 45FT.	DPTH TO \$ FT.	
DGGED BY: F. Risk	WELL DEVELOPMENT DATE: 4/0	09/96	SITE: 16	
RECOVERY HEADSPACE (ppm)	SOIL/ROCK DESCRIPT AND COMMENTS Continued from PA	THO	SOIL CLASS BYSAMOTH	WELL DATA
31— 2— 3— 4— 5— 6— 7— 8— 9— 0— 11— 2— 3—	edium SAND, grayish orange, saturated. Dring terminated & 45 feet below land surface.		SP 12,12,12	
5				
3—				
7—				
3				. '
		, ,	t .	1

TITLE: NAS Whiting Fie	aid .		LOG of WELL: WHE	-16-7D	BORI	NG NO.	
LIENT: SOUTHNAVFA	CENGCOM	· · · · · · · · · · · · · · · · · · ·			PROJE	ECT NO: 02534.09	~
CONTRACTOR: ABB En	vironmental Sei	vices	DATE STA	ARTED: 04/26/96		COMPLTD: 04/2	6/96
IETHOD: Mud Rotary		CASE SIZE: 2 inch	SCREEN I	INT.: 10 feet	PROTE	CTION LEVEL: ()	
OC ELEV.: 38.05 FT.		MONITOR INST.: FIE	TOT DPTH	l: 75FT.	DPTH '	TO V FT.	
OGGED BY: J. Beauc	hamp	WELL DEVELOPMENT	DATE: 4/26/96		SITE:	16	
L LABORATORY DE SAMPLE ID. S	RECOVERY HEADSPACE (ppm)		OESCRIPTION	LITHOLOGIC	SOIL CLASS	BLOWS/6-IN	WELL DATA
1— 2— 3— 4— 5— 6— 7— 8— 9— 10— 11— 12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29—	0				SP		

Agg to African an armore

TITLE: NAS Whiting Field	LOG (of WELL: WHF-16-7D	BORING NO.	+ 3		
CLIENT: SOUTHNAVFACENGCOM		10 10 10 10 10 10 10 10 10 10 10 10 10 1	PROJECT NO: 02534.09	9		
CONTRACTOR: ABB Environmental Servi	ces	DATE STARTED: 04/26/96	COMPLTD: 04/26/96			
METHOD: Mud Rotary	CASE SIZE: 2 inch	SCREEN INT.: 10 feet	PROTECTION LEVEL: D			
OC ELEV.: 38.05 FT.	MONITOR INST.: FID	TOT DPTH: 75FT.	DPTH TO \$ FT.			
.OGGED BY: J. Beauchamp	WELL DEVELOPMENT DATE: 4	1/26/96	SITE: 16			
RECOVERY HEADSPACE (ppm)	SOIL/ROCK DESCRIF AND COMMENTS Continued from P	SYM	SOIL CLASS NI-9/SMOTB	WELL DATA		
7		7/1	SM			
31—						
32			an alter type of place had	Sec. 11. 1		
3—						
4—						
95						
6—						
7—						
8—						
9—						
		(//)	1.28 1.38 1.38			
<u> </u>						
2— 0						
3—						
4—						
5—		V//				
6—						
7—		Y//1				
8		· (//)				
9						
0—						
51—						
52—						
53		(1)				
4		(///				
5—						
66—						
57—		(7/7)				
58—	•					
59—						
		V2/3				

TITLE: NAS Whiting Field	LOG of	WELL: WHF-16-7D	BORING NO.
LIENT: SOUTHNAVFACENGCOM	· ·		PROJECT NO: 02534.09
CONTRACTOR: ABB Environmental Service	es	DATE STARTED: 04/26/96	COMPLTD: 04/26/96
METHOD: Mud Rotary	CASE SIZE: 2 inch	SCREEN INT.: 10 feet	PROTECTION LEVEL: [1
TOC ELEV.: 38.05 FT.	MONITOR INST.: FID	TOT DPTH: 75FT.	DPTH TO Y FT.
LOGGED BY: J. Beauchamp	WELL DEVELOPMENT DATE: 4/	26/96	SITE: 16
DEP TH FT. SAMPLE SAMPLE RECOVERY HEADSPACE (ppm)	SOIL/ROCK DESCRIPT AND COMMENTS Continued from PA	IHO!	SOIL CLASS BOOM SAM SAM SAM SAM SAM SAM SAM SAM SAM SA
61— 62— 63— 64— 65— 66— 67— 68— 69— 70— 71— 72— 73— 74—	orange-pink medium grained, poorly graded, terminated @ 75 feet below land surface.		SM SP
	PAGE 3 of WHF	16-7D ABB ENVIRON	MENTAL SERVICES, INC.

- Tentropia (1220年) - Despita Lindon (1997年) - Despita (1997年) -

TITLE: NAVAL AIR STATION WH	טאנונו	FIELU	LOG o	FWELL: N/A		BORI	NG NO. TEST PIT 16-	-01A-B
CLIENT: SOUTHNAVFACENGCOM	1					PROJE	ECT NO: RI PHASE I	[Δ
CONTRACTOR: UXB INC.			· · · · · · · · · · · · · · · · · · ·	DATE STARTED:	10/4/92		COMPLTD: 10/4/92	?
METHOD: BACK HOE		CASE SIZE: N/A		SCREEN INT.: N/	΄Α	PROTE	CTION LEVEL: 0	
TOC ELEV.: FT. FT.		MONITOR INST.: FIO.	LEL.RM	TOT DPTH: 12FT.		DPTH '	TO ♀ FT.	
LOGGED BY:		WELL DEVELOPMENT	DATE: 10	/13/92	•	SITE:	16	
DEPTH FT. ### ADSPACE	(wdd)	SOIL/ROCK AND CO	DESCRIPT OMMENTS	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
0 0	SANI	D - Reddish orange, fine to medi	ım with metal	dehris		SP		
1		D – Light yellow to orange, mediu						
	cons	struction debris						
2—	Clay	layer tan				CL		
		`			77	ML		
3	Sand	ly CLAY to white					WHF-2A-16-SS	
4—	OB. No	TO CAN TO WINCE					-01-01	
5-						;		
6—	Sand	dy CLAY white mottled red						
7-								
8-					///	СН		
9	White	e CLAY						
10	Test	pit terminated						
11—								
12	ı		1 of 160		1 1		' 'SON ASSOCIAT	

LIENT: SOUTHNAVFACENG	PROJECT NO: RI PHASE IIA							
ONTRACTOR: UXB INC.	,com	<u> </u>		DATE STARTED:	10/4/92	- NOJE	COMPLTD: 10/4/	
ETHOD: BACK HOE		CASE SIZE: N/A		SCREEN INT.: N		PROTE	CTION LEVEL: 0	
	· · · · · · · · · · · · · · · · · · ·	MONITOR INST.: FIO	LEL DM	TOT DPTH: 12FT.			TO \$ FT.	
OC ELEV.: FT. FT. OGGED BY:		WELL DEVELOPMENT			······································	SITE:		
OGGED B1.		WELL DEVELORMENT	DA 12. 10	7107 92		S S		
DET TO THE SAMPLE SAMPLE	HEADSPACE (ppm)	SOIL/ROCK AND C	DESCRIPT OMMENTS	TION	LITHOLOGIC SYMBOL	SOIL CLAS	BLOWS/6-IN	WELL DATA
1	0 CL	AYEY SAND - yellow orange, fine	to medium. Br	oken bottles	 / / / / / / / / /	ML		
2—	me —	AYEY SAND - yellowish orange, Bu tal debris, cans etc.	irned material	broken botties,	- /// - ///			
3	20 -	above	·				WHF-2A-16-SS -01-01	
4—		above		MANAGEM MANAGEMENT AND AND AND AND AND AND AND AND AND AND		СН		
5—	1	te CLAY mottled with yellow/orang tal debris,cans and ĝalvanized pip		erial, broken bottles				
6—								
7—		ite CLAY with fill material						
8—								
9—								
0-	Te	st pit terminated						
11-								

Burner (D)

TITLE	: NAVAL	AIR S	TATION	N WHIT	ING FIELD	LOG of	WELL: N/A		BORI	NG NO. TEST PIT 1	16-03A-B
CLIEN	IT: SOUTH	INAVF	ACENG	COM					PROJ	ECT NO: RI PHASE	IIA
CONT	RACTOR:	UXB I	IC.				DATE STARTED:	10/4/92		COMPLTD: 10/4/	92
METH	OD: BACK	HOE			CASE SIZE: N/A		SCREEN INT.: N	/A	PROTE	ECTION LEVEL: 0	
TOC E	LEV.: FT	FT.			MONITOR INST.: F10.	LEL.RM	TOT DPTH: 12FT.		DPTH	TO ♀ FT.	
LOGG	ED BY:				WELL DEVELOPMENT	DATE: 10	/13/92		SITE:	16	
DEРТН FT.	METHANI (ppm)	SAMPLE	RECOVERY	HEADSPACE (ppm)	SOIL/ROCK AND C	DESCRIPT OMMENTS	TON	LITHOLOGIC	SOIL CLASS	BLOWS/6-IN	WELL DATA
	0			0	Topsoil to dark brown clay			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ОН		
2—				50	Black CLAY with charred material	***************************************			ОН		
3	5,000			20000	White CLAY , Burned material, metal d	legris, cans, b	roken bottles				
4											
5 				10	Black clay						
7	1									WHF-2A-16- SS-03-02	
8—					Test pit terminated	-					
9											
10											
11											
12						1 of 160				WSON ASSOCIA	

TITLE: NAVAL AIR STATION F			LOG of	WELL: N/A			NG NO. TEST PIT 1	
CLIENT: SOUTHNAVFACENGCO	MC			I		PROJE	CT NO: RI PHASE	
CONTRACTOR: UXB INC.				DATE STARTED: 1			COMPLTD: 10/4/	92
METHOD: BACK HOE		CASE SIZE: N/A		SCREEN INT.: N/	Δ	PROTE	CTION LEVEL: 0	
OC ELEV.: FT. FT.		IONITOR INST.: FIO.		TOT DPTH: 12F-T.		DPTH T	TO ¥ FT.	
OGGED BY:		IELL DEVELOPMENT	DATE: 10	/13/92		SITE:	16	
UEPTH (#dd) FT. SAMPLE SAMPLE	HEADSPACE (ppm)	SOIL/ROCK AND CO	DESCRIPT DMMENTS	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
	Top soil	organic material			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	он		
1	0					CL		
3	60 Tan CLA cans	YES Sand/ saturated charred	d material, bu	rned metal, 10-gallon				
5	CLAY-s	iturated, observed wire bundl	es					
6—								
7—					-			
9—	1 Tan CLA	Y saturated, observed fill ma	terial				WHF-24-16-SS	
10—							04-03 with MS,MSD,and Dup.	
11-	O Grey to	tan CLAY						

TITLE	: NAVAL	AIR S	OITAI	N WHIT	ING FIELD	LOG of	WELL: N/A		ВО	RING NO. TEST PIT	16-05A-B
CLIEN	NT: SOUT	HNAVF	ACEN	SCOM		- 			PRO	DJECT NO: RI PHAS	E IIA
CONT	RACTOR:	UXB II	NC.				DATE STARTE	D : 10/4/92		COMPLTD: 10/4	/92
METH	OD: BAC	K HOE	···		CASE SIZE: N/A		SCREEN INT.:	N/A	PRO	TECTION LEVEL: 0	
TOC E	LEV.: F	Γ. FT.			MONITOR INST.: FIO	LEL.RM	TOT DPTH: 12F	т.	DPTI	нтоў гт.	
LOGG	ED BY:				WELL DEVELOPMENT	DATE: 10/	13/92		SITE	E: 16	
DEPTH FT.	METHAN (ppm)		RECOVERY	HEADSPACE (ppm)	SOIL/ROCK AND C	DESCRIPT OMMENTS	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
					Top soil - organic matter dark brown	to black	· ·	~-~	OH		
				0					SC		
1											
				2.0	Clayey sand - tan			- 7/	ML		
•											
2—											
	50			100				///			
з—											
	9			25							
4					Clayey SAND yellowish orange to tar	burned debris	– metal, cans,				
					bottles, ash, ect.						
5							•				
	100			200							
^								1//	·		
6									-		
								1//			
7—						-			<u> </u>		
					Test pit terminated						
0											
8—											
9											
10											
10 —											
								la di w			
11											
								10 mm			
12-	j	1 1	1	ı I				I .	ı	AWSON ASSOC	

CLI	ENT:	: SOUT	HNA	VF,A	CENG	СОМ			.	The Control of the Co		PROJ	ECT NO: RI PHASE	IIA
-		CTOR:			·					DATE STARTED): 10/4/92		COMPLTD: 10/4/	
		D: BACI						CASE SIZE: N/A		SCREEN INT.:		PROTI	ECTION LEVEL: 0	
		EV.: F1	-					MONITOR INST.: FIO.	LEL.RM	TOT DPTH: 12F			TO ♀ FT.	
		BY:		-			1	WELL DEVELOPMENT		·		SITE:		
DEPTH	<u>:</u> N	METHAN (mpq)	NE d	SAMPLE	RECOVERY	HEADSPACE (ppm)	· ·	SOIL/ROCK AND C	DESCRIPT DMMENTS	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
							Top :	soil			^ ^-	OH SP		
1-		0				0		yellow/orange metal debris, bo le parts, Air Craft parts, charred		oe, cans, springs,		31		
2-	_													
		0				1								
3-	\dashv											ОН		
		3				5	CLAY	yellowish orange No debris						
4-												ML		
_														
5-	-							·			///			
6-														
J			-										V	
7 –											1//			
/ -							Tan (Dayey SAND with debris as abou	e					
			ľ			0					///			
8-	1													
9-	\dashv							•						
											221			
10-	-					0							WHF-2A-16-SS -05-04	
							Test	pit terminated						
11-														

SOIL ANALYTICAL DATA

Naval	Air	Station	Whi
		0:4- 46	0.4.

Station Whi Field, Milton, Florida Site 16 Subs ace Soil Data

CLP VOLATILES 90-SOW	DL
Chloromethane 11 U ug/kg	
Bromomethane	<u>:</u>
Virule chloride	12
Chloroethane	12 12
Methylene chloride	12
Acetane	12
Carbon disulfide	12
1,1-pichloroethane	12
1	12
Chloroform 1,2-Dichloroethane 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 2-Butanone 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11	12
1.2-Dichloroethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 1.1,1-Trichloroethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 1.1,1-Trichloroethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 12 U ug/kg 13 U ug/kg 14 U ug/kg 15 U ug/kg 17 U ug/kg 18 U ug/kg 19 U ug/kg 19 U ug/kg 19 U ug/kg 11 U	12
2-Butanone	12 12
1,1,1-Trichloroethane 11 U ug/kg 11 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 12 U ug/kg 13 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 14 U ug/kg 15 U ug/kg 16 - ug/kg 17 U ug/kg 18 U ug/kg 19 U ug/kg 19 U ug/kg 11	12
Carbon tetrachloride	12
1,2-Dichloropropane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg cis-1,3-Dichloropropene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Dibromochloromethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg Dibromochloromethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg Dibromochloromethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 1,1,2-Trichloroethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 1,1,2-Trichloroethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 13 U ug/kg 14 U ug/kg 15 U ug/kg 17 U ug/kg 18 Omoform 18 U ug/kg 11 11 U ug/kg 11 - ug/kg 19 Bromoform 19 U ug/kg 11 11 U ug/kg 11 - ug/kg 10 U ug/kg 11 U ug/kg 11 U ug/kg 11 - ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2-Hexanone 2-Hexa	12
cis-1,3-Dichloropropene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Trichloroethene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Dibromochloromethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 1,1,2-Trichloroethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Benzene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Bromoform 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 4-Methyl-2-pentanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 1-tertachloroethene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 10-tuene 1 J ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 1,1,2,2-Tetrachloroethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg	12
Trichloroethene	12
Dibromochtoromethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 1,1,2-Trichtoroethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Benzene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg trans-1,3-Dichtoropropene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Bromoform 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 4-Methyl-2-pentanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 2-Hexanone 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Tetrachloroethene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Totuene 1 J ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Totuene 1 J ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Chlorobenzene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Chlorobenzene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Styrene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg	12
1,1,2-Trichloroethane 1,1,0 ug/kg 1,1,2-Trichloroethane 1,1,0 ug/kg 1,1,2-Trichloroethane 1,1,0 ug/kg 1,1,2-Trichloroethane 1,1,0 ug/kg 1,1 ug/kg	12 12
Benzene 11 U ug/kg	12
trans-1,3-Dichloropropene	12
Bromoform	12
2-Hexanone	12
Tetrachloroethene	12
Toluene 1 J ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg 1,1,2,2-Tetrachloroethane 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Chlorobenzene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Ethylbenzene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2 J ug/kg Styrene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2 J ug/kg Xylenes (total) 11 U ug/kg 11 3 J ug/kg 11 - ug/kg 7 J ug/kg CLP SEMIVOLATILES 90-SOW ug/kg Phenol 370 U ug/kg 370 370 UJ ug/kg 370 - ug/kg 400 U ug/kg bis(2-Chloroethyl) ether 370 U ug/kg 370 - ug/kg 400 U ug/kg	12
1,1,2,2-Tetrachloroethane 11 U ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 11 U ug/kg 12 U ug/kg 12 U ug/kg 12 U ug/kg 12 U ug/kg 12 U ug/kg 12 U ug/kg 12 U ug/kg 12 U ug/kg 12 U ug/kg 11 U ug/kg 12 U ug/kg <t< td=""><td>12 12</td></t<>	12 12
Chlorobenzene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Ethylbenzene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 2 J ug/kg Styrene 11 U ug/kg 11 11 U ug/kg 11 - ug/kg 12 U ug/kg Xylenes (total) 11 U ug/kg 11 3 J ug/kg 11 - ug/kg 7 J ug/kg CLP SEMIVOLATILES 90-SOW ug/kg 370 U ug/kg 370 U ug/kg 370 - ug/kg 400 U ug/kg bis(2-Chloroethyl) ether 370 U ug/kg 370 U ug/kg 370 - ug/kg 400 U ug/kg 400 U ug/kg	12
Ethylbenzene	12
Styrene 11 U ug/kg	12
Xylenes (total) 11 J ug/kg 11 J ug/kg 11 J ug/kg 11 J ug/kg 7 J ug/kg CLP SEMIVOLATILES 90-SOW ug/kg Phenol 370 U ug/kg 370 U ug/kg 370 U ug/kg 370 U ug/kg bis(2-Chloroethyl) ether 370 U ug/kg 370 U ug/kg 370 - ug/kg 400 U ug/kg	12
Phenol 370 U ug/kg 370 370 UJ ug/kg 370 - ug/kg 400 U ug/kg bis(2-Chloroethyl) ether 370 U ug/kg 370 370 U ug/kg 370 - ug/kg 400 U ug/kg	12
Phenol 370 U ug/kg 370 370 UJ ug/kg 370 - ug/kg 400 U ug/kg bis(2-Chloroethyl) ether 370 U ug/kg 370 370 U ug/kg 370 - ug/kg 400 U ug/kg	
bis(2-Chloroethyl) ether 370 U ug/kg 370 370 U ug/kg 370 - ug/kg 400 U ug/kg	400
	400
	400
1,3-Dichlorobenzene 370 U ug/kg 370 370 U ug/kg 370 - ug/kg 400 U ug/kg	400
1,4-Dichtorobenzene 370 U ug/kg 370 370 U ug/kg 370 - ug/kg 400 U ug/kg	400
1,2-Dichlorobenzene 370 U ug/kg 370 370 U ug/kg 370 - ug/kg 400 U ug/kg	400
2-Methylphenol 370 U ug/kg 370 - ug/kg 400 U ug/kg	400
2,2-oxybis(1-Chloropropane) 370 UJ ug/kg 370 370 U ug/kg 370 - ug/kg 400 UJ ug/kg 4-Nethylphenol 370 U ug/kg 370 370 U ug/kg 370 - ug/kg 400 U ug/kg	400 400
	400
N-Nitroso-di-n-propylamine 370 ug/kg 370 370 ug/kg 370 - ug/kg 400 UJ ug/kg Hexachloroethane 370 UJ ug/kg 370 370 U ug/kg 370 - ug/kg 400 U ug/kg	400
Nitrobenzene 370 U ug/kg 370 370 U ug/kg 370 - ug/kg 400 UJ ug/kg	400
1sophorone 370 UJ ug/kg 370 370 U ug/kg 370 · ug/kg 400 UJ ug/kg	400
2-Nitrophenot 370 U ug/kg 370 370 U ug/kg 370 + ug/kg 400 U ug/kg	400
2,4-Dimethylphenol 370 U ug/kg 370 U ug/kg 370 - ug/kg 400 U ug/kg	400

Naval Air Station Whiting Field, Milton, Florida Site 16 Subsurface Soil Data

Lab Sample Number: Site Locator Collect Date:	22891 WHIT 16SSO 04-0C VALUE QUAL	ING 201 T-92	22897001 WHITING 16SS0302 04-0CT-9 VALUE QUAL UNI	i 2 2	22898001 WHITING 16SS0403 11-SEP-92 ALUE QUAL UNITS DL	22898001 WHITING 16SS0403 05-DCT-92 VALUE QUAL UNITS DL	
bis(2-Chloroethoxy) methane		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
2,4-Dichlorophenol		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
1,2,4-Trichlorobenzene		ug/kg 370	370 U ug/	V 1000000000000000000000000000000000000	+ ug/kg	400 U ug/kg 400	
Naph tha lene		ug/kg 370	370 U ug/		ug/kg	400 U ug/kg 400	
4-Chloroaniline		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Hexach lorobutadiene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
4-Chloro-3-methylphenol		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
2-Methylnaphthalene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Hexachlorocyclopentadiene	A 6.5 (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	ug/kg 370	370 U ug/	** 2500 A 5	- ug/kg	400 U ug/kg 400	
2,4,6-Trichlorophenol		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
2,4,5-Trichlorophenol		ug/kg 900	910 U ug/		- ug/kg	980 U ug/kg 980	
2-Chloronaphthalene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
2-Nitroaniline		ug/kg 900	910 U ug/		- ug/kg	980 U ug/kg 980	
Dimethylphthalate		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Acenaphthylene		ug/kg 370	370 U ug/		• ug/kg	400 U ug/kg 400	
2,6-Dinitrotoluene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
3-Nitroaniline		ug/kg 900	910 U ug/		- ug/kg	980 U ug/kg 980	
Acenaphthene		ug/kg 370	370 U ug/	10.000	- ug/kg	400 U ug/kg 400	
2,4-Dinitrophenol		ug/kg 900	910 UJ ug/	• • • • • • • • • • • • • • • • • • • •	- ug/kg	980 U ug/kg 980	
4-Nitrophenol		ug/kg 900	910 U ug/		- ug/kg	980 U ug/kg 980	
Dibenzofuran	370 U	ug/kg 370	370 U ug/	200000, 25	- ug/kg	400 U ug/kg 400	
2,4-Dinitrotoluene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Diethylphthalate		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
4-Chlorophenyl-phenylether		ug/kg 370	370 U ug/	1.00.000	- ug/kg	400 U ug/kg 400	
Fluorene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
4-Nitroaniline		ug/kg 900	910 U ug/	. AMMANA	- ug/kg	980 U ug/kg 980	
4,6-Dinitro-2-methylphenol		ug/kg 900	910 U ug/	**************************************	+ ug/kg	980 U ug/kg 980	
N-Nitrosodiphenylamine		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
4-Bromophenyl-phenylether		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Hexach Lorobenzene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Pentach lorophenol		ug/kg 900	910 U ug/		- ug/kg	980 U ug/kg 980	
Phenanthrene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Anthracene	the contract of the contract o	ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Carbazole		ug/kg 370	370 U ug/		+ ug/kg	400 U ug/kg 400	
Di-n-butylphthalate		ug/kg 370	370 UJ ug/		- ug/kg	400 UJ ug/kg 400	
Fluoranthen e		ug/kg 370	370 U ug/	6000 - 60	- ug/kg	400 U ug/kg 400	
Pyrene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Butylbenzylphthalate		ug/kg 370	370 U ug/		- ug/kg	400 UJ ug/kg 400	
3,3-Dichlorobenzidine		ug/kg 370	370 UJ ug/		• ug/kg	400 U ug/kg 400	
Benzo (a) anthracene		ug/kg 370	370 U ug/		+ ug/kg	400 U ug/kg 400	
Chrysene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
bis(2-Ethylhexyl) phthalate		ug/kg 370	370 U ug/		- ug/kg	400 UJ ug/kg 400	
Di-n-octylphthalate		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Benzo (b) fluoranthene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Benzo (k) fluoranthene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Benzo (a) pyrene		ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Indeno (1,2,3-cd) pyrene	370 U	ug/kg 370	370 U ug/		- ug/kg	400 U ug/kg 400	
Dibenzo (a,h) anthracene		ug/kg 370	370 U ug/	kg 370	- ug/kg	400 U ug/kg 400	
Benzo (g,h,i) perylene	370 U	ug/kg 370	370 U ug/	kg 370	- ug/kg	400 U ug/kg 400	
CLP PESTICIDES/PCBS 90-SOW ug/kg alpha-BHC		ug/kg 1.9	1.9 UJ ug/		ug/kg	- ug/kg	

Naval Air Station Whi
Site 16 Subsurface Soil Data

:	Lab Sample Number: Site Locator Collect Date:	1	2891006 WHITING 6SS0201 4-OCT-92 UAL UNITS	DL	WH 16S 04-	97001 ITING S0302 OCT-92 L UNITS	DL	16 16	2898001 WHITING SSS0403 I-SEP-92 UAL UNITS	DL	VALUE	22898001 WHITING 16SS0403 05-OCT-92 QUAL UNITS	DL		
beta-BHC		1.9 U		1.9 1.9	1.9 UJ 1.9 UJ	ug/kg	1.9 1.9	-	ug/kg			- ug/kg			
delta-BHC gamma-BHC (Lindane)		1.9 U 1.9 U		1.9	1.9 UJ	ug/kg ug/kg	1.9		ug/kg ug/kg			- ug/kg - ug/kg			
gamma-BhC (Lindane) Heptachlor		1.9 U		1.9	1.9 UJ	ug/kg ug/kg	1.9		ug/kg ug/kg			- ug/kg			
Neptachtor Nidrin		1.9 U		1.9	1.9 UJ	ug/kg ug/kg	1.9	.	ug/kg			- ug/kg			
leptachlor epoxide		1.9 U		1.9	1.9 UJ	ug/kg	1.9		ug/kg			- ug/kg			
Endosulfan I		1.9 U		1.9	1.9 UJ	ug/kg	1.9		ug/kg			- ug/kg			
ieldrin		1.6 J	ug/kg	3.7	3.7 UJ	ug/kg	3.7		ug/kg			- ug/kg			
4.4-DDE		1.8 J	ug/kg	3.7	3.7 UJ	ug/kg	3.7	-	ug/kg			- ug/kg			
ndrin		3.7 U	ug/kg	3.7	3.7 UJ	ug/kg	3.7		ug/kg			- ug/kg			
Endosulfan II	delarini - dalah sahir sari Balanca da sari delarah sa	3.7 U	ug/kg	3.7	3.7 UJ	ug/kg	3.7		ug/kg			- ug/kg			
,4-DDD	24. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2.2 J	ug/kg	3.7	3.7 UJ	ug/kg	3.7	<u>.</u>	ug/kg			- ug/kg			
ndosulfan sulfate		ີ 3.7 ປ		3.7	3.7 UJ	ug/kg	3.7	-	ug/kg			- ug/kg			
,4-DDT		3.7 U		3.7	3.7 UJ	ug/kg	3.7		ug/kg			- ug/kg			
lethoxychlor	화에 함된 경영화 클래프 영화 이 회사 하기 교육하	19 U		_19	19 UJ	ug/kg	_19	•	ug/kg			- ug/kg			
ndrin ketone	발해 남자들은 숙하	3.7 U		3.7	3.7 UJ	ug/kg	3.7		ug/kg			- ug/kg			
ndrin aldehyde		3.7 U		3.7	3.7 UJ	ug/kg	3.7	•	ug/kg			- ug/kg			
ilpha-Chlordane	일화 시설과 사람	1.9 U		1.9	1.9 UJ	ug/kg	1.9		ug/kg			- ug/kg			
amma-Chlordane		1.9 U 190 U		1.9 190	1.9 UJ 190 UJ	ug/kg	1.9 190		ug/kg ug/kg			- ug/kg		sijn Ka	
oxaphene	44 S. Miller	37 U		37	37 UJ	ug/kg ug/kg	37		ug/kg ug/kg			- ug/kg - ug/kg	3	* . *	14
roctor-1016 roctor-1221	를 가다면 있습니다. 	37 U		75	76 UJ	ug/kg ug/kg	76		ug/kg ug/kg			- ug/kg	Ž.	ž.	-8
roctor-1221	당하, 항공하, 불렀	37 U		37	37 UJ	ug/kg ug/kg	37		ug/kg			- ug/kg		7	
Aroctor-1232		37 U		37	37 UJ	ug/kg ug/kg	37		ug/kg			- ug/kg	3	Direction of the Control of the Cont	Ģ.
roctor-1248		37 U		37	37 UJ	ug/kg	37		ug/kg			- ug/kg	3	834 (1)	き
Aroclor-1254	3 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	37 Ŭ		37	37 UJ	ug/kg	37		ug/kg			- ug/kg	3		
Aroclor-1260		37 U		37	37 UJ	ug/kg	37	•	ug/kg			- ug/kg	4	Š.	2
P METALS AND CYANID	E mg∕kg												12 13 15 15		The state of the s
P METALS AND CTANTO Aluminum	III9/Kg	17000	mg/kg	40	15400	mg/kg	40	29000	mg/kg	40		- mg/kg	i i	3 2.	14
Antimony		2.5 J	mg/kg	12	2.4 U	mg/kg	12	2.6 U		12		- mg/kg			3
ursenic		2.7	mg/kg	'2	1.5 J	mg/kg	ž	5.1 J	mg/kg	ž		- mg/kg	<u> </u>	C) Tall	
Barium			mg/kg	40	35 J	mg/kg	40	21 J	mg/kg	40		- mg/kg			7.00
Beryllium		.18 J	mg/kg	1	.21 J	mg/kg	1	_23 J	mg/kg	1		- mg/kg		*	
admium		2.4 J	mg/kg	1	.67 U	mg/kg	1	.74 U	mg/kg	1		- mg/kg			
alcium		877 J	mg/kg	1000	254 J	mg/kg	1000	478 U	l mg/kg	1000		- mg/kg			17
Chromium		16.6	mg/kg	2	10.5	mg/kg	2	32.5 J	mg/kg	2		- mg/kg			
obalt		1.1 J	mg/kg	10	1.2 J	mg/kg	10	2.4 J	mg/kg	10		- mg/kg			
opper		16.2	mg/kg	5	4.8 J	mg/kg	5	13.7	mg/kg	5		- mg/kg			
ron		8440	mg/kg	20	6670	mg/kg	20	21700	mg/kg	20		- mg/kg			
.ead		74.6	mg/kg	1	6.8	mg/kg	1	17.3 J	mg/kg	1		- mg/kg			
lagnes i um		243 J	mg/kg	1000	293 J	mg/kg	1000	211 J	mg/kg	1000		- mg/kg			
langanese		93.1	mg/kg	3	231	mg/kg	3	54	mg/kg	3		- mg/kg			
lercury		.29 J	mg/kg	.1	.43 J	mg/kg	.1	.14 U.		.1		- mg/kg			
lickel		4.4 J	mg/kg	8	4.4 J	mg/kg	8	4.4 J	mg/kg	8		- mg/kg			
otassium		258 J	mg/kg	1000	153 U	mg/kg	1000	270 J	mg/kg	1000		- mg/kg			
Selenium		.47 U		1	.47 U	mg/kg	1 2	.51 R .64 U	mg/kg	2		- mg/kg		esi e	
Silver		.79 J	mg/kg	2	.46 U	mg/kg				1000		- mg/kg			
odium balli.		243 J	mg/kg	1000 2	207 J .36 U	mg/kg	1000 2	223 U. .39 U.		1000		- mg/kg			
ihallium /andium		.35 U		The second secon		mg/kg	10	63.3	mg/kg mg/kg	10		- mg/kg - mg/kg			
/anadium	marini semberini Barini semberini	25 122	mg/kg	10 4	19.1 10.6 J	mg/kg	10 °	63.3 43 J	mg/kg	10					
Zinc		ICC	mg/kg	4	10.0 J	mg/kg	4 40	43 3	116/75	e e e e e e e e e e e e e e e e e e e		- mg/kg			

			Naval Air	Station Site 16	Whiting Field Subsurface Sc	i, Miltor oil Data	, Florida						
Lab Sample Number: Site Locator Collect Date:	•	22891006 WHITING 16SS0201 04-OCT-92 QUAL UNITS	DL	VALUE	22897001 WHITING 16SS0302 04-0CT-92 QUAL UNITS	DL	VALUE	22898001 WHITING 16SS0403 11-SEP-92 QUAL UNITS	DL	VALUE	22898001 WHITING 16SS0403 05-0CT-92 QUAL UNITS	DL	
Cyanide.	.09	U mg/kg	1	.09	9 UJ mg/kg	1		lR mg/kg	1		- mg/kg		
Total organic carbon Total petroleum hydrocarbons	•	mg/kg mg/kg		•	- mg/kg - mg/kg			- mg/kg - mg/kg			- mg/kg - mg/kg		

Naval Air Station Whi Field, Milton, Florida Site 16 Subsurface Soil Data

y La	ab Sample Number: Site Locator Collect Date:	1	22898001 WHITING 16SS0403 05-OCT-93 DUAL UNITS	DL	VALUE	22898002 WHITING 16SS0403A 11-SEP-92 QUAL UNITS	DL	VALUE	22898002 WHITING 16SS0403A 05-OCT-92 QUAL UNITS	S DL	VALUE	22898002 WHITING 16SS0403A 05-0CT-93 QUAL UNITS	DL
CLP VOLATILES 90-SON	ug/kg					. untha		19	U ug/kg	. 43		/ka	
Chloromethane Bromomethane			ug/kg ug/kg			 ug/kg ug/kg 		12				- ug/kg - ug/kg	
Vinyl chloride	n spilitoria di 11. La Francia		ug/kg			- ug/kg			U ug/k			- ug/kg	
Chloroethane		sala ve i e i	ug/kg	sake Kiba - Aar		- ug/kg			U ug/k			- ug/kg	
Methylene chloride			ug/kg			- ug/kg			UJ ug/k	g 12		- ug/kg	
Acetone	Kir Malika Alaman		ug/kg			- ug/kg			UJ ug/k			- ug/kg	
Carbon disulfide			ug/kg			- ug/kg			J ug/k	j 12		- ug/kg	
1,1-Dichloroethene			ug/kg			- ug/kg			U ug/k			- ug/kg	
1,1-Dichloroethane 1,2-Dichloroethene (to	4418		ug/kg			- ug/kg - ug/kg		12 12				- ug/kg - ug/kg	
Chloroform	JLALJ		ug/kg ug/kg			- ug/kg			U ug/k			- ug/kg	
1,2-Dichloroethane			ug/kg			- ug/kg			U ug/k			- ug/kg	
2-Butanone			ug/kg			- ug/kg			UJ ug/k			- ug/kg	•
1,1,1-Trichloroethane		Marini, and s	ug/kg			- ug/kg			U ug/k			- ug/kg	
Carbon tetrachloride			ug/kg			- ug/kg			U ug/k			- ug/kg	
Bromodichloromethane			ug/kg			- ug/kg		12				- ug/kg	
1,2-Dichloropropane		•	ug/kg			- ug/kg - ug/kg			U ug/k			- ug/kg	
cis-1,3-Dichloroproper Trichloroethene	ne i		ug/kg ug/kg			 ug/kg ug/kg 		12	U ug/kı U ug/kı			- ug/kg - ug/kg	
Dibromochloromethane			ug/kg ug/kg			- ug/kg			U ug/k			- ug/kg	
1,1,2-Trichloroethane			ug/kg			- ug/kg		12				- ug/kg	
Benzene		•	ug/kg			- ug/kg		12	U ug/kg	j 12	i	- ug/kg	
trans-1,3-Dichloroprop	pene		ug/kg			- ug/kg			U ug/k			- ug/kg	
Bromoform			ug/kg			- ug/kg		12				- ug/kg	
4-Methyl-2-pentanone	4 - 1011 (1841) John State		ug/kg			- ug/kg			U ug/k			- ug/kg	
2-Hexanone	of confident for Street file for		ug/kg			ugying		12	U ug/ki U ug/ki		· ·	- ug/kg - ug/kg	
Tetrachloroethene Toluene			ug/kg ug/kg			- ug/kg - ug/kg			U ug/k			- ug/kg - ug/kg	
1,1,2,2-Tetrachloroeth	1806		ug/kg			- ug/kg		12				- ug/kg	
Chlorobenzene			ug/kg			- ug/kg		12		Caracan Caraca		- ug/kg	
Ethylbenzene			ug/kg			- ug/kg			U ug/k			- ug/kg	
Styrene			ug/kg			- ug/kg			ປ ug/k			- ug/kg	
Xylenes (total)			ug/kg			- ug/kg		.5	J ug/ki	12		- ug/kg	
CLP SEMIVOLATILES 90-SOL	/ ug/kg					1							
Phenol		•	ug/kg			- ug/kg		430				- ug/kg	
bis(2-Chloroethyl) eth	ier		ug/kg			- ug/kg		430		430		- ug/kg	
2-Chlorophenol			ug/kg			- ug/kg		430	the contract of the contract o			- ug/kg	
1,3-Dichlorobenzene			ug/kg			- ug/kg		430 430				- ug/kg - ug/kg	
1,4-Dichlorobenzene			ug/kg			- ug/kg		750				ug/ kg.	
	7												
			444. B										
			흥리는 말이 되었										
	era e perende de la composição de la com	CHANGE AND AND A	i Alaka i	Jake Beef Steel				rans result (4 mill)	La displayer in the	240 CO 100 CO			

Naval Air Station Whiting Field, Milton, Florida Site 16 Subsurface Soil Data

Lab Sample Number: Site Locator Collect Date:		22898 WHIT 16880 05-00 QUAL	1NG 0403	DL	VALUE	22898002 WHITING 16SS0403A 11-SEP-92 QUAL UNITS	DL	VALUE	2289800 WHITIN 16SS040 05-OCT- QUAL UN	G 3a 92	DL	VALUE	22898002 WHITING 16SS0403A 05-OCT-93 QUAL UNITS	DL	
1,2-Dichlorobenzene		Service of	ug/kg			- ug/kg	_	V 2020 100000000000000000000000000000000		/kg	430		- ug/kg		
2-Methylphenol	•	1.4	ug/kg			- ug/kg				/kg	430		- ug/kg		
2,2-oxybis(1-Chloropropane)	_		ug/kg			- ug/kg		And the second contract of the second		/kg	430		- ug/kg		
4-Methylphenol	•	新州村	ug/kg			- ug/kg				/kg	430		- ug/kg		
N-Nitroso-di-n-propylamine			ug/kg			- ug/kg				/kg	430		- ug/kg		
Hexach loroethane			ug/kg			- ug/kg				/kg	430		- ug/kg		
Nitrobenzene			ug/kg			- ug/kg				/kg	430		- ug/kg		
Isophorone	7, 100, 100, 100, 100		ug/kg			- ug/kg				/kg	430		- ug/kg		
2-Nitrophenol		2 p. 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ug/kg			- ug/kg		430	OU ug	/kg	430		- ug/kg		,
2,4-Dimethylphenol			ug/kg			- ug/kg				/kg	430		- ug/kg		
bis(2-Chloroethoxy) methane			ug/kg			- ug/kg		430	0U ug	/kg	430		- ug/kg		
2,4-Dichlorophenol	•		ug/kg			- ug/kg		430	0U ug	/kg	430		- ug/kg		
1,2,4-Trichlorobenzene			ug/kg			- ug/kg		430	0 U. ug	/kg	430		- ug/kg		
Naphthalene			ug/kg			- ug/kg		430	0 U ug	/kg	430		- ug/kg		
4-Chloroaniline	**************************************		ug/kg			- ug/kg		430	0U ug	/kg	430		- ug/kg		
Hexachlorobutadiene	•		ug/kg			- ug/kg		430	0 U ug	/kg	430		- ug/kg		
4-Chloro-3-methylphenol	•		ug/kg	un sedictible in 1966. Se stigetes under selec		- ug/kg		430	0U ug	/kg	430		- ug/kg		
2-Methylnaphthalene			ug/kg			- ug/kg		430	0 U ug	/kg	430		- ug/kg		
Hexachlorocyclopentadiene			ug/kg			- ug/kg		430	0U ug	/kg	430		- ug/kg		
2,4,6-Trichlorophenol	Y		ug/kg			- ug/kg		430	0U ug	/kg	430		- ug/kg		
2,4,5-Trichlorophenol			ug/kg			- ug/kg		1100	0 V ug	/kg	1100		- ug/kg		
2-Chloronaphthalene		a British w	ug/kg			- ug/kg		430	0U ug	/kg	430		- ug/kg		
2-Nitroaniline	LAMBU +		ug/kg			- ug/kg		1100	0 U ug	/kg	1100		- ug/kg		
Dimethylphthalate	· · · · · · · · · · · · · · · · · · ·		ug/kg			- ug/kg		430		/kg	430		- ug/kg		
Acenaphthylene	-		ug/kg			- ug/kg		430	0 U ug	/kg	430		- ug/kg		
2,6-Dinitrotoluene	//		ug/kg			- ug/kg		430		/kg	430		- ug/kg		
3-Nitroaniline			ug/kg			- ug/kg		1100		/kg	1100		- ug/kg		
Acenaphthene	_		ug/kg			- ug/kg		430		/kg	430		- ug/kg		
2,4-Dinitrophenol	-		ug/kg			- ug/kg		110	0U ug	/kg	1100		- ug/kg		
4-Nitrophenol	-		ug/kg			- ug/kg		110		/kg	1100		- ug/kg		
Dibenzofuran	-		ug/kg			- ug/kg		430		/kg	430		- ug/kg		
2,4-Dinitrotoluene			ug/kg			- ug/kg				/kg	430		- ug/kg		
Diethylphthalate			ug/kg			- ug/kg		431		/kg	430		- ug/kg		
4-Chlorophenyl-phenylether	•	*	ug/kg	BALL WI		- ug/kg			and the State of the Table	/kg	430		- ug/kg		
Fluorene	-		ug/kg			- ug/kg				/kg	430		- ug/kg		
4-Nitroaniline		geret i	ug/kg			- ug/kg		110		/kg	1100		- ug/kg		
4,6-Dinitro-2-methylphenol	. Populateja 🛓		ug/kg			- ug/kg		1100	and the state of t	/kg	1100		- ug/kg		
N-Nitrosodiphenylamine		医热定	ug/kg			- ug/kg				/kg	430		- ug/kg		
4-Bromophenyl-phenylether			ug/kg			- ug/kg				/kg	430		- ug/kg		
Hexach Lorobenzene			ug/kg			- ug/kg			enter anno anno anti-	/kg	430		- ug/kg		
Pentachlorophenol	. November of the second of th		ug/kg			- ug/kg		1100		/kg	1100		- ug/kg		
Phenanthrene			ug/kg			- ug/kg				/kg	430		- ug/kg		
Anthracene			ug/kg			- ug/kg				/kg	430		- ug/kg		
Carbazole			ug/kg			- ug/kg				/kg	430		- ug/kg		
Di-n-butylphthalate		(李达)	ug/kg			- ug/kg			7	/kg	430		- ug/kg		
Fluoranthene		- 500 Yespin	ug/kg			- ug/kg				/kg	430		- ug/kg		
Pyrene	•		ug/kg			- ug/kg				/kg	430		- ug/kg		
Butylbenzylphthalate			ug/kg			- ug/kg				/kg	430		- ug/kg		
3,3-Dichlorobenzidine			ug/kg			- ug/kg				/kg	430		- ug/kg		
Benzo (a) anthracene			ug/kg			- ug/kg - ug/kg				/kg	430		- ug/kg		
Chrysene			ug/kg			- ug/kg				/kg	430		- ug/kg		
bis(2-Ethylhexyl) phthalate			ug/kg			- ug/kg				/kg	430		- ug/kg		
Distriction is building			ug/ kg			ug/ kg		430	uy	/ / 9	730		aa, ka		

Naval Air Station Whi Field, Milton, Florida Site 16 Subsurface Soil Data

. Lal	b Sample Number: Site Locator Collect Date:	WH 16S: 05-0	98001 ITING S0403 DCT-93 L UNITS	DL	VALUE	22898002 WHITING 16SS0403A 11-SEP-92 QUAL UNITS	DL		22898002 WHITING 16SS0403A 05-OCT-92 QUAL UNITS	DL	16 05	898002 HITING SSO403A -OCT-93 HAL UNITS	DL	
Di-n-octylphthalate Benzo (b) fluoranthene		į	ug/kg ug/kg		-	ug/kg ug/kg		430 (430)		430 430	-	ug/kg ug/kg		
Benzo (k) fluoranthene		·	ug/kg	, na historico (no subtrato) Nicional de la contratorio	-	ug/kg		430		430	•	ug/kg		
Benzo (a) pyrene		•	ug/kg		-	ug/kg		430 (430	-	ug/kg		
Indeno (1,2,3-cd) pyre			ug/kg		-	ug/kg		430	1 A 10 6 6 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	430	-	ug/kg		
Dibenzo (a,h) anthrace Benzo (g,h,i) perylene			ug/kg ug/kg		-	ug/kg ug/kg	1	430 (430 (430 430	-	ug/kg ug/kg		
CLP PESTICIDES/PCBS 90-S	OW ug/kg													
alpha-BHC		2.1 U	ug/kg	2.1	-	ug/kg		•	ug/kg		2.2 U	ug/kg	2.2	
beta-BHC		2.1 U	ug/kg	2.1	-	ug/kg			ug/kg		2.2 U	ug/kg	2.2	
delta-BHC		2.1 U	ug/kg	2.1	-	ug/kg	3	•	ug/kg		2.2 U	ug/kg	2.2	
gamma-BHC (Lindane)		2.1 U	ug/kg	2.1	-	ug/kg		•	ug/kg		2.2 U	ug/kg	2.2	
Heptachlor Aldrin		2.1 U 2.1 U	ug/kg ug/kg	2.1 2.1		ug/kg ug/kg			ug/kg ug/kg		2.2 U 2.2 U	ug/kg ug/kg	2.2 2.2	
Meptachlor epoxide		2.1 U	ug/kg ug/kg	2.1	-	ug/kg ug/kg		_	ug/kg ug/kg		2.2 U	ug/kg ug/kg	2.2	
Endosulfan I		2.1 U	ug/kg	2.1	-	ug/kg		-	ug/kg		2.2 0	ug/kg	2.2	
Dieldrin			ug/kg	<u> </u>		ug/kg			ug/kg		4.3 U	ug/kg	4.3	
4,4-DDE	0: 00: 00: 00: 00: 00: 00: 00: 00: 00:	4 U	ug/kg	4	-	ug/kg		•	ug/kg		4.3 U	ug/kg	4.3	
Endrin		4 U	ug/kg	4	-	ug/kg		•	ug/kg		4.3 บ	ug/kg	4.3	
Endosulfan II		4 U	ug/kg	4	-	ug/kg			ug/kg		4.3 U	ug/kg	4.3	
4,4-DDD		4 U	ug/kg	4	-	ug/kg		•	ug/kg		4.3 U	ug/kg	4.3	
Endosulfan sulfate		4 U	ug/kg	4	-	ug/kg		•	ug/kg		4.3 U	ug/kg	4.3	
4,4-DDT Methoxychlor		4 U 21 U	ug/kg ug/kg	21	-	ug/kg ug/kg			ug/kg ug/kg		4.3 U 22 U	ug/kg ug/kg	4.3 22	
Endrin ketone		4 U	ug/kg ug/kg	· · · · · · · · · · · · · · · · · · ·	-	ug/kg ug/kg			ug/kg ug/kg		4.3 U	ug/kg ug/kg	4.3	
Endrin aldehyde		4 U	ug/kg	4	-	ug/kg	:	4	ug/kg		4.3 U	ug/kg	4.3	
alpha-Chlordane		2.1 U	ug/kg	2.1	-	ug/kg			ug/kg		2.2 U	ug/kg	2.2	
gamma-Chlordane		2.1 U	ug/kg	2.1		ug/kg			ug/kg		2.2 U	ug/kg	2.2	
Toxaphene		210 U	ug/kg	210	-	ug/kg		# 1	ug/kg		220 U	ug/kg	220	
Aroclor-1016		40 U	ug/kg	40	-	ug/kg	;	•	ug/kg		43 U	ug/kg	43	
Aroclor-1221		82 U	ug/kg	82	-	ug/kg		•	ug/kg		88 U	ug/kg	88	
Aroclor-1232		40 U	ug/kg	40		ug/kg			ug/kg		43 U 43 U	ug/kg	43. 43.	
Aroclor-1242 Aroclor-1248		40 U 40 U	ug/kg ug/kg	40 40	-	ug/kg ug/kg			ug/kg ug/kg	0.00	43 U	ug/kg ug/kg	43	
Aroclor-1254		40 U	ug/kg	40	_	ug/kg	4		ug/kg		43 U	ug/kg	43	
Aroclor-1260		40 U	ug/kg	40	-	ug/kg		-	ug/kg		43 U	ug/kg	43	
CLP METALS AND CYANIDE	mg/kg													
Aluminum			mg/kg		19500		40	¥	mg/kg		•	mg/kg		
Antimony			mg/kg		2.6		12		mg/kg		•	mg/kg		
Arsenic			mg/kg		5.8		2		mg/kg		•	mg/kg		
Barium			mg/kg		19		40	i ag i tologogia again	mg/kg		-	mg/kg		
Beryllium			mg/kg		.29 .73		1		mg/kg mg/kg		•	mg/kg mg/kg		
Cadmium Calcium	00000000 1 1		mg/kg mg/kg		542		1000	•	mg/kg		-	mg/kg		
Chromium			mg/kg		27.3		2	-	mg/kg		-	mg/kg		
Cobalt		•	mg/kg		1.4		10	•	mg/kg		•	mg/kg		
Copper		•	mg/kg		7.9	mg/kg	5	•	mg/kg		-	mg/kg		
Iron			mg/kg		17600	mg/kg	20	•	mg/kg		•	mg/kg		
Lead	00.000		mg/kg		14.6		1	•	mg/kg		• .	mg/kg		
Magnes i um		•	mg/kg		185	J mg/kg	1000		mg/kg		-	mg/kg		
	wi-1446	angla ang Malay u uti 1964	North Control	the process of the						grafia e grafia e i				

Naval Air Station Whiting Field, Milton, Florida Site 16 Subsurface Soil Data

			Site 16 Subsu	rtace Soil Di	ata				
Lab Sample Number: Site Locator Collect Date:	Wi 169 05	898001 HITING SS0403 -OCT-93 AL UNITS DL	WHI 16SS 11-S	8002 TING 0403A EP-92 UNITS DL	VALUE	22898002 WHITING 16SS0403A 05-OCT-92 QUAL UNITS DL	ı	22898002 WHITING 16SS0403A 05-0CT-93 QUAL UNITS DL	
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	39.9 .1 UJ 2.3 J 356 J .51 R .7 UJ 225 UJ .39 UJ 67.5 28 J .1 R	mg/kg mg/kg	.1 8 1000 1 2 1000 2 1000 2	- mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg	- - - - - - - - -	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	
Total organic carbon Total petroleum hydrocarbons	34. 34. j 1 1 j 1	mg/kg mg/kg		mg/kg mg/kg		- mg/kg - mg/kg	-	mg/kg mg/kg	
						30			

Lab Sample Number: Site Locator

Collect Date:

VALUE

22910001 WHITING 16-SS-06-04 05-OCT-92

QUAL UNITS

22910004 WHITING 16-SS-10-05 06-OCT-92

QUAL UNITS DL DL VALUE

VOLATILES 90-SOW	ug/kg							
hloromethane	ug/kg	12 U	ug/kg	12	11 U	ug/kg	11	
romomethane		12 U	ug/kg	12	11 ŭ	ug/kg	11	
inyl chloride		12 U	ug/kg	12	11 ŭ	ug/kg	11	
hloroethane	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	12 0	ug/kg	12	11 Ŭ	ug/kg	11	
ethylene chloride		19 UJ	ug/kg	12	33 UJ	ug/kg	11	
cetone		87 J	ug/kg	12	11 UJ	ug/kg	11	
cetone arbon disulfide	11개	i i	ug/kg	12	5 J	ug/kg	11	
,1-Dichloroethene	1.33	12 Ŭ	ug/kg	12	11 Ŭ	ug/kg	11	
,1-Dichloroethane	11数	12 U	ug/kg	12	11 Ŭ	ug/kg	11	
, 2-Dichloroethene (total)		12 U	ug/kg	12	11 Ŭ	ug/kg	11	
hloroform	53.4	12 0	ug/kg	12	11 Ŭ	ug/kg	11	
.2-Dichloroethane	194	12 U	ug/kg	12	11 0	ug/kg ug/kg	11	
		19	ug/kg	12	11 Ŭ	ug/kg ug/kg	11	
Butanone	100	12 U	ug/kg ug/kg	12	11 0	ug/kg ug/kg	11	
,1,1-Trichloroethane arbon tetrachloride		12 0	ug/kg ug/kg	12	11 0	ug/kg ug/kg	11	
		12 U		12	11 0	ug/kg ug/kg	11	
romodichloromethane	5 Jak	12 U	ug/kg	12	11 0	ug/kg ug/kg	11	
.2-Dichloropropane	. 14	F 601 - F 1175	ug/kg	12	11 U	• •	11	
is-1,3-Dichloropropene	1.5	12 U	ug/kg	12	11 U	ug/kg	11	
richloroethene	199	12 U 12 U	ug/kg	12	11 U	ug/kg ug/kg	11	
ibromochloromethane	- 1		ug/kg		11 U		11	
,1,2-Trichloroethane	# ## ##	12 U	ug/kg	12		ug/kg	11	
enzene	413. IQ - 48700	12 U	ug/kg	12	11 U	ug/kg	11	
rans-1,3-Dichloropropene		12 U	ug/kg	12	11 U	ug/kg		
romoform		12 U	ug/kg	12	11 U	ug/kg	11	
-Methyl-2-pentanone	3 s. 200 200 000	12 U	ug/kg	12	11 U 11 U	ug/kg	11 11	
-Hexanone	87-40) 67-601	12 U	ug/kg	12		ug/kg	11	
etrachloroethene		12 U	ug/kg	12	11 U	ug/kg	- 10000000 0000000000000000000000000000	
oluene		12 U	ug/kg	12	11 U	ug/kg	11	
,1,2,2-Tetrachloroethane		12 U	ug/kg	12	11 U	ug/kg	11	
hlorobenzene		12 U	ug/kg	12	11 U	ug/kg	11	
thylbenzene		12 U	ug/kg	12	11 U	ug/kg	11	
tyrene	1554 Lg 1573 ()	12 U	ug/kg	12	11 U	ug/kg	11	
ylenes (total)		2 J	ug/kg	12	4 J	ug/kg	11	
	10000							
SEMIVOLATILES 90-SOW	ug/kg							
henol	All Andrews	410 U	ug/kg	410	380 U	ug/kg	380	
is(2-Chloroethyl) ether	14 A	410 U	ug/kg	410	380 U	ug/kg	380	
-Chlorophenol	l l	410 U	ug/kg	410	380 U	ug/kg	380	
,3-Dichlorobenzene	14	410 U	ug/kg	410	380 U	ug/kg	380	
,4-Dichlorobenzene	52	410 U	ug/kg	410	380 U	ug/kg	380	
	A475 (A-First				
	4.5							
	00 0000 00 0000 00 0000		선생					
				Transfer (1996) Santa Caracteria				
	#							
	19/19							
	\$\$\.		사람들 그 영국회				5160 - 51	
	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					•		

Lab Sample Number: Site Locator Collect Date:	WH 16-S 05-	10001 ITING S-06-04 OCT-92 L UNITS	DL	10	22910004 WHITING 6-SS-10-05 06-OCT-92 QUAL UNITS	DL	
1,2-Dichlorobenzene	410 U	ug/kg	410	380		380	
2-Methylphenol	410 U	ug/kg	410	380		380	
2,2-oxybis(1-Chloropropane)	410 U	ug/kg	410	380		3 80	
4-Methylphenol	410 U	ug/kg	410	380		380	
N-Nitroso-di-n-propylamine	410 U	ug/kg	410	380		380	
Hexachloroethane	410 U	ug/kg	410	380		380	
Nitrobenzene	410 UJ	ug/kg	410	380		380	
Isophorone	410 UJ	ug/kg	410	380		380	
2-Nitrophenol	410 U	ug/kg	410	380		380	
2,4-Dimethylphenol	410 U	ug/kg	410	380		380 300	
bis(2-Chloroethoxy) methane	410 U	ug/kg	410	380		380	
2,4-Dichlorophenol	410 U	ug/kg	410 410	380		380 380	endadi Militero (6
1,2,4-Trichlorobenzene Naphthalene	410 U 410 U	ug/kg	410	380 380		380	
4-Chloroaniline	410 U	ug/kg	410	380		380	
Hexachlorobutadiene	410 U	ug/kg	410	380		380	
4-Chloro-3-methylphenol	410 U	ug/kg	410	380		380	
2-Methylnaphthalene	410 U	ug/kg ug/kg	410	380		380	
Hexachlorocyclopentadiene	410 U	ug/kg	410	380		380	
2,4,6-Trichlorophenol	410 U	ug/kg	410	380		380	
2,4,5-Trichlorophenol	990 U	ug/kg	990	920		920	
2-Chloronaphthalene	410 U	ug/kg	410	380		380	
2-Nitroaniline	990 U	ug/kg	990	920		920	
Dimethylphthalate	410 U	ug/kg	410	380		380	
Acenaphthylene	410 U	ug/kg	410	380		380	
2.6-Dinitrotoluene	410 UJ	ug/kg	410	380		380	
3:Nitroaniline	990 U	ug/kg	990	920		920	
Acenaphthene	77 J	ug/kg	410	380		380	
2.4-Dinitrophenol	990 U	ug/kg	990	920		920	
4-Nitrophenol	990 U	ug/kg	990	920	U ug/kg	920	
Dibenzofuran	410 U	ug/kg	410	380	U ug/kg	380	
2,4-Dinitrotoluene	410 UJ	ug/kg	410	380		380	
Diethylphthalate	410 U	ug/kg	410	380		3 80	
4-Chlorophenyl-phenylether	410 U	ug/kg	410	380		380	
fluorene	110 J	ug/kg	410	380	• •	380	
4-Nitroaniline	990 U	ug/kg	990	920		920	
4,6-Dinitro-2-methylphenol	990 U	ug/kg	990	920		920	
N-Nitrosodiphenylamine	410 U	ug/kg	410	380		380	
4-Bromophenyl-phenylether	410 U	ug/kg	410	380		380	
Hexach Lorobenzene	410 U	ug/kg	410	380		380	
Pentachlorophenol	990 U	ug/kg	990	920		920	
Phenanthrene	340 J	ug/kg	410	380		380 380	
Anthracene	410 U	ug/kg	410	380 380		380	
Carbazole	410 U	ug/kg	410			380 380	
Di-n-butylphthalate	410 UJ 270 J	ug/kg	410 410	380 (380 (380 380	
Fluoranthene	190 J	ug/kg	410	380		380 380	
Pyrene Rutul hanvul phthal ata	410 U	ug/kg	410	380		380	
Butylbenzylphthalate	410 U	ug/kg ug/kg	410	380		380	
3,3-Dichlorobenzidine Benzo (a) anthracene	410 U	ug/kg ug/kg	410	380		380	
Chrysene	410 U	ug/kg	410	380		380	
bis(2-Ethylhexyl) phthalate	150 J	ug/kg	410	39		380	
TANK TRIPLINGS PROBLEM		-3/ 23	7.7		- 49/53		

Lab Sample Nu Lo Collect	Site Vocator 16- Date: 05	2910001 WHITING SS-06-04 I-OCT-92 UAL UNITS	DL	WI 16-9 06-	910004 HITING SS-10-05 -OCT-92 AL UNITS	DL	:	
Di-n-octylphthalate Benzo (b) fluoranthene	410 U 77 J	ug/kg ug/kg	410 410	380 U 380 U	ug/kg ug/kg	380 380		
Benzo (k) fluoranthene	48 J	ug/kg	410	380 U	ug/kg	380		
Benzo (a) pyrene	44 J	ug/kg	410	380 U	ug/kg	380		
Indeno (1,2,3-cd) pyrene	410 U	ug/kg	410	380 U	ug/kg	380		
Dibenzo (a,h) anthracene	410 U	ug/kg	410	380 U	ug/kg	380	1911 (1911 1919) 1911 (1911 1919)	
Benzo (g,h,i) perylene	410 ป	ug/kg	410	38 0 U	ug/kg	380		
CLP PESTICIDES/PCBS 90-SOW U	ıg/kg							
alpha-BHC	2.1 U	l ug/kg	2.1	3.9 U	ug/kg	3.9	30,330,00,30,3 19,00,00,30,30,30	
beta-BHC	2.1 U		2.1	3.9 U	ug/kg	3.9		
delta-BHC	2.1 U		2.1	3.9 U	ug/kg	3.9	0000 N. (100000 N. (1000) 10000 N. (1000) N. (1000) 10000 N. (1000) N. (1000)	
gamma-BHC (Lindane)	2.1 0		2.1	3.9 บ	ug/kg	3.9		
Heptachlor	2.1 U.		2.1	3.9 U	ug/kg	3.9		
Aldrin	2.1 U.		2.1	3.9 U	ug/kg	3.9		
Heptachlor epoxide	2.1 0.	l ug/kg	2.1	3.9 U	ug/kg	3.9		
Endosulfan I Dieldrin	2.1 U. 4.1 U.		2.1 4.1	3.9 U 7.6 U	ug/kg	3.9 7.6		
4,4-DDE	30 J	l ug/kg ug/kg	4-1	7.8 U 83	ug/kg ug/kg	7.5 8		
Endrin	4.1 U.	ug/kg ug/kg	4.1	7.6 U	ug/kg ug/kg	7.6		
Endosulfan II	4.1 U.		4.1	7.6 U	ug/kg	7.6	10 2 3 4 1 0 3 4 2 0 3 3 3 3 3 1 1 3 3 3 1	
4.4-DDD	36 J	ug/kg	4	4.9 J	ug/kg	8	980,450 (1997) (1997) 1980,950 (1997) (1997) 1980,850 (1997) (1997)	.** • E
Endosulfan sulfate	4.1 U.		4.1	7.6 U	ug/kg	7.6		·¥
4,4-DDT	5.7 J	ug/kg	4	52	ug/kg	8		
Methoxychlor	21 U.		21	39 U	ug/kg	39		
Endrin ketone	4.1 U.		4.1	7.6 U	ug/kg	7.6		ř
Endrin aldehyde	4.1 U.		4.1	7.6 U	ug/kg	7.6		
alpha-Chlordane	2.1 U. 2.1 U.		2.1 2.1	3.9 U 3.9 U	ug/kg	3.9 3.9		
gamma-Chlordane Toxaphene	2.1 0. 210 U.		210	3.9 U	ug/kg ug/kg	390		j.
Aroclor-1016	41 U.		41	76 U	ug/kg	76		
Aroclor-1221	83 U.		83	150 U	ug/kg	150		4
Aroclor-1232	41 U.		41	76 U	ug/kg	76		
Aroclor-1242	41 U.		41	76 U	ug/kg	76		
Aroclor-1248	41 U.		41	76 U	ug/kg	76		ŧ
Aroclor-1254	41 U.		41	76 U	ug/kg	76	480,010	
Aroclor-1260	41 U.	l ug/kg	41	76 U	ug/kg	76		
CLP METALS AND CYANIDE m	g/kg						300 300 00 00 00 00 200 20 00 00 00 00 00	•
Aluminum	11000	mg/kg	40	17300	mg/kg	40		
Antimony	6.7 J	mg/kg	12	5.9 J	mg/kg	12		
Arsenic	15.1	mg/kg	Ž	11	mg/kg	2	2002 (120 1440) (40) 10 (20) (13 (20) (10)	1
Barium	175	mg/kg	40	122	mg/kg	40	4004 (10050 000)) 604 (10050 000 000)	
Beryllium	.19 J	mg/kg	1	.19 J	mg/kg	1	ide space introducer. To det language producer. Data to de la paragla s	
Cadmium	9	mg/kg	1	8.7	mg/kg	1		
Calcium	5870	mg/kg	1000	1370	mg/kg	1000		
Chromi um	24.7	mg/kg	2	36.9	mg/kg	2		*
Cobalt	4.5 J	mg/kg	10	9.6 J	mg/kg	10	2223 - 111 12 13 13 13 13 13 13 13 13 13 13 13 13 13	
Copper	143 37500	mg/kg	5 20	3620 74800	mg/kg	7 20		
Iron Lead	37500 766	mg/kg mg/kg	20 1	74800 567	mg/kg mg/kg	20 1		
Magnesium	586 J	mg/kg	1000	400 J	mg/kg	1000	(1) 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
		97 "3				TT 경상 남자 나는 그리고를 받으니?		*
						그는 그를 잃었다면서 보다 하다면 했다.		

		Site '	16 Subsurface So	oil Data	
Lab Sample No L Collect	Site WHIT ocator 16-SS- Date: 05-00	ING 06-04	22910004 WHITING 16-SS-10-05 06-OCT-92 QUAL UNITS	DL	
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc. Cyanide	. 25 J 24.3 412 J .55 U 4.3 514 J .42 U 19 518	mg/kg .1 mg/kg 8 35 mg/kg 1000 mg/kg 1 mg/kg 2 mg/kg 1000 mg/kg 2 mg/kg 1000 mg/kg 2 mg/kg 10 27 mg/kg 10 27	638 mg/kg .17 J mg/kg 5.9 mg/kg 166 J mg/kg .48 U mg/kg 33.4 mg/kg 33.2 J mg/kg 7.9 mg/kg mg/kg mg/kg mg/kg	3 .1 8 1000 1 2 1000 2 10 10 4	
Total organic carbon Total petroleum hydrocarbons	•	mg/kg mg/kg	- mg/kg - mg/kg		
			*		
			J. Communication of the second		
			1		
					·}

Naval	Air	Station Whit	
		A: 4 A A	

Station Whit Field, Milton, Florida Site 16 Sur, e Soil Data

Lab Sample Colle	Number: Site Locator ect Date:	VALUE	S22454002 WHITING 16-SL-01 11-AUG-92 QUAL UNITS	DL	VALUE	22454 WHIT 16-SL 11-AU QUAL	TING 01	DL	VALUE	S22454003 WHITING 16-SL-02 11-AUG-92 QUAL UNITS	DL	VALUE	WH 16- 11-	54003 ITING SL-02 AUG-92 L UNITS	DL
								. 9							
CLP VOLATILES 90-SOW	ug/kg														
Chloromethane	#. 1		ug/kg				ug/kg	11		- ug/kg			1 U	ug/kg	11
Bromomethane	i i		ug/kg				ug/kg	11	. 19090000000000000000000000000000000000	- ug/kg			1 U	ug/kg	11
Vinyl chloride	計		ug/kg			11 U	ug/kg	11		ug/kg		556	1 U	ug/kg	11
Chloroethane Methylene chloride	다. 당	i Marian . I	ug/kg ug/kg			1 U 1 UJ	ug/kg ug/kg	11. 6.		- ug/kg - ug/kg			1 U 6 UJ	ug/kg ug/kg	11 6
Acetone	<u> </u>		ug/kg			11 U	ug/kg	11		- ug/kg			5 UJ	ug/kg	11
Carbon disulfide	ř		ug/kg				ug/kg	6		- ug/kg		707	6 U	ug/kg	6
1,1-Dichloroethene			ug/kg			6 U	ug/kg	6		- ug/kg			6 U	ug/kg	6
1,1-Dichloroethane	10		ug/kg			6 U	ug/kg	6		- ug/kg		1.5	6 U	ug/kg	6
1,2-Dichloroethene (total)	i i	•	ug/kg				ug/kg	6		- ug/kg		2 · ·	6 U	ug/kg	6
Chloroform		•	ug/kg			6 U	ug/kg	6		- ug/kg			6 U	ug/kg	6
1,2-Dichloroethane	j.	- 100 til 100 til 1	ug/kg				ug/kg	6		- ug/kg			6 U	ug/kg	6
2-Butanone		•	ug/kg				ug/kg	11		- ug/kg			1 U	ug/kg	. 11
1,1,1-Trichloroethane			ug/kg			6 U	ug/kg ug/kg	6 6		 ug/kg ug/kg 		WW.	6 U 6 U	ug/kg ug/kg	6
Carbon tetrachloride Bromodichloromethane	3.		ug/kg ug/kg			6 U	ug/kg ug/kg	6		- ug/kg		6 ×	6 U	ug/kg ug/kg	6
1,2-Dichloropropane			ug/kg			6 U	ug/kg	6		- ug/kg			6 U	ug/kg	6
cis-1,3-Dichloropropene	i i		ug/kg			6 U	ug/kg	6		- ug/kg		AC.	6 Ū	ug/kg	6
Trichloroethene			ug/kg			6 U	ug/kg	6		- ug/kg			6 U	ug/kg	6
Dibromochloromethane	T.		ug/kg			6 U	ug/kg	6		ug/kg		Ť	6 U	ug/kg	6
1,1,2-Trichloroethane		-	ug/kg			6 U	ug/kg	6		- ug/kg			6 U	ug/kg	6
Benzene			ug/kg			6 U	ug/kg	6		- ug/kg			6 U	ug/kg	6
trans-1,3-Dichloropropene			ug/kg			6 U	ug/kg	6		- ug/kg			6 U	ug/kg	6
Bromoform	.*1	•	ug/kg			6 U	ug/kg	6° 11		- ug/kg		2.5	6 U 1 U	ug/kg	6 11
4-Methyl-2-pentanone			ug/kg			1 U 1 U	ug/kg	11		ug/kgug/kg			1 U	ug/kg ug/kg	11
2-Hexanone Tetrachloroethene			ug/kg ug/kg			6 U	ug/kg ug/kg	6		- ug/kg			6 U	ug/kg ug/kg	6
Toluene			ug/kg			6 U	ug/kg	6		- ug/kg			6 U	ug/kg	:6
1,1,2,2-Tetrachloroethane			ug/kg			6 U	ug/kg	6		- ug/kg			6 Ū	ug/kg	6
Chlorobenzene		•	ug/kg			6 U	ug/kg	6		- ug/kg			6 U	ug/kg	6
Ethylbenzene		-	ug/kg			6 U	ug/kg	6		- ug/kg			6 U	ug/kg	6
Styrene			ug/kg			6 U	ug/kg	6		- ug/kg			<u>6</u> U	ug/kg	:6
Xylenes (total)		.	ug/kg	sahinga king Ki		5 J	ug/kg	6		- ug/kg			2 J	ug/kg	,6
				in Alexander				\$. \$							
CLP SEMIVOLATILES 90-SOW	ug/kg		- با/ مدر		77	70 U	ug/kg	370		- ug/kg		7.0	0 U	ug/kg	380
Phenol bis(2-Chloroethyl) ether			ug/kg ug/kg				ug/kg ug/kg	370°		ug/kg			0 U	ug/kg ug/kg	380
2-Chlorophenol			ug/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ug/kg	370		- ug/kg			οu	ug/kg	380
1,3-Dichlorobenzene	•		ug/kg				ug/kg	370		- ug/kg			0 U	ug/kg	380
1.4-Dichlorobenzene		-	ug/kg			70 U	ug/kg	370		- ug/kg		4. *	0 U	ug/kg	380
1,2-Dichlorobenzene		et et jarren 🚣	ug/kg			70 U	ug/kg	370		- ug/kg			0 U	ug/kg	380
2-Methylphenol	v [*]		ug/kg	at pro-		70 U	ug/kg	370		- ug/kg			0 U	ug/kg	380
2,2-oxybis(1-Chloropropane)	â		ug/kg				ug/kg	370		- ug/kg			0 U	ug/kg	380
4-Methylphenol	9		ug/kg				ug/kg	370		- ug/kg			0 0	ug/kg	380 380
N-Nitroso-di-n-propylamine			ug/kg				ug/kg	370		- ug/kg			0 U	ug/kg	380 380
Hexachloroethane			ug/kg				ug/kg	370 370		ug/kgug/kg			0 U	ug/kg ug/kg	380
Nitrobenzene Isophorone	Į.		ug/kg ug/kg				ug/kg ug/kg	370 370		- ug/kg - ug/kg			0 U	ug/kg ug/kg	380 380
2-Nitrophenot	100 100 100	za Producevo J Harando Valenta	ug/kg				ug/kg	370		- ug/kg			0 U	ug/kg	380
2,4-Dimethylphenol	- 19 - 18		ug/kg				ug/kg	370		- ug/kg			0 U	ug/kg	380

,	ole Number: Site Locator llect Date: VALUE	\$22454002 WHITING 16-SL-01 11-AUG-92 QUAL UNITS	DL	WH 16- 11-	54002 IITING SL-01 AUG-92 AL UNITS	DL	WH 16- 11-	454003 ITTING SL-02 AUG-92 L UNITS	DL	WH 16- 11-	54003 ITING SL-02 AUG-92 L UNITS	DL
bis(2-Chloroethoxy) methane		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
2,4-Dichlorophenol 1,2,4-Trichlorobenzene	건 바람이	- ug/kg		370 U 370 U	ug/kg	370 370		ug/kg		380 U 380 U	ug/kg	380 380
Naphthalene	물 함께 함께 밝다.	- ug/kg - ug/kg	4	370 U	ug/kg ug/kg	370		ug/kg ug/kg		380 U	ug/kg ug/kg	380
4-Chloroaniline		- ug/kg		370 U	ug/kg ug/kg	370		ug/kg ug/kg		380 U	ug/kg ug/kg	380
Hexach Lorobutadiene		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
4-Chloro-3-methylphenol	· 自己的 自己的 (1)	- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
2-Methylnaphthalene		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
Hexachlorocyclopentadiene		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
2,4,6-Trichlorophenol		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
2,4,5-Trichlorophenol		- ug/kg		1800 U	ug/kg	1800		ug/kg		1800 U	ug/kg	1800
2-Chloronaphthalene 2-Nitroaniline		- ug/kg		370 U 1800 U	ug/kg	370 1800	•	ug/kg		380 U	ug/kg	380
Dimethylphthalate		- ug/kg		370 U	ug/kg ug/kg	370	•	ug/kg		1800 UJ 380 U	ug/kg	1800 380
Acenaphthylene		- ug/kg - ug/kg		370 U	ug/kg ug/kg	370		ug/kg ug/kg		380 U	ug/kg ug/kg	380
2.6-Dinitrotoluene		- ug/kg		370 U	ug/kg ug/kg	370		ug/kg		380 U	ug/kg ug/kg	380
3-Nitroaniline		ug/kg		1800 U	ug/kg	1800		ug/kg		1800 UJ	ug/kg	1800
Acenaphthene		- ug/kg		370 U	ug/kg	370	_	ug/kg		380 U	ug/kg	380
2,4-Dinitrophenol		- ug/kg		1800 U	ug/kg	1800	•	ug/kg		1800 U	ug/kg	1800
4-Nitrophenol		- ug/kg		1800 U	ug/kg	1800	•	ug/kg		1800 UJ	ug/kg	1800
Dibenzofuran		 ug/kg 		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
2,4-Dinitrotoluene		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
Diethylphthalate		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
4-Chlorophenyl-phenylether		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
Fluorene 4-Nitroaniline	A	- ug/kg		370 บ 1800 บม	ug/kg	370 1800		ug/kg		380 U 1800 UJ	ug/kg	380
4.6-Dinitro-2-methylphenol		- ug/kg - ug/kg		1800 U	ug/kg ug/kg	1800		ug/kg ug/kg		1800 U	ug/kg ug/kg	1800 1800
N-Nitrosodiphenylamine		- ug/kg - ug/kg		370 U	ug/kg ug/kg	370		ug/kg ug/kg		380 U	ug/kg ug/kg	380
4-Bromophenyl-phenylether		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
flexach Lorobenzene		- ug/kg		370 U	ug/kg	370		ug/kg	dala kwili	380 U	ug/kg	380
Pentachlorophenol		- ug/kg		1800 U	ug/kg	1800		ug/kg		1800 U	ug/kg	1800
Phenanthrene	*	- ug/kg		370 U	ug/kg	370	*	ug/kg		380 U	ug/kg	380
Anthracene		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
Carbazole		- ug/kg		-	ug/kg	A.		ug/kg		-	ug/kg	
Di-n-butylphthalate		- ug/kg		370 U	ug/kg	370		ug/kg		380 UJ	ug/kg	380
Fluoranthene		- ug/kg		370 U	ug/kg	370	•	ug/kg		380 U	ug/kg	380
Pyrene		- ug/kg		370 UJ	ug/kg	370		ug/kg		380 UJ	ug/kg	380
Butylbenzylphthalate		- ug/kg		370 UJ 730 U	ug/kg	370 730		ug/kg		380 UJ 760 U	ug/kg	380 760
3,3-Dichlorobenzidine Benzo (a) anthracene	A Land	- ug/kg - ug/kg		370 U	ug/kg ug/kg	370		ug/kg ug/kg		380 U	ug/kg ug/kg	380
Chrysene		- ug/kg - ug/kg		370 UJ	ug/kg ug/kg	370		ug/kg		380 UJ	ug/kg ug/kg	380
bis(2-Ethylhexyl) phthalate		- ug/kg		370 UJ	ug/kg	370		ug/kg		380 U	ug/kg	380
Di-n-octylphthalate		ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
Benzo (b) fluoranthene		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
Benzo (k) fluoranthene		- ug/kg		370 U	ug/kg	370		ug/kg		380 U	ug/kg	380
Benzo (a) pyren e		- ug/kg		370: U	ug/kg	370	•	ug/kg		380 U	ug/kg	380
Indeno (1,2,3-cd) pyrene		- ug/kg		370 U	ug/kg	370	•	ug/kg		380 U	ug/kg	380
Dibenzo (a,h) anthracene		- ug/kg		370 U	ug/kg	370		ug/kg	12:00:000 10:00 20:00:000 00:00	380 U	ug/kg	380
Benzo (g,h,i) perylene		- ug/kg	상이되었다는 기계인 기계되는 기계 기계	370 U	ug/kg	370	-	ug/kg		:380 <u>`</u> U	ug/kg	380
CLP PESTICIDES/PCBS 90-SON	ug/kg				<u>.</u>						į.	
alpha-BHC	₩ 3 /	- ug/kg		8.9 U	ug/kg	8.9		ug/kg		9.2 U	ug/kg	9.2
												-

	Lab Sample Number: Site Locator Collect Date:	10 10	22454002 WHITING 6-SL-01 1-AUG-92 WAL UNITS	DL	W 16 11	2454002 WHITING G-SL-01 I-AUG-92 WAL UNITS	DL	16 11	2454003 HITING -SL-02 -AUG-92 AL UNITS	DL	16 16	2454003 WHITING S-SL-02 I-AUG-92 WAL UNITS	
beta-BHC			ug/kg	lika i	8.9 U	ug/kg	8.9		ug/kg		9.2 U	ug/kg	9.2
delta-BHC gamma-BHC (Lindane)			ug/kg ug/kg		8.9 U 8.9 U	ug/kg ug/kg	8.9 8.9	-	ug/kg ug/kg		9.2 U 9.2 U	ug/kg ug/kg	9.2 9.2
Heptachlor			ug/kg		8.9 U	ug/kg ug/kg	8.9	į.	ug/kg		9.2 U	ug/kg ug/kg	9.2
Aldrin			ug/kg		8.9 U	ug/kg	8.9		ug/kg		9.2 U	ug/kg	9.2
Heptachlor epoxide			ug/kg		8.9 U	ug/kg	8.9		ug/kg		9.2 U	ug/kg	9.2
Endosulfan I		•	ug/kg		8 <u>.9</u> U	ug/kg	8.9		ug/kg		9.2 U	ug/kg	9.2
Dieldrin			ug/kg	i saka da	33	ug/kg	18	-	ug/kg		_18 U	ug/kg	18
4,4-DDE Endrin			ug/kg ug/kg		18 U 18 U	ug/kg ug/kg	18 18		ug/kg ug/kg		5.5 J 18 U	ug/kg ug/kg	18 18
Endosulfan II			ug/kg ug/kg		18 U	ug/kg ug/kg	18		ug/kg		18 U	ug/kg ug/kg	18
4.4-DDD			ug/kg		18 U	ug/kg	18	₩	ug/kg		18 U	ug/kg	18
Endosulfan sulfate			ug/kg		18 U	ug/kg	18	_	ug/kg		18 U	ug/kg	18
4,4-DDT			ug/kg		18 U	ug/kg	18	-	ug/kg		9.1 J	ug/kg	18
Methoxychlor			ug/kg		89 U	ug/kg	89	•	ug/kg		92 U	W- W	92
Endrin ketone Endrin aldehyde			ug/kg ug/kg		18 U	ug/kg ug/kg	18	<u>.</u>	ug/kg ug/kg		18 U	ug/kg ug/kg	18
alpha-Chlordane			ug/kg ug/kg		89 U	ug/kg ug/kg	89		ug/kg		92 U	ug/kg	92
gamma-Chlordane		생활하다 작가	ug/kg		89 U	ug/kg	89	•	ug/kg		92 U	ug/kg	92
Toxaphene			ug/kg		180 U	ug/kg	180	•	ug/kg	800000	180 U	ug/kg	180
Aroctor-1016			ug/kg		89 U	ug/kg	89		ug/kg		92 U	ug/kg	92
Aroclor-1221		•	ug/kg		89 U	ug/kg	89		ug/kg		92 U	ug/kg	92
Aroclor-1232 Aroclor-1242			ug/kg		89 U 89 U	ug/kg ug/kg	89 89		ug/kg ug/kg		92 U 92 U	ug/kg ug/kg	92°
Aroctor-1248			ug/kg ug/kg	1. 1. 1. 1. 1. 1.	89 U	ug/kg ug/kg	89		ug/kg ug/kg		92 U		92 92
Aroclor-1254		•	ug/kg		180 U	ug/kg	180		ug/kg		180 U		180
Aroclor-1260			ug/kg		180 U	ug/kg	180		ug/kg		180 U		180
CLP METALS AND CYANIDE	mg/kg												Ž.
Aluminum		10900	mg/kg	40	-	mg/kg		18600	mg/kg	40	-	mg/kg	
Antimony		2.8 U		12	-	mg/kg		2.7 U	mg/kg	12	-	mg/kg	,
Arsenic		1.9 J 19.4 J	mg/kg	2 40	•	mg/kg	ji.	1.4 J 14.7 J	mg/kg	2 40	-	mg/kg	
Barium Beryllium		.12 J	mg/kg mg/kg	40	-	mg/kg mg/kg		.12 J	mg/kg mg/kg	1	-	mg/kg mg/kg	
Cadmium		.63 U		i	-	mg/kg		.61 U	mg/kg	i .	-	mg/kg	
Calcium	process to the contract of the	427 J	mg/kg	1000	-	mg/kg		345 J	mg/kg	1000	-	mg/kg	90.0
Chromium		10.5	mg/kg	2	•	mg/kg	1	14.7	mg/kg	2	-	mg/kg	
Cobalt		1.3 J	mg/kg	10	-	mg/kg		.95 J	mg/kg	10	-	mg/kg	
Copper		9.7 6300	mg/kg	5		mg/kg		8.3	mg/kg	5 20	•	mg/kg	
Iron Lead		76	mg/kg mg/kg	20	-	mg/kg mg/kg		8150 6.7 J	mg/kg mg/kg	20 1	-	mg/kg mg/kg	
Magnesium		106 J	mg/kg	1000	•	mg/kg		134 J	mg/kg	1000	-	mg/kg	
Manganese		80.3	mg/kg	3	-	mg/kg		19.2	mg/kg	3	•	mg/kg	
Mercury		.08 U		.1	-	mg/kg	, A.,	.08 U	mg/kg	.1	-	mg/kg	
Nickel		2.4 U		8		mg/kg		2.4 U	mg/kg	8	-	mg/kg	
Potassium		137 U		1000	•	mg/kg	Ž.	133 U	mg/kg	1000	-	mg/kg	
Selenium		.42 U .34 U		1 2	-	mg/kg		.41 U .33 U	mg/kg	1 2	-	mg/kg	
Silver Sodium		.34 U 196 J	mg/kg mg/kg	1000	-	mg/kg mg/kg		.33 U 189 J	mg/kg mg/kg	1000	-	mg/kg mg/kg	*
Socium Thallium		.47 U	mg/kg mg/kg	1000	- -	mg/kg mg/kg		.46 U	mg/kg	2	-	mg/kg	
Vanadium		23.2	mg/kg	10	-	mg/kg	2.5	28.9	mg/kg	10	-	mg/kg	
Zinc		22.7	mg/kg	4	-	mg/kg	900 344	12.5	mg/kg	4	-	mg/kg	
Y 1			&x. J. J.				34		arge of en Pin				2

Naval	Air	Station	ı Whit	ing	Field,	Milton,	Florida
		Site '	6 Sur	face	Soil	Data	

			N	aval Air Sta Si	tion V te 16	Whiting Field Surface Soil	, Milto Data	n, Florida					
	Lab Sample Number: Site Locator Collect Date:	• •	S22454002 WHITING 16-SL-01 11-AUG-92 QUAL UNITS	DL VAL	.UE	22454002 WHITING 16-SL-01 11-AUG-92 QUAL UNITS	DL	1	22454003 WHITING 6-SL-02 1-AUG-92 WAL UNITS	DL	VALUE	22454003 WHITING 16-SL-02 11-AUG-92 QUAL UNITS	DL
Cyanide		.25 1	J mg/kg	1	-	mg/kg		.24 เ	mg/kg	1	•	mg/kg	
Total organic carb Total petroleum hy	on drocarbons		mg/kg mg/kg		Ξ	mg/kg mg/kg			mg/kg mg/kg			mg/kg mg/kg	

	nple Number: Site Locator ollect Date:	VALUE	WHI 16-S 11-A	54004 TING L-03 UG-92 UNITS	DL	VALUE	WH 16- 11-	54004 ITING SL-03 AUG-92 L UNITS	ÐL	VALUE	WH 16S 08-	56001 ITING 00101 JAN-96 L UNITS	DL	VÁLUE	WH 1650 08-	56018 ITING D0101D JAN-96 L UNITS	DL	
	5			National Institution			•											
CLP VOLATILES 90-SOM	ug/kg						_				224							_
Chloromethane	At A		•	ug/kg	古田茅 新疆学		2 U	ug/kg		12	12 U	ug/kg	12		2 UJ	ug/kg	12	
Bromomethane		4.00	•	ug/kg			2 U	ug/kg		12	12 U	ug/kg	12		2 U	ug/kg	12	
Vinyl chloride			-	ug/kg			2 U	ug/kg		12	12 U	ug/kg	12		2 UJ	ug/kg	12	<u> </u>
Chloroethane			•	ug/kg	Alter Marie		2 U	ug/kg		12	. 12 UJ	ug/kg	12		2 UJ	ug/kg	12	
Methylene chloride			•	ug/kg		•	0 UJ	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	<u> </u>
Acetone			•	ug/kg			2 U	ug/kg		12	12 UJ	ug/kg	12		2 UJ	ug/kg	12	
Carbon disulfide				ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 UJ	ug/kg	12	
1,1-Dichloroethene			•	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
1,1-Dichloroethane	17.00° 40.00° 50.00°			ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
1,2-Dichloroethene (total)			-	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
Chloroform	48		•	ug/kg	- \$6° (12.34)		6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
1,2-Dichloroethane	lefe :		•	ug/kg			6 U	ug/kg		6	12 UJ	ug/kg	12		2 U	ug/kg	12	
2-Butanone			•	ug/kg			2 U	ug/kg		12	12 UJ	ug/kg	12		2 U	ug/kg	12	
1,1,1-Trichloroethane	anse Name		•	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
Carbon tetrachloride			•	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
Bromodichloromethane		enasila ist	• • • • • • • • • • • • • • • • • • • •	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	<u> </u>
1,2-Dichloropropane				ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
cis-1,3-Dichloropropene		1000	•	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
Trichloroethene	Fin		•	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
Dibromochloromethane			-	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
1,1,2-Trichloroethane			-	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	<u> </u>
Benzene			•	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
trans-1,3-Dichloropropene			-	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
Bromoform			•	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
4-Methyl-2-pentanone			•	ug/kg			2 U	ug/kg		12	12 U	ug/kg	12		2 U	ug/kg	12	
2-Hexanone			•	ug/kg			2 U	ug/kg		12	12 U	ug/kg	12		2 UJ	ug/kg	12	
Tetrachloroethene			•	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
Toluene		100	-	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12 12		2 U 2 U	ug/kg	12	
1,1,2,2-Tetrachloroethane				ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12	
Chlorobenzene			•	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12			ug/kg	12	
Ethylbenzene	3.4		.*	ug/kg	197		6 U	ug/kg		6	12 U 12 U	ug/kg	12		2 U 2 U	ug/kg	12	
Styrene	P. Comment		•	ug/kg			6 U	ug/kg		6	12 U	ug/kg	12		2 U	ug/kg	12 12	
Xylenes (total)	rua Ekst		•	ug/kg			1 J	ug/kg		D	12 U	ug/kg	14		2 0	ug/kg	12	-
N CENTAGO ATTUES DO SOL	ug/kg																	
P SEMIVOLATILES 90-SOW	ug/kg	t ja Jahan en		ug/kg		4.1	0 υ	ug/kg		10	390 U	ug/kg	390	7.0	0 U	ug/kg	380	1
Phenol	#g			ug/kg ug/kg			0 U	ug/kg ug/kg		* * * * * * * * * * * * * * * * * * *	390 U	ug/kg ug/kg	390		0 U	ug/kg ug/kg	380	-
bis(2-Chloroethyl) ether				ug/kg ug/kg	121 2		0 U	ug/kg ug/kg		TABLE LIGHTS OF	390 U	ug/kg	390		οŭ	ug/kg	380	
2-Chlorophenol 1.3-Dichlorobenzene				ug/kg ug/kg			0 U	ug/kg ug/kg			390 U	ug/kg	390		0 U	ug/kg	380	
1,4-Dichlorobenzene				ug/kg ug/kg			0 U	ug/kg ug/kg			390 U	ug/kg	390		οŭ	ug/kg	380	
1,4-0 CHEOFODERZERE		. 1994 - 1994 . 1994 - 1994	Alta.	481 KB		7,1		431 KB				~3, r8				-3/ NJ	500	•
					1914.2													
				J. Henry	94/41/4					2.16.38.20								
													200					

Lab Sample Numb S Loca Collect Da	ite tor	S22454004 WHITING 16-SL-03 11-AUG-92 QUAL UNITS	DL	WH 16- 11-	54004 HITING SL-03 AUG-92	DL	WH: 1650 08-	56001 ITING DO101 JAN-96 LUNITS	DL	WH 169 08-	356018 HITING 500101D JAN-96 AL UNITS	DL
1,2-Dichlorobenzene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2-Methylphenol		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2,2-oxybis(1-Chloropropane)		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
4-Methylphenol		ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
N-Nitroso-di-n-propylamine		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Hexachloroethane	The Part .	- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Nitrobenzene	:	- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Isophorone		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2-Nitrophenol		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2,4-Dimethylphenol		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
bis(2-Chloroethoxy) methane		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2,4-Dichlorophenol		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
1,2,4-Trichlorobenzene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Naphthalene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	38 0
4-Chloroaniline	11.	- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Hexachlorobutadiene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
4-Chloro-3-methylphenol	i da jir i	- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2-Nethylnaphthalene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Hexachlorocyclopentadiene		- ug/kg	하시네. 설계	410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2,4,6-Trichlorophenol		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2,4,5-Trichlorophenol		- ug/kg		2000 U	ug/kg	2000	980 U	ug/kg	980	970 U	ug/kg	970
2-Chloronaphthalene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2-Nitroaniline		- ug/kg		2000 UJ	ug/kg	2000	980 U	ug/kg	980	970 :U	ug/kg	970
Dimethylphthalate		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Acenaphthylene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2,6-Dinitrotoluene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
3-Nitroaniline		- ug/kg		2000 UJ	ug/kg	2000	980 U	ug/kg	980	970 U	ug/kg	970
Acenaphthene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
2,4-Dinitrophenol		- ug/kg		2000 U	ug/kg	2000	980 U	ug/kg	980	970 U	ug/kg	970
4-Nitrophenol		- ug/kg		2000 UJ	ug/kg	2000	980 U	ug/kg	980	970 U	ug/kg	970
Dibenzofuran	100 m	- ug/kg		410 U	ug/kg	410	390 Ú	ug/kg	390	380 U	ug/kg	380
2,4-Dinitrotoluene		- ug/kg	기술하다 보고	410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Diethylphthalate	*	- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
4-Chlorophenyl-phenylether		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Fluorene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
4-Nitroaniline		- ug/kg		2000 UJ	ug/kg	2000	980 U	ug/kg	980	970 U	ug/kg	970
4,6-Dinitro-2-methylphenol		- ug/kg		2000 U	ug/kg	2000	980 U	ug/kg	980	970 U	ug/kg	970
N-Nitrosodiphenylamine		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
4-Bromophenyl-phenylether		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Hexachlorobenzene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Pentachlorophenol		- ug/kg		2000 U	ug/kg	2000	980 U	ug/kg	980	970 U	ug/kg	970
Phenanthrene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Anthracene		- ug/kg		410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Carbazole		- ug/kg		*,00	ug/kg	4.0	390 U	ug/kg	390	380 U	ug/kg	380
Di-n-butylphthalate		- ug/kg		410 UJ	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Fluoranthene		- ug/kg	10.00	410 U	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
Pyrene		- ug/kg		410 UJ	ug/kg	410	390 U	ug/kg	390	380÷U	ug/kg ∘ug/kg	380
Butylbenzylphthalate	- YOMEN	- ug/kg		410 UJ	ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
3,3-Dichlorobenzidine		- ug/kg		820 U	ug/kg ug/kg	820	390 U	ug/kg	390	380 U	ug/kg ug/kg	380
Benzo (a) anthracene		- ug/kg		410 U	ug/kg ug/kg	410	390 U	ug/kg	390	380 U	ug/kg ug/kg	380
Chrysene		- ug/kg		410 UJ	ug/kg ug/kg	410	390 U	ug/kg	390	380 U	ug/kg	380
bis(2-Ethylhexyl) phthalate		- ug/kg		43 J	ug/kg ug/kg	410	390 U	ug/kg	390	380°U	ug/kg	380
-10te continents Miliarate		431 v.a		43.0	ray ka	710		us/ Kg	370	300 0	- na/ va	300

Lab	Sample Number: Site Locator Collect Date:	VALUE	S22454004 WHITING 16-SL-03 11-AUG-92 QUAL UNITS	DL	16 11	454004 HITING -SL-03 -AUG-92 AL UNITS	DL	WH I 1650 08-J	66001 TING 10101 IAN-96 . UNITS	DL	WH: 1650 180	56018 ITING IO101D JAN-96 LUNITS	DL
Di-n-octylphthalate Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (g,h,i) perylene		•	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg		410 U 410 U 410 U 410 U 410 U 410 U 410 U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	410 410 410 410 410 410 410	390 U 390 U 390 U 390 U 390 U 390 U 390 U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	390 390 390 390 390 390 390	380 U 380 U 380 U 380 U 380 U 380 U 380 U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	380 380 380 380 380 380 380
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE Endrin Endosulfan II 4,4-DDT Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane gamma-Chlordane Toxaphene Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1254	ug/kg		ug/kg ug/kg		9.9 U 9.9 U 9.9 U 9.9 U 9.9 U 9.9 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U 20	ug/kg ug/kg	9.9 9.9 9.9 9.9 9.9 9.9 20 20 20 20 20 20 20 20 20 20 20 20 99 20 20 20 20 20 20 20 20 20 20 20 20 20	2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 3.9 U 3.9 U 3.9 U 3.9 U 3.9 U 3.9 U 3.9 U 20 U 2 U 2 U 3.9 U 3.9 U 3.9 U 3.9 U 3.9 U 3.9 U 3.9 U	Ug/kg Ug/kg	2 2 2 2 2 2 2 2 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9		ug/kg ug/kg	The state of the s
Aroclor-1260 CLP METALS AND CYANIDE Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	mg/kg	14200 3 3.1 42.9 .12 1.6 1180 14.9 1.7 50.8 13600 121 228	mg/kg J mg/kg J mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	40 12 2 40 1 1 1000 2 10 5 20 1	200 U	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	200	39 U 4250 J 12 UJ .94 J 13.2 J .09 J .28 J 210 J 4 10 U 4.8 J 2340 J 7.8 J 103 J	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	39 40 12 2 40 1 1 1000 2 10 5 20 .6	5840 J 12 UJ 1.2 J 13.6 J 1 U .3 J 173 J 5.8 10 U 5 UJ 2910 J 77.5 J 150 J	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	40 12 2 40 1 1 1000 2 10 5 20 .6

さいので、日本の日本の一般を表現を記れている。

				Navac Att		6 Surface Soil		,						
	Lab Sample Number: Site Locator Collect Date:	1	22454004 WHITING 6-SL-03 1-AUG-92 UAL UNITS	DL	VALUE	22454004 WHITING 16-SL-03 11-AUG-92 QUAL UNITS	DL	WH 16S 08-	56001 ITING 00101 JAN-96 L UNITS	DL	WH 165: 08-	56018 ITING D0101D JAN-96 L UNITS	DL	
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide		228 .1 5.5 J 230 J .46 U .87 J 232 J .5 U 22.7 128 .27 U	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 01 8 1000 1 2 1000 2 10 4		- mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg		185 .1 U 8 U 1000 UJ .19 J 2 U 129 J 2 U 6.8 J 6.4 .12 J	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 .1 .8 1000 1 2 1000 2 10 4	151 .1 U 1.9 J 1000 UJ 1 U 2 U 1000 UJ 2 U 8.6 J 6.9 .12 J	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 .1 8 1000 1 2 1000 2 10 4	
Total organic carbo Total petroleum hyd			mg/kg mg/kg			- mg/kg - mg/kg			mg/kg mg/kg		- -	mg/kg mg/kg		

	ab Sample Number Si Locate Collect Date	te or	RA856018 WHITING 16S00101D 09-JAN-96 QUAL UNITS	DL		RA856006 WHITING 16S00201 09-JAN-96 QUAL UNITS	DL	VALUE	RA856007 WHITING 16S00301 09-JAN-96 QUAL UNITS	DL	W 16: 08	B56003 HITING S00401 -JAN-96 AL UNITS	DL
													,
CLP VOLATILES 90-SOW	ug/kg	9	열 경험 내용하다										
Chloromethane			ug/kg		11		11		UJ ug/kg	13	11 U	ug/kg	11
Bromomethane			ug/kg	- Ar is my	11		11	13	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	13	11 U	ug/kg	11
Vinyl chloride			ug/kg		11		11	and the second second second second	UJ ug/kg	13	11 U	ug/kg	11
Chloroethane Methylene chloride			ug/kg ug/kg		11 11		11 11	13 13		13 13	11 UJ 11 U	ug/kg ug/kg	11 11
Acetone			ug/kg ug/kg		11		11		UJ ug/kg	13	11 UJ		11
Carbon disulfide		•	ug/kg	and the face	11		11	13		13	11 0	ug/kg	ii
1.1-Dichloroethene		-	ug/kg		11		11	13		13	11 U	ug/kg	11
1,1-Dichloroethane			ug/kg		11		11	13		13	11 U	ug/kg	11
1,2-Dichloroethene (t	otal)	-	ug/kg		11	U ug/kg	11	13	U ug/kg	13	11 U	ug/kg	11
Chloroform		-	ug/kg		11		11	13	(t	13	11 U	ug/kg	11
1,2-Dichloroethane		•	ug/kg		11	v. v	11		UJ ug/kg	13	11 UJ		11
2-Butanone		-	ug/kg	1,, 1	11		11		UJ ug/kg	13	11 UJ		11
1,1,1-Trichloroethane			ug/kg	e di	11 11		11 11	13 13		13 13	11 U 11 U	ug/kg	11 11
Carbon tetrachloride Bromodichloromethane			ug/kg ug/kg		11		11	13		13	11 U	ug/kg ug/kg	11
1.2-Dichloropropane			ug/kg		11		11	13		13	11 U	ug/kg	11
cis-1,3-Dichloroprope	ne	_	ug/kg	341	11		11	13		13	11 U	ug/kg	11
Trichloroethene		-	ug/kg		11		11	13		13	11 Ū	ug/kg	11
Dibromochloromethane			ug/kg		11		11	13		13	11 U	ug/kg	11
1,1,2-Trichloroethane		-	ug/kg		.11	U ug/kg	11	13		13	11 U	ug/kg	11
Benzene		•	ug/kg		11		11	13		13	11 U	ug/kg	11
trans-1,3-Dichloropro	pene		ug/kg		11		11	13		13	11 U	ug/kg	11
Bromoform		•	ug/kg		11		11	13		13	11 U	ug/kg	11
4-Methyl-2-pentanone			ug/kg		11 11		11 11		UJ ug/kg	13 13	11 ,U 11 .U	ug/kg	11
2-Hexanone Tetrachloroethene		그리 일본하기를	ug/kg ug/kg		11		11	13 13		13	11 U	ug/kg ug/kg	11 11
Toluene			ug/kg		11		11	13 13		13	11 0	ug/kg ug/kg	11
1,1,2,2-Tetrachloroet	hane		ug/kg		ii		11	13		13	11 Ŭ	ug/kg	ii
Chlorobenzene			ug/kg		11		11	13		13	11 U	ug/kg	ii
Ethylbenzene			ug/kg	7 P	11		11	13		13	11 Ŭ	ug/kg	11
Styrene	그 가장 생	e da da 1. Territoria	ug/kg		11		11	13	U ug/kg	13	11 U	ug/kg	11
Xylenes (total)	•	-	ug/kg		11	U ug/kg	11	13	U ug/kg	13	11 U	ug/kg	11
		그 4번 중에 다											
CLP SEMIVOLATILES 90-S0	₩ ug/kç				770		770	,,,,			770		770
Phenol			ug/kg		370 370		370 370			420 420	370 U 370 U	ug/kg	37 0 37 0
bis(2-Chloroethyl) et 2-Chlorophenol	ner		ug/kg ug/kg		370 370		370 370	420 420		420	370 U	ug/kg ug/kg	370 370
1,3-Dichlorobenzene		- 1000 kg kg kg kg kg kg kg kg kg kg kg kg kg	ug/kg		370		370	420		420	370 U	ug/kg	370
1,4-Dichlorobenzene		u videbili 💄	ug/kg		370		370	420		420	370 U	ug/kg	370
			-5,3			-3,3		177			3.0	-3,	
	st, s Chwr diffe 104 Seine 200												
				. \$100 000 000 000 000 000 000 000 000 00									
							3 5						
							i i						
	ACTA (1965) 16 V. C. ASA (1962)												
							3						
							ġ						
	Sagara (Maraka) (1905) Maraka (Maraka)		나를 즐겁게 되었다.				ĝ		이 나는 신청하다를	Vale Calle			

1,2-Dichlorobenzene 2-Methylphenol 2,2-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Ghoronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		00101D JAN-96 UNITS	DL	16 09	WHITING SSOO201 P-JAN-96 JAL UNITS	DL	VALUE			DL	VALUE	WHITING 16S00401 08-JAN-9 QUAL UNI	6	DL
2,2-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,45-Trichlorophenol 2,45-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370
4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370
N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370		'kg	370
Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg	THOUGHT.	370 U	ug/kg	370	420		ug/kg	420	370		'kg	370
Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphtylene 2,6-Dinitrotoluene 3-Nitroaniline	ride, 🛊 e 🔄 🤄	ug/kg		370 U	ug/kg	370) UJ	ug/kg	420	370		'kg	370
Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline	1	ug/kg		370 U	ug/kg	370	420	77 Transaction	ug/kg	420	370		'kg	370
2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline	-	ug/kg		370 U	ug/kg	370	420		ug/kg	420	370		'kg	370
2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370		'kg	370
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370	U ug,	'kg	370
2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370		'kg	370
1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420) U	ug/kg	420	370	U ug,	'kg	370
Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420) U	ug/kg	420	370	U ug,	'kg	370
Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420	U	ug/kg	420	370	U ug,	'kg	370
Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420) U	ug/kg	420	370			370
4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420	Ú	ug/kg	420	370			370
2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420	U	ug/kg	420	370	U ug/		370
2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg	nuli fiya	370 U	ug/kg	370	420		ug/kg	420	370			370
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370) UJ	ug/kg	420	370			370
2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg	A 2 50	370 U	ug/kg	370	420	615 ok 6611 6	ug/kg	420	370			370
2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		920 U	ug/kg	920	1100		ug/kg	1100	920			920
2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420	20 CONTRACTOR	ug/kg	420	370		-	370
Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		920 U	ug/kg	920	1100		ug/kg	1100	920			920
Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		ug/kg		370 U	ug/kg	370	420	20 71 92 94 95	ug/kg	420	370			370
2,6-Dinitrotoluene 3-Nitroaniline	_	ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370 370
3-Nitroaniline		ug/kg		370 U	ug/kg	370	420	 % 5 % 5 % 5 % 5 % 	ug/kg	420	370			370 370
AND AND AND AND AND AND AND AND AND AND	i i	ug/kg		920 U	ug/kg ug/kg	920	1100		ug/kg	1100	920			920
Acenaphthene		ug/kg ug/kg		370 U	ug/kg ug/kg	370	420	200		420	370			370
2,4-Dinitrophenol			ta are full	920 U		920	1100		ug/kg	1100	920	- 0,		920
		ug/kg		920 U	ug/kg	920	1100		ug/kg		920			920 920
4-Nitrophenol Dibenzofuran	1. (5	ug/kg		370 U	ug/kg	370			ug/kg	1100				370
		ug/kg		370 U	ug/kg	370 370	420		ug/kg	420	370			
2,4-Dinitrotoluene		ug/kg		370 U	ug/kg	370 370	420		ug/kg	420	370			370 770
Diethylphthalate	· · · · · · · · · · · · · · · · · · ·	ug/kg	te kirili ili		ug/kg		420		ug/kg	420	370			370
4-Chlorophenyl-phenylether		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370
Fluorene	•	ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370
4-Nitroaniline		ug/kg		920 U	ug/kg	920	1100		ug/kg	1100	920		-	920
4,6-Dinitro-2-methylphenol		ug/kg		920 U	ug/kg	920	1100		ug/kg	1100	920			920
N-Nitrosodiphenylamine		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370
4-Bromophenyl-phenylether		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370	٠.		370
Hexachlorobenzene		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370
Pentachlorophenol		ug/kg		920 U	ug/kg	920	1100		ug/kg	1100	920			920
Phenanthrene		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370
Anthracene	-	ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370
Carbazole	•	ug/kg		370 U	ug/kg	370	420		ug/kg	420	370	•••		370
Di-n-butylphthalate	•	ug/kg		370 U	ug/kg	370	420		ug/kg	420	370		'kg	370
Fluoranthene	레이크 볼	ug/kg		370 U	ug/kg	370	420	U	ug/kg	420	370	∖U ug/	'kg	370
Pyrene		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370		'kg	370
Butylbenzylphthalate		ug/kg		370 U	ug/kg	370	420	U	ug/kg	420	- 370	U ug/	kg	370
3,3-Dichlorobenzidine		ug/kg		370 U	ug/kg	370	420	U	ug/kg	420	370			370
Benzo (a) anthracene		ug/kg		370 U	ug/kg	370	420	ּ טלי	ug/kg	420	370			370
Chrysene		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370
bis(2-Ethylhexyl) phthalate		ug/kg		370 U	ug/kg	370	420		ug/kg	420	370			370

Lab :	Sample Number: Site Locator Collect Date:	WHI 1690 09-J	6018 TING 0101D AN-96 UNITS	DL	WH 169 09-	56006 ITTING :00201 JAN-96 L UNITS	DL	WH) 1650 09-	56007 ITING 10301 JAN-96 LUNITS	DL	WH 16S 08-	56003 ITING 00401 JAN-96 L UNITS	of DL	
Di-n-octylphthalate Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (g,h,i) perylene			ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg		370 U 370 U 370 U 370 U 370 U 370 UJ 370 UJ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	370 370 370 370 370 370 370	420 U 420 U 420 U 420 U 420 U 420 U 420 U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	420 420 420 420 420 420 420 420	370 U 370 U 370 U 370 U 370 U 370 U 370 U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	370 370 370 370 370 370 370	
CLP PESTICIDES/PCBS 90-SOW alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE Endrin Endosulfan sulfate 4,4-DDD Endosulfan sulfate 4,4-DDT Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1211 Aroclor-1221 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254	ug/kg	2 UJ 2 UJ 2 UJ 2 UJ 2 UJ 2 UJ 2 UJ 3.8 UJ 3.8 UJ 3.8 UJ 3.8 UJ 2.7 J 20 UJ 20 UJ 20 UJ 20 UJ 38 UJ 38 UJ 38 UJ 38 UJ	ug/kg ug/kg	2 2 2 2 2 2 2 2 2 2 2 2 3 .8 3 .8 3 .8 3	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.7 U	ug/kg ug/kg	1.9 1.9 1.9 1.9 1.9 1.9 1.9 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	2.2 UJ 2.2 UJ 2.2 UJ 2.2 UJ 2.2 UJ 2.2 UJ 2.2 UJ 2.5 J 4.2 UJ	ug/kg ug/kg	2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 4.2 4.2	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.7 U 3.7 U 3.7 U 3.7 U 1.9 U 1.9 U 1.9 U 1.9 U 3.7 U 3.7 U 3.7 U 3.7 U 3.7 U	ug/kg ug/kg	1.9 1.9 1.9 1.9 1.9 1.9 1.9 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	
CLP METALS AND CYANIDE Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium. Cobalt Copper Iron Lead Magnesium	mg/kg		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		6570 J 12 UJ 1.6 J 11.2 J 1 U .36 J 260 J 4.5 10 U 3.8 J 4090 J 6.5 J 91.3 J	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	40 12 2 40 1 1 1000 2 10 5 20 .6	10600 J 12 UJ 2.5 J 42.8 J .11 J .43 J 907 J 11.2 1.4 J 13.2 5450 J 74.3 J 264 J	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	40 12 2 40 1 1 1000 2 10 5 20 .6 1000	11100 J 12 UJ 1.5 J 13.1 J .09 J .25 J 80.8 J 10.3 10 U 4.4 J 5160 J 4.4 J 127 J	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	40 12 2 40 1 1 1000 2 10 5 20 .6	

		Site 16 Surface Soil Data		
Lab Sample Number: Site Locator Collect Date:	16S00101D	RA856006 WHITING 16S00201 09-JAN-96 VALUE QUAL UNITS DL	RA856007 WHITING 16800301 09-JAN-96 VALUE QUAL UNITS DL	RA856003 WHITING 16S00401 08-JAN-96 VALUE QUAL UNITS DL
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	- mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg	97.2 mg/kg 3 .1 U mg/kg .1 8 U mg/kg 8 1000 UJ mg/kg 1000 1 U mg/kg 1 2 U mg/kg 1000 2 U mg/kg 1000 2 U mg/kg 1000 3 mg/kg 1000 5 mg/kg 1000 6 mg/kg 1000 8 mg/kg 1000 8 mg/kg 1000	.1 U mg/kg .1 2.7 J mg/kg 8 1000 UJ mg/kg 1000 1 U mg/kg 1 2 U mg/kg 2 U mg/kg 1000 157 J mg/kg 1000 18. J mg/kg 1000 19.4 mg/kg 10	.1 U mg/kg .1 2.3 J mg/kg 8 1000 UJ mg/kg 1000 .15 J mg/kg 1 2 U mg/kg 2 1000 UJ mg/kg 1000 .13 J mg/kg 2 17.5 mg/kg 10 6.3 mg/kg 4
Total petroleum hydrocarbons	mg/kg mg/kg	- mg/kg - mg/kg	mg/kg mg/kg	- mg/kg - mg/kg

	Lab Sample Number: Site Locator Collect Date:	W) 169 08-	356002 HITING 500501 -JAN-96 AL UNITS	DL	Wi 165 09-	356009 HITING S00601 JAN-96 NL UNITS	DL	16S 09	66009DL HITING D0601DL JAN-96 AL UNITS	DL	WH 16S 10-	70004 ITING 00701 JAN-96 L UNITS	DL
				i kinga in) 						
P VOLATILES 90-SON	ug/kg				42		45				43 11		12
Chloromethane Bromomethane		11 U 11 U	ug/kg ug/kg	11 11	12 U 12 U	ug/kg ug/kg	12 12		ug/kg ug/kg		12 U 12 U	ug/kg ug/kg	12 12
Vinyl chloride		11 U	ug/kg	11	12 U	ug/kg	12		ug/kg		12 U	ug/kg	12
Chloroethane		ี 11 บัง	ug/kg	11	12 UJ	ug/kg	12	•	ug/kg		12 U	ug/kg	12
Methylene chloride		11 U	ug/kg	11	12 U	ug/kg	12	4	ug/kg		12 UJ	ug/kg	12
Acetone		11 UJ	ug/kg	11	12 UJ	ug/kg	12	•	ug/kg		12 UJ	ug/kg	12
Carbon disulfide		11 U	ug/kg	11	12 U	ug/kg	12	₩.	ug/kg		12 UJ	ug/kg	12
1,1-Dichloroethene		11 U	ug/kg	11	12 U	ug/kg	12	•	ug/kg		12 UJ	ug/kg	12
1,1-Dichloroethane		11 U	ug/kg	11	12 U	ug/kg	12	•	ug/kg		12 U	ug/kg	12
1,2-Dichloroethene	(total)	11 U	ug/kg	11:	12 U	ug/kg	12		ug/kg		12 U	ug/kg	12
Chloroform		11 U	ug/kg	11	12 U	ug/kg	12	•	ug/kg		12 U	ug/kg	12
1,2-Dichloroethane	113 Jan 1233 2000 00 Unit 7 Jan 2000 00	11 UJ	ug/kg	11	12 UJ	ug/kg	12	•	ug/kg		12 U	ug/kg	12 12
2-Butanone		11 UJ 11 U	ug/kg	11 11	12 UJ 12 U	ug/kg ug/kg	12 12	•	ug/kg ug/kg		12 UJ 12 U	ug/kg ug/kg	12
1,1,1-Trichloroetha Carbon tetrachloria		11 U	ug/kg ug/kg	11	12 U	ug/kg ug/kg	12		ug/kg ug/kg		12 U	ug/kg ug/kg	12
Bromodichloromethar		11 U	ug/kg ug/kg	11	12 U	ug/kg ug/kg	12	Ī	ug/kg		12 U	ug/kg	12
1,2-Dichloropropane		11 Ŭ	ug/kg	11	12 U	ug/kg	12		ug/kg		12 U	ug/kg	12
cis-1.3-Dichloropro		11 0	ug/kg	11	12 U	ug/kg	12	•	ug/kg		12 U	ug/kg	12
Trichloroethene		11 Ŭ	ug/kg	11	12 Ú	ug/kg	12	•	ug/kg		12 U	ug/kg	12
Dibromochloromethan	ne .	11 U	ug/kg	11	12 U	ug/kg	12	•	ug/kg	1500000 15000 15000000 110000	12 U	ug/kg	12
1,1,2-Trichloroetha		11 U	ug/kg	11	12 U	ug/kg	12		ug/kg		12 U	ug/kg	12
Benzene	보고 입고하다 생	11 U	ug/kg	11	12 U	ug/kg	12	•	ug/kg	Acceptance of March	12 U	ug/kg	12 ⁻
trans-1,3-Dichlorop	propene	11 U	ug/kg	11	12 U	ug/kg	12	•	ug/kg		12 U	ug/kg	12
Bromoform	1914 M. H. H. H. 1914 H. H. H. H. H. H. H. H. H. H. H. H. H.	11 U	ug/kg	11	12 U	ug/kg	12	6 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ug/kg		12 U	ug/kg	12
4-Methyl-2-pentanor	ie .	11 U	ug/kg	11	12 U	ug/kg	12		ug/kg		12 UJ	ug/kg	12
2-Hexanone		11 U	ug/kg	11	12 U	ug/kg	12		ug/kg		12 UJ	ug/kg	12
Tetrachloroethene		11 U	ug/kg	11	12 U 12 U	ug/kg	12 12		ug/kg		12 U 12 U	ug/kg ug/kg	12 12
Toluene		1 J 11 U	ug/kg ug/kg	11	12 U	ug/kg ug/kg	12		ug/kg ug/kg		12 U	ug/kg ug/kg	12
1,1,2,2-Tetrachloro Chlorobenzene	etnane :::	11 0	ug/kg ug/kg	11	12 U	ug/kg ug/kg	12		ug/kg		12 U	ug/kg	12
Ethylbenzene		11 0	ug/kg ug/kg	11	12 U	ug/kg	12	.	ug/kg		12 U	ug/kg	12
Styrene		11 Ŭ	ug/kg	11	12 U	ug/kg	12		ug/kg		12 U	ug/kg	12
Xylenes (total)		11 0	ug/kg	11	12 U	ug/kg	12	-	ug/kg		12 U	ug/kg	12
P SEMIVOLATILES 90-	SOW ug/kg						988 338 . 538						
Phenol	ug/kg	360 U	ug/kg	360	420 U	ug/kg	420	840 R	ug/kg	840	400 U	ug/kg	400
bis(2-Chloroethyl)	ether	360 U	ug/kg	360	420 U	ug/kg	420	840 R	ug/kg	840	400 U	ug/kg	400
2-Chlorophenol		360 U	ug/kg	360	420 U	ug/kg	420	840 R	ug/kg	840	400 U	ug/kg	400
		360 U	ug/kg	360	420 U	ug/kg	420	840 R	ug/kg	840	400 U	ug/kg	400
1.3-Dichlorobenzene		360 U	ug/kg	360	420 U	ug/kg	420	840 R	ug/kg	840	400 U	ug/kg	400

Lab Sample Number: Site Locator Collect Date:		WI 169 08-	356002 HITING 500501 JAN-96 AL UNITS	D	<u>L</u>	W 16 09	856009 HITING SOO601 -JAN-96 HAL UNITS	DL	1	A856009DL WHITING 6S00601DL 09-JAN-96 QUAL UNITS	DL	VALUE	RA870004 WHITING 16S00701 10-JAN-96 QUAL UNITS	DL	
1,2-Dichlorobenzene	d by	360 U	ug/kg	1,50	360	420 U	ug/kg	420	840	R ug/kg	840	400	U ug/kg	400	_
2-Methylphenol		360 U	ug/kg	4.4	360	420 U	ug/kg	420	840	R ug/kg	840	400	U ug/kg	400	
2,2-oxybis(1-Chloropropane)		360 U	ug/kg		360	420 U	ug/kg	420	840	R ug/kg	840	400	U ug/kg	400	
4-Methylphenol		360 U	ug/kg		360	420 U	ug/kg	420	840	R ug/kg	840	400	U ug/kg	400	
N-Nitroso-di-n-propylamine		360 U	ug/kg	7.5	360	420 UJ	ug/kg	420	840	R ug/kg	840	400		400	
Hexachloroethane		360 U	ug/kg	1.5	360	420 U	ug/kg	420	840		840	400		400	
Nitrobenzene		360 U	ug/kg		360	420 U	ug/kg	420			840	400		400	
Isophorone	18.6.	360 U	ug/kg		360	420 U	ug/kg	420	840		840	400		400	
2-Nitrophenol		360 U	ug/kg		360	420 U	ug/kg	420	840		840	400		400	
2,4-Dimethylphenol		360 U	ug/kg		360	420 U	ug/kg	420			840	400		400	
bis(2-Chloroethoxy) methane		360 U	ug/kg		360	420 U	ug/kg	420	840		840	400		400	
2.4-Dichlorophenol		360 U	ug/kg		360	420 U	ug/kg	420	840		840	400		400	
1,2,4-Trichlorobenzene		360 U	ug/kg		360	420 U	ug/kg	420			840	400		400	
Naphthalene		360 U	ug/kg	. 4	360	420 U	ug/kg	420	840		840	400		400	
4-Chloroaniline		360 U	ug/kg		360	420 U	ug/kg	420			840	400		400	
Hexachlorobutadiene	¥1.	360 U	ug/kg		360	420 U	ug/kg	420			840	400		400	
4-Chloro-3-methylphenol		360 U	ug/kg		360	420 U	ug/kg	420			840	400		400	
2-Methylnaphthalene		360 U	ug/kg		360	420 U	ug/kg	420			840	400	U ug/kg	400	
Hexachlorocyclopentadiene		360 U	ug/kg		360	420 UJ		420	840		840	400		400	
2,4,6-Trichlorophenol		360 U	ug/kg		360	420 U	ug/kg	420			840	400		400	
2,4,5-Trichlorophenol		900 U	ug/kg		900	1100 U	ug/kg	1100			2100	1000		1000	
2-Chloronaphthalene		360 U	ug/kg		360	420 U	ug/kg	420	840	1,7000000	840	400		400	
2-Nitroaniline		900 U	ug/kg ug/kg		900	1100 U	ug/kg ug/kg	1100			2100	1000		1000	
Dimethylphthalate		360 U	ug/kg		360	420 U	ug/kg ug/kg	420			840	400		400	
		360 U			360	420 U		420			840	400		400	
Acenaphthylene		360 U	ug/kg	1.5	360	420 U	ug/kg	420			840	400		400	
2,6-Dinitrotoluene		900 U	ug/kg		900	1100 U	ug/kg	1100			2100	1000		1000	
3-Nitroaniline			ug/kg				ug/kg					400	-5.		
Acenaphthene		360 U	ug/kg		360	420 U	ug/kg	420	840	and the state of t	840			400	
2,4-Dinitrophenol		900 U	ug/kg		900	1100 U	ug/kg	1100			2100	1000		1000	
4-Nitrophenol		900 U	ug/kg		900	1100 U	ug/kg	1100			2100	1000		1000	
Dibenzofuran		360 U	ug/kg		360	420 U	ug/kg	420			840	400		400	
2,4-Dinitrotoluene		360 U	ug/kg		360	420 U	ug/kg	420	840		840	400	,,,	400	
Diethylphthalate		360 U	ug/kg		360	420 U	ug/kg	420	840		840	400		400	
4-Chlorophenyl-phenylether		360 U	ug/kg		360	420 U	ug/kg	420	840		840	400		400	
Fluorene		360 U	ug/kg		360	420 U	ug/kg	420	840	7 00000 - 1000	840	400		400	
4-Nitroaniline		900 U	ug/kg	1.5	900	1100 U	ug/kg	1100	Manager and The Application		2100	1000		1000	
4,6-Dinitro-2-methylphenol	wie en die	900 U	ug/kg		900	1100 U	ug/kg	1100			2100	1000		1000	
N-Nitrosodiphenylamîne		360 U	ug/kg		360	420 U	ug/kg	420			840	400		400	
4-Bromophenyl-phenylether		360 U	ug/kg	1450	360	420 U	ug/kg	420	840		840	400		400	
Hexach Lorobenzene		360 U	ug/kg	- 34	360	420 U	ug/kg	420			840	400		400	
Pentachlorophenol		900 U	ug/kg		900	1100 :ับ	ug/kg	1100			2100	1000	, , , , ,	1000	
Phenanthrene		360 ม	ug/kg		360	440	ug/kg	420			840	52		400	
Anthracene		360 U	ug/kg	4.4	360	95 J	ug/kg	420	840		840	400		400	
Carbazole		360 U	ug/kg	300	360	97 J	ug/kg	420	840	R ug/kg	840	400		400	
Di-n-butylphthalate		360 U	ug/kg	J- 9,91	360	420 U	ug/kg	420	840	R ug/kg	840	400	U ug/kg	400	
Fluoranthene		360 U	ug/kg		360	2300	ug/kg	420	2900	R ug/kg	840	260	J ug/kg	400	
Pyrene		360 U	ug/kg		360	1700	ug/kg	420	2500	R ug/kg	840	170	J ug/kg	400	
Butylbenzylphthalate		360 U	ug/kg		360	420 U	ug/kg	420	840		840	400		400	
3,3-Dichlorobenzidine		360 U	ug/kg		360	420 U	ug/kg	420	840		840	400		400	
Benzo (a) anthracene		360 U	ug/kg		360	2300	ug/kg	420	2700		840	250		400	
Chrysene		360 U	ug/kg		360	3200	ug/kg	420			840	270		400	
bis(2-Ethylhexyl) phthalate		360 U	ug/kg	1.45	360	420 U	ug/kg	420	840		840	110		400	
			-3,3	3.4			-3,3	,					- 11-31 8		

Lab Sample Number: Site Locator Collect Date:	₩H 16S 08-	56002 ITING 00501 JAN-96 L UNITS	DL	10	A856009 WHITING 6S00601 9-JAN-96 WAL UNITS	DL		RA856009DL WHITING 16S00601DL 09-JAN-96 QUAL UNITS	DL	16: 10:	370004 HITING 500701 -JAN-96 AL UNITS	7 7 7 9 9 DL	
Di-n-octylphthalate	360 U	ug/kg	360	420 U	U. U	420	840	A PAGE AND A STATE OF THE STATE	840	400 U	ug/kg	400	
Benzo (b) fluoranthene	360 U	ug/kg	360	4000 R		420	3600	a maa ay is 🗝 🕶 is is 🛶	840		ug/kg	400	
Benzo (k) fluoranthene	360 U	ug/kg	360	3200	ug/kg	420	2600		840		ug/kg	400	
Benzo (a) pyrene	360 U	ug/kg	360	3400 R		420	3100		840	310 J	ug/kg	400	
Indeno (1,2,3-cd) pyrene	360 U	ug/kg	360	1900	ug/kg	420	2200		840	240 J	ug/kg	400	
Dibenzo (a,h) anthracene	360 U	ug/kg	360	700	ug/kg	420	540	-3,	840		ug/kg	400	
Benzo (g,h,i) perylene	360 UJ	ug/kg	360	1200	ug/kg	420	1700	R ug/kg	840	120 J	ug/kg	400	
CLP PESTICIDES/PCBS 90-SOW ug/kg						## ##							
alpha-BHC	1.8 U	ug/kg	1.8	11 U	0	11	*	ug/kg		10 U	ug/kg	10	
beta-BHC	1.8 บ	ug/kg	1.8	11 U		11		ug/kg		10 U	ug/kg	10	
delta-BHC	1.8 U	ug/kg	1.8	11 U		11		ug/kg		10 U	ug/kg	10	
gamma-BHC (Lindane)	1.8 U	ug/kg	1.8	11 U		11		ug/kg		10 U	ug/kg	10	
Heptachlor	า.8 บ	ug/kg	1.8	11 U		11		ug/kg		10 U	ug/kg	10	
Aldrin	1.8 U	ug/kg	1.8	11 U	-3,3	11		ug/kg		10 U	ug/kg	10	
Heptachlor epoxide	1.8 U	ug/kg	1.8	11 U		11	•	ug/kg		10 U	ug/kg	10	
Endosulfan I	1.8 U	ug/kg	1.8	11 U		11	•	ug/kg		10 U	ug/kg	10	
Dieldrin	3.6 U	ug/kg	3.6	130	ug/kg	21		43/ NB		20 U	ug/kg	20	
4,4-DDE	3.6 U	ug/kg	3.6	100	ug/kg	21		ug/kg		53	ug/kg	20	
Endrin	3.6 U	ug/kg	3.6	21 U		21		ug/kg		20 U	ug/kg	20	
Endosul fan 11	3.6 U	ug/kg	3.6	21 U		21		ug/kg		20 U	ug/kg	20	
4,4-DDD	3.6 U	ug/kg	3.6	21 U		21	•	ug/kg		18 J	ug/kg	20	
Endosulfan sulfate	3.6 UJ	ug/kg	3.6	21 U	lj ug/kg	21		ug/kg		20 UJ	ug/kg	20	4.
4,4-DDT	3.6 U	ug/kg	3.6	89	ug/kg	21		ug/kg		22	ug/kg	20%	8
Methoxychlor	18 U	ug/kg	18	110 U	ug/kg	110		ug/kg		100 U	ug/kg	100	
Endrin ketone	3.6 U	ug/kg	3.6	21 U	ug/kg	21		ug/kg		20 U	ug/kg	20	4
Endrin aldehyde	3.6 U	ug/kg	3.6	21 U	l ug/kg	21		ug/kg		20 U	ug/kg	20	è
alpha-Chlordane	1.8 U	ug/kg	1.8	11 U	ug/kg	11		ug/kg		10 U	ug/kg	10	
gamma-Chlordane	1.8 U	ug/kg	1.8	11 U		11		ug/kg		10 U	ug/kg	10	
Toxaphene	180 U	ug/kg	180	1100 U		1100		ug/kg		1000 U	ug/kg	1000	
Aroclor-1016	36 U	ug/kg	36	210 U		210		ug/kg		200 U	ug/kg	200	
Aroclor-1221	73 U	ug/kg	73	420 U		420		ug/kg		410 U	ug/kg	410	
Aroclor-1232	36 U	ug/kg	36	210 U		210		ug/kg		200 U	ug/kg	200	
Aroclor-1242	36 U	ug/kg	36	210 U		210		ug/kg		200 U	ug/kg	200	
Aroclor-1248	36 U	ug/kg	36	210 U		210		ug/kg		200 U	ug/kg	200	
Aroclor-1254	36 U	ug/kg	36	210 U		210		ug/kg		200 U	ug/kg	200	
Aroclor-1260	36 U	ug/kg	36	210 U		210		ug/kg		200 U	ug/kg	200	
OLD METALS AND OVANIOUS market					1					f	:		
CLP METALS AND CYANIDE mg/kg	5610 J	ma dea	40	7890 J		40		mg/kg		8820 J	ma elem	40	
Aluminum		mg/kg				12	\mathbb{Z}			5.9 J	mg/kg		
Antimony	12 UJ	mg/kg	12	12 U		2		mg/kg		5.6	mg/kg	12 2	
Arsenic	1.3 J	mg/kg	. 2	2.2 J		—:		mg/kg		257	mg/kg	40	
Barium	6.1 J	mg/kg	40	53.6	mg/kg	40		mg/kg		1.U	mg/kg		
Beryllium	.06 J	mg/kg	1	.08 J		L.S.		mg/kg			mg/kg	1	
Cadmium	1 U	mg/kg		2.2	mg/kg	1000		mg/kg		7.6	mg/kg	1	
Calcium	70.8 J	mg/kg	1000	796 J		1000		mg/kg		2350	mg/kg	1000	
Chromium	4	mg/kg	.2	11.5	mg/kg	2		mg/kg		29.2	mg/kg	2	
Cobalt	.69 1	mg/kg	10	1.5 J		10		mg/kg		4.1 J	mg/kg	10	
Copper	5 UJ	mg/kg	_5	71.7	mg/kg	5		mg/kg	i wasan ing kalanda. Masanan ing kalanda	202	mg/kg	.5	
Iron	3220 J	mg/kg	20	10300 J		20	기계시네 🛊	mg/kg		30300	mg/kg	20	
Lead	5.2 J	mg/kg	.6	236 J		.6.		mg/kg		759	mg/kg	.6	
Hagnesium	82.7 J	mg/kg	1000	154 J	mg/kg	1000		mg/kg		443 J	mg/kg	1000	
 a. Control of the contr					-			a forth a little			*		

			Site 16 Surface So	il Data			
Lab Sample Number Si Locato Collect Date	te WHITING or 16S00501	DL	RA856009 WHITING 16S00601 09-JAN-96 VALUE QUAL UNITS	DL VALUE	RA856009DL WHITING 16S00601DL 09-JAN-96 QUAL UNITS DL	RA870004 WHITING 16S00701 10-JAN-96 VALUE QUAL UNITS	DL
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	112 mg/kg .1 U mg/kg .8 U mg/kg 1000 U mg/kg .15 J mg/kg 2 U mg/kg 1000 UJ mg/kg 2 U mg/kg 2 U mg/kg 7.3 J mg/kg 4.8 mg/kg .14 J mg/kg	3 .1 8 1000 1 2 1000 2 10 4	132 mg/kg .09 mg/kg 4 J mg/kg 1000 UJ mg/kg 1 U mg/kg 1.2 J mg/kg 2 U mg/kg 14.9 mg/kg 155 mg/kg .2 J mg/kg	.1 8 1000 1 2 1000 2 10 4	- mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg	275 mg/kg .65 J mg/kg 17.7 mg/kg 180 J mg/kg 1 U mg/kg 7.1 mg/kg 361 J mg/kg 2 U mg/kg 14.4 mg/kg 773 mg/kg .5 UJ mg/kg	3 -1 8 1000 1 2 1000 2 10 4 .5
Total organic carbon fotal petroleum hydrocarbons	mg/kg mg/kg		- mg/kg - mg/kg		- mg/kg - mg/kg	- mg/kg - mg/kg	

Lab	Sample Number: Site Locator Collect Date:	VALUE	WH 16S 09-	56008 ITING 00801 JAN-96	DL		VALUE	WHI 16800 09-J	008RE TING 1801RE IAN-96 UNITS	DL	VALUE	WHI 1690 08-J	6004 TING 10901 AN-96 UNITS	DL	VALUE	RA856004R WHITING 16S00901R 08-JAN-96 QUAL UNITS	DL
	tylessel	MAKA NA	5 Ta			11 4 2						1044-36	o. 16. vo (1000); voi 3. com 5. com 600 (10				
						1.94											
			J. J.														
P VOLATILES 90-SOW	ug/kg		13 11		- 44	12								4.4			
Chloromethane Bromomethane			12 Ú 12 Ú	ug/kg ug/kg	10.00	12		-	ug/kg ug/kg		* * * * * * * * * * * * * * * * * * *	UJ	ug/kg ug/kg	11 11		ug/kgug/kg	
Vinyl chloride			12 U	ug/kg ug/kg		12		-	ug/kg ug/kg			IJJ	ug/kg ug/kg	11		- ug/kg	
Chloroethane			12 UJ	ug/kg ug/kg		12		_	ug/kg			U	ug/kg	11		- ug/kg	
Methylene chloride			12 U	ug/kg		12		_	ug/kg			Ŭ	ug/kg	11		- ug/kg	
Acetone	AND S		12 UJ	ug/kg		12			ug/kg			เปม	ug/kg	11		- ug/kg	
Carbon disulfide		1. 1 . 1 M M M M	12 U	ug/kg		12		-	ug/kg		A CONTRACTOR OF THE PROPERTY O	Ü	ug/kg	11		- ug/kg	
1.1-Dichloroethene		and the second	12 U	ug/kg		12		-	ug/kg	į		U	ug/kg	11		- ug/kg	
1,1-Dichloroethane			12 U	ug/kg		12		_	ug/kg			U	ug/kg	11		- ug/kg	
1.2-Dichloroethene (tota	al)		12 U	ug/kg		12		-	ug/kg		11	U	ug/kg	11		- ug/kg	
Chloroform			12 U	ug/kg	100	12		-	ug/kg		11	U	ug/kg	11		- ug/kg	
1,2-Dichloroethane	Yeşe		12 UJ	ug/kg		.12		-	ug/kg			UJ	ug/kg	11		- ug/kg	
2-Butanone	A tribudi A materia		12 UJ	ug/kg	184	12		-	ug/kg		11	UJ	ug/kg	11		- ug/kg	
1,1,1-Trichloroethane			12 U	ug/kg		. 12		-	ug/kg			U	ug/kg	11		- ug/kg	
Carbon tetrachloride			12 U	ug/kg		12		-	ug/kg			U	ug/kg	11		- ug/kg	
Bromodichloromethane			12 U	ug/kg		.12		-	ug/kg			U	ug/kg	11		- ug/kg	
1,2-Dichloropropane			12 U	ug/kg	144	12		•	ug/kg		coco cococos a a co	U	ug/kg	11		- ug/kg	
cis-1,3-Dichloropropene			12 U	ug/kg	?	12		-	ug/kg	3		U	ug/kg	11		- ug/kg	
Trichloroethene			12 U	ug/kg	12.5	12		-	ug/kg			U	ug/kg	11		- ug/kg	
Dibromochloromethane			12 U	ug/kg	and the	12		-	ug/kg	5		U	ug/kg	. 11		- ug/kg	
1,1,2-Trichloroethane			12 U	ug/kg		12		-	ug/kg			U	ug/kg	11		- ug/kg	
Benzene			12 U	ug/kg	- ,44	12		•	ug/kg			U	ug/kg	11		- ug/kg	
trans-1,3-Dichloroproper	ne		12 U	ug/kg	200	12		•	ug/kg			U	ug/kg	11		- ug/kg	
Bromoform	州城 "		12 U	ug/kg		12		-	ug/kg	3		UJ	ug/kg	11 11		- ug/kg	
4-Methyl-2-pentanone			12 U 12 U	ug/kg		12		-	ug/kg			U	ug/kg	11		- ug/kg	
2-Hexanone Tetrachloroethene			12 U	ug/kg		12 12			ug/kg			U	ug/kg ug/kg	11		ug/kgug/kg	
Toluene		5 T	12 U	ug/kg		12		-	ug/kg ug/kg	\$		บ	ug/kg ug/kg	11		- ug/kg - ug/kg	
1,1,2,2-Tetrachloroethan	· · ·		12 U	ug/kg ug/kg	1,41	12		_	ug/kg ug/kg			Ŭ	ug/kg	11		- ug/kg	
Chlorobenzene	16		12 U	ug/kg		12		-	ug/kg	-		ŭ	ug/kg	ii		- ug/kg	
Ethylbenzene			12 U	ug/kg		12		-	ug/kg			Ŭ	ug/kg	11		- ug/kg	
Styrene			12 U	ug/kg	14 421	12		-	ug/kg	÷.		Ŭ	ug/kg	-11		- ug/kg	
Xylenes (total)	현실병 및 1 1 전 1일 시		12 U	ug/kg	No.	12		-	ug/kg		the formation of the Contract	Ŭ	ug/kg	11		- ug/kg	
	144a - 1		3747 .	-3,					-3, -3	į						_3,3	
P SENIVOLATILES 90-SOW	ug/kg				1.00					음 당				SST STORM TO THE S			
Phenol		41	00 R	ug/kg		400	40	0 UJ	ug/kg	400	380	R	ug/kg	380	38	0 U ug/kg	380
bis(2-Chloroethyl) ether			00 R	ug/kg	1. 1. V.V. W.J.	400	40	0 UJ	ug/kg	400			ug/kg	380		0 U ug/kg	380
2-Chlorophenol		41	00 R	ug/kg		400	40	10 N	ug/kg	400		R	ug/kg	380		0 U ug/kg	380
1,3-Dichlorobenzene			00 R	ug/kg	11.	400		10 UJ	ug/kg	400			ug/kg	380		0 U ug/kg	380
1,4-Dichlorobenzene	Said A	41	00 R	ug/kg	1997	400	40	10 N1	ug/kg	400	380	R	ug/kg	380	38	0 U ug/kg	380
	\$2000000000000000000000000000000000000		Ang Cur Walio ang Cur Ang Calabara														
	re versebyt	was niferior 2006 (i.e.)	41344	e filosofie e e e e e e e e e e e e e e e e e e	5 + 155 + 15	A 55 975					155056 SESSEEN (1574 - 467	2 15 Table 10 Table 1	and a first section of the col-	are the second of the second			

	Site Wator 16 ate: 09	856008 HITING S00801 -JAN-96 AL UNITS DL	VA	WHI 16500 09-J	5008RE TING 0801RE IAN-96 . UNITS	DL	น 16 08	856004 HITING SO0901 B-JAN-96 HAL UNITS	DL	WH: 16S(08-	56004R ITING DO901R JAN-96 LUNITS	DL
1,2-Dichlorobenzene	400 R	• • • • • • • • • • • • • • • • • • •	40 0	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2-Methylphenol	400 R	• • • • • • • • • • • • • • • • • • •	400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	38 0
2,2-oxybis(1-Chloropropane)	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
4-Methylphenol	400 R	• • • • • • • • • • • • • • • • • • • •	400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
N-Nitroso-di-n-propylamine	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Hexachloroethane	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Nitrobenzene	400 R	• •	400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Isophorone	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2-Nitrophenol	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2,4-Dimethylphenol	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
bis(2-Chloroethoxy) methane	400 R	V	400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2,4-Dichlorophenol	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
1,2,4-Trichlorobenzene	400 R	-0.	400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Naphthalene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	3 80 U	ug/kg	380
4-Chloroaniline	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Hexach Lorobutad i ene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
4-Chloro-3-methylphenol	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2-Methylnaphthalene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	38 0
Hexachlorocyclopentadiene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2,4,6-Trichlorophenol	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2,4,5-Trichlorophenol	1000 R	U . U	980	1000 UJ	ug/kg	1000	950 R	ug/kg	950	950 U	ug/kg	950
2-Chloronaphthalene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2-Nitroaniline	1000 R	-0,	980	1000 UJ	ug/kg	1000	950 R	ug/kg	950	950 U	ug/kg	950
Dimethylphthalate	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Acenaphthylene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2,6-Dinitrotoluene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
3-Nitroaniline	1000 R	J . J	980	1000 UJ	ug/kg	1000	950 R	ug/kg	950	950 U	ug/kg	950
Acenaph thene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2,4-Dinitrophenol	1000 R	0. 0	980	1000 UJ	ug/kg	1000	950 R	ug/kg	950	950 U	ug/kg	950
4-Nitrophenol	1000 R	0. 0	980	1000 UJ	ug/kg	1000	950 R	ug/kg	950	950 U	ug/kg	950
Dibenzofuran	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
2,4-Dinitrotoluene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Diethylphthalate	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
4-Chlorophenyl-phenylether	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Fluorene	400 R		400	400 ปป	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
4-Nitroaniline	1000 R	-0.	980	1000 UJ	ug/kg	1000	950 R	ug/kg	950	950 U	ug/kg	950
4,6-Dinitro-2-methylphenol	1000 R		980	1000 UJ	ug/kg	1000	950 R	ug/kg	950	950 U	ug/kg	950
N-Nitrosodiphenylamine	400 R	J. J.	400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
4-Bromophenyl-phenylether	400 R	ug/kg	400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Hexachlorobenzene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Pentachlorophenol	1000 R		980	1000 UJ	ug/kg	1000	950 R	ug/kg	950	950 U	ug/kg	950
Phenanthrene	400 R		400	400 UJ	ug/kg	400	44 R	ug/kg	380	380 U	ug/kg	380
Anthracene	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Carbazole	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Di-n-butylphthalate	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Fluoranthene	400 R	ug/kg	400	400 UJ	ug/kg	400	110 R	ug/kg	380	86	ug/kg	380
Pyrene	400 R		400	400 UJ	ug/kg	400	220 R	ug/kg	380	150	ug/kg	380
Butylbenzylphthalate	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
3,3-Dichlorobenzidine	400 R		400	400 UJ	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
Benzo (a) anthracene	400 R		400	400 UJ	ug/kg	400	70 R	ug/kg	380	67 J	ug/kg	380
Chrysene	400 R		400	400 UJ	ug/kg	400	120 R	ug/kg	380	120 J	ug/kg	380
bis(2-Ethylhexyl) phthalate	400 R	ug/kg	400	50 J	ug/kg	400	380 R	ug/kg	380	380 U	ug/kg	380
						50	.g	374 m (8 - A),	A SECTION OF THE		· .	

					Site to Sur	1 ace 3011	. vald							
\$ L	ab Sample Number: Site Locator Collect Date:	W 16 09	856008 HITING S00801 -JAN-96 AL UNITS	, DL	W H 1680 09-	6008RE ITING 10801RE JAN-96 L UNITS	DL	WH: 1680 08-	56004 ITING D0901 JAN-96 L UNITS	DL	WH: 1650 08-	56004R ITING DO901R JAN-96 L UNITS	DL	
		AVEOE 40	AL UNITS	DL	VALUE GOA	L UNITS	- UL	VALUE WOAT	. 01113	DC.	VALUE WOAT	LUNIIS	UL	
Di-n-octylphthalate Benzo (b) fluoranthen Benzo (k) fluoranthen Benzo (a) pyrene Indeno (1,2,3-cd) pyr Dibenzo (a,h) anthrac Benzo (g,h,i) perylen	e ene ene	400 R 400 R 400 R 400 R 400 R 400 R 400 R	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	400 400 400 400 400 400 400	400 UJ 400 UJ 400 UJ 400 UJ 400 UJ 400 UJ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	400 400 400 400 400 400 400	380 R 290 R 210 R 140 R 69 R 380 R 48 R	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	380 380 380 380 380 380 380	380 U 380 U 130 J 90 J 380 UJ 380 UJ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	380 380 380 380 380 380 380	
CLP PESTICIDES/PCBS 90-	SOW ug/kg						Š					41		
alpha-BHC beta-BHC	141 전경	2.1 U 2.1 U	ug/kg ug/kg	2.1 2.1	-	ug/kg ug/kg		3.7 U 3.7 U	ug/kg ug/kg	3.7 3.7	-	ug/kg ug/kg		
del ta-BHC		2.1 U	ug/kg	2.1	-	ug/kg		3.7 U	ug/kg	3.7	<u>-</u>	ug/kg ug/kg		
gamma-BHC (Lindane)		2.1 U	ug/kg	2.1	-	ug/kg		3.7 Ū	ug/kg	3.7	•	ug/kg		
Heptachlor	Car H	2.1 U	ug/kg	2.1	=	ug/kg		3.7 U	ug/kg	3.7	-	ug/kg		
Aldrin		2.1 U	ug/kg	2.1	-	ug/kg		3.7 U	ug/kg	3.7	-	ug/kg		
Heptachlor epoxide	e, i e de i	2.1 U	ug/kg	2.1	-	ug/kg		3.7 U	ug/kg	3.7	-	ug/kg		
Endosulfan I		2.1 U	ug/kg	2.1	-	ug/kg	i i	3.7 U	ug/kg	3.7 7	-	ug/kg		
Dieldrin 4.4-DDE	i e u flege u	9.2 4 U	ug/kg ug/kg	4	•	ug/kg ug/kg		17 11	ug/kg ug/kg	7	-	ug/kg ug/kg		
Endrin		4 U	ug/kg ug/kg	7	•	ug/kg ug/kg		7.2 U	ug/kg	7.2	- -	ug/kg ug/kg		
Endosulfan II		. 4 Ŭ	ug/kg	4	-	ug/kg		7.2 U	ug/kg	7.2	-	ug/kg		
4,4-DDD		4 U	ug/kg	4	-	ug/kg	į	7.2 U	ug/kg	7.2	-	ug/kg		
Endosulfan sulfate		4 UJ	ug/kg	4	-	ug/kg		7.2 UJ	ug/kg	7.2	-	ug/kg		
4,4-DDT		4 U	ug/kg	4	•	ug/kg		16	ug/kg	_7	•	ug/kg		
Methoxychlor		21 U	ug/kg	21	-	ug/kg	į	37 U	ug/kg	37	•	ug/kg		. 1.
Endrin ketone		4 U 4 U	ug/kg	4	•	ug/kg		7.2 U 7.2 U	ug/kg	7.2 7.2	-	ug/kg	area.	
Endrin aldehyde alpha-Chlordane		2.1 U	ug/kg ug/kg	2.1	-	ug/kg ug/kg		2.6 J	ug/kg ug/kg	4	<u>-</u>	ug/kg ug/kg	20% 1000	
gamma-Chlordane		2.1 U	ug/kg	2.1	-	ug/kg		2.2 J	ug/kg	4	-	ug/kg	a a a a a a	
Toxaphene		210 U	ug/kg	210	-	ug/kg		370 U	ug/kg	370	•	ug/kg		
Aroclor-1016		40 U	ug/kg	40	•	ug/kg	i i	72 U	ug/kg	72	•	ug/kg		
Aroclor-1221		82 U	ug/kg	82	-	ug/kg		150 U	ug/kg	150	-	ug/kg		
Aroclor-1232		40 U	ug/kg	40	-	ug/kg	暴	72 U	ug/kg	72	-	ug/kg		
Aroclor-1242		40 U	ug/kg	40	-	ug/kg		72 U	ug/kg	72	-	ug/kg		
Aroclor-1248 Aroclor-1254		40 U 130	ug/kg	40 40	-	ug/kg ug/kg	2	72 U 72 U	ug/kg ug/kg	72 72	-	ug/kg ug/kg		
Aroctor-1260		130 40 U	ug/kg ug/kg	40	- -	ug/kg ug/kg	3	72 U	ug/kg	72	-	ug/kg ug/kg		
11.00101 11200			פרו לפיי			~g, ~g			-9,			437 K3		
CLP METALS AND CYANIDE	mg/kg						5-A 98							
Aluminum	rustudur Mil. Lurikasi yas	9300 J	mg/kg	40	•	mg/kg	194 184	8050 J	mg/kg	40	-	mg/kg		
Antimony		12 ບຸງ		12	-	mg/kg	1	_12_UJ	mg/kg	12	•	mg/kg		
Arsenic		3.4	mg/kg	2	-	mg/kg		2.8 55.7	mg/kg	2 40	-	mg/kg		
Barium Beryllium	00 (0.44) 20 (20 (2) 10 (2) (0.45) 20 (2) 20 (0.45) (0.5) (4.45)	13.3 J .11 J	mg/kg mg/kg	40 1	-	mg/kg mg/kg	49 38	.11 J	mg/kg mg/kg	40	-	mg/kg mg/kg		
Cadmium		.36 J	mg/kg		•	mg/kg		.67 J	mg/kg		<u>.</u>	mg/kg		
Calcium		302 J	mg/kg	1000	-	mg/kg	# #	1080 J	mg/kg	1000	•	mg/kg		
Chromium		11	mg/kg	2	•	mg/kg	- 100 100	11.3	mg/kg	2	-	mg/kg		
Cobalt		10 U	mg/kg	10	•	mg/kg		1Q.U	mg/kg	10	-	mg/kg		
Copper		5.2 J	mg/kg	_ 5	-	mg/kg	Į.	20	mg/kg	_5	•	mg/kg		
1 ron		6380 J	mg/kg	50	•	mg/kg		5370 J	mg/kg	20	•	mg/kg		
Lead Magnestics		19.8 J	mg/kg	.6 1000	-	mg/kg	ġ.	173 J 298 J	mg/kg	.6 1000	-	mg/kg mg/kg		
Magnesium		54.6 J	mg/kg	1000	-	mg/kg		470 J	mg/kg	1000	-	my/ky		
	D004400444004	erreichtech, beteil ist	rgugget er er er	ere Nation are the			(2)	e i a la lagres (), e si beder e () ; à di	- 11 July 1	enikan in Willia				

				Site '	16 Surface Soil	Data				•		
Lab Sample Number: Site Locator Collect Date:		RA856008 WHITING 16S00801 D9-JAN-96 RUAL UNITS	DL	VALUE	RA856008RE WHITING 16S00801RE 09-JAN-96 QUAL UNITS	DL	VALUE	RA856004 WHITING 16S00901 08-JAN-9 QUAL UNI	16	VALUE	RA856004R WHITING 16S00901R 08-JAN-96 QUAL UNITS	DL
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zine Cyanide	21.5 .1 (8 (1000 (1 (2 (149 (2 (28.2 13.1 .5 () mg/kg) mg/kg) mg/kg) mg/kg) mg/kg) mg/kg) mg/kg mg/kg mg/kg	3 .1 8 1000 1 2 1000 2 10 4 .5		- mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg		120 .1 5.1 1000 1 2 124 2 21.8 161 .18	U mg/ J mg/ UJ mg/ U mg/ U mg/ J mg/ U mg/ mg/	kg .1 kg 8 kg 1000 kg 1 kg 2 kg 1000 kg 2 kg 1000 kg 2 kg 4		- mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg - mg/kg	
Total organic carbon Total petroleum hydrocarbons	•	mg/kg mg/kg			- mg/kg - mg/kg		-	ma/	'kg 'kg		- mg/kg - mg/kg	
							그렇게 함께를 지하다					

}. Le	ab Sample Number: Site Locator Collect Date:	พ 16 09	856014 HITING S01001 -JAN-96 IAL UNITS	DL	VALUE	WHI 1650 09-J	6015 TING 11001D IAN-96 UNITS	DL	VALUE	WH1 1650 10-3	70005 TING 01101 JAN-96 UNITS	DL	VALUE	WH. 1680 09-	56010 ITING D1201 JAN-96 L UNITS	DL	
								33 33 33									
CLP VOLATILES 90-SOW	ug/kg							į.									
Chloromethane		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg	1	13
Bromomethane		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Vinyl chloride		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Chloroethane		11 U	ug/kg			UJ	ug/kg	11		12 U	ug/kg	12		3 UJ	ug/kg		13 🔧
Methylene chloride	ANTON DAY A BOUNTY ON THE	11 U	ug/kg	11		U	ug/kg	11		12 UJ	ug/kg	12		3 U	ug/kg		13
Acetone	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 U	ug/kg	14		UJ	ug/kg	11		12 UJ	ug/kg	12		3 UJ	ug/kg		13
Carbon disulfide				11		U	ug/kg	11		12 UJ	ug/kg	12		3 U	ug/kg		13
1,1-Dichloroethene		11 UJ		11		U	ug/kg	11		12 UJ	ug/kg	12		3 U	ug/kg		13
1,1-Dichloroethane		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
1,2-Dichloroethene (to	otal)	11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		1,3
Chloroform		11 U	ug/kg	11	11	U	ug/kg	11		12 U	ug/kg	12	1	3 U	ug/kg		13
1,2-Dichloroethane		11 U	ug/kg	. 11		UJ	ug/kg	11		12 U	ug/kg	12		3 UJ	ug/kg		13
2-Butanone		11 U	ug/kg	11		เกา	ug/kg	11		12 UJ	ug/kg	12		3 นา	ug/kg		13
1,1,1-Trichloroethane		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Carbon tetrachloride	Janes Carlon, A. Janes Charles, Sanche Charles Charles	11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Bromodichloromethane	4.440	11 U	ug/kg	11	11	U	ug/kg	11		12 U	ug/kg			3 U	ug/kg		13
1,2-Dichloropropane		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
cis-1,3-Dichloroproper)e	11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Trichloroethene		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Dibromochloromethane		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
1,1,2-Trichloroethane		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Benzene		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
trans-1,3-Dichloroprop	pene	11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Bromoform		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12	.1	3 U	ug/kg		13
4-Methyl-2-pentanone		11 U	ug/kg	11		U	ug/kg	11		12 UJ	ug/kg	- 12		3 ∶U	ug/kg		13
2-Hexanone	- (홍후) ·	11 U	ug/kg	11		U	ug/kg	11	on the principle in the first of the control of the	12 UJ	ug/kg	12		3 U	ug/kg		13
Tetrachloroethene		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Toluene		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
1,1,2,2-Tetrachloroeth	ane	11 U	ug/kg	. 11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Chlorobenzene		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 (U	ug/kg		13
Ethylbenzene		11 U	ug/kg	. 11		U	ug/kg	11		12 U	ug/kg	12		3 :U	ug/kg		13
Styrene		11 U	ug/kg	11		U	ug/kg	11		12 U	ug/kg	12		3 U	ug/kg		13
Xylenes (total)		11 U	ug/kg	11	11	U	ug/kg	11	,	12 U	ug/kg	12	1	.3 _∫ U	ug/kg	1	13
CLP SEMIVOLATILES 90-SOL	l ug/kg																
Phenol		350 U	ug/kg	350	350	U	ug/kg	350	31	30 U	ug/kg	380	42	0 U	ug/kg	42	20
bis(2-Chloroethyl) eth	er	350 U	ug/kg	350	350		ug/kg	350		30 U	ug/kg	380		0.0	ug/kg	42	
2-Chlorophenol		350 U	ug/kg	350	350	. –	ug/kg	350		30 U	ug/kg	380		0 U	ug/kg	42	
1.3-Dichlorobenzene		350 U	ug/kg	350	350		ug/kg	350	The Section Control	30 U	ug/kg	380		0 0	ug/kg	42	
1,4-Dichlorobenzene	Mah.	350 U	ug/kg	350	350	, -	ug/kg	350		30 U	ug/kg	380		ου	ug/kg	42	
			-9,		334	7	-313		Ala Paris s		-3, -3	Haliyet Ve A			-3,3	•	

Lab Sample Number: Site Locator Collect Date:	WH) 1680 09	56014 ITING D1001 JAN-96 UNITS	DL	VALUE	RA856015 WHITING 16S01001D 09-JAN-96 QUAL UNIT	S DL	VALUE	16S 10-	70005 ITING 01101 JAN-96 L UNITS	DL	1	A856010 WHITING 6S01201 19-JAN-96 WAL UNITS	DŁ .
1,2-Dichlorobenzene	350 U	ug/kg	350	350) U ug/k	350) 	80 U	ug/kg	380	420 U	ug/kg	420
2-Methylphenol	350 U	ug/kg	350	350		,		80 U	ug/kg	380	420 U		420
2,2-oxybis(1-Chloropropane)	350 U	ug/kg	350	350				80 U	ug/kg	380	420 U		420
4-Methylphenol	350 U	ug/kg	350	350) 3	80 U	ug/kg	380	420 U	5, 5	420
N-Nitroso-di-n-propylamine	350 UJ	ug/kg	350	350		• = : :		80 U	ug/kg	380	420 U		420
Hexachloroethane	350 U	ug/kg	350	350				80 U	ug/kg	380	420 U		420
Ni trobenzen e	350 U	ug/kg	350	350	•	•		80 U	ug/kg	380	420 L		420
Isophorone	350 U	ug/kg	350	350				80 U	ug/kg	380	420 U		420
2-Nitrophenol	350 U	ug/kg	350	350		-		80 U	ug/kg	380	420 1		420
2.4-Dimethylphenol	350 U	ug/kg	350	350				80 U	ug/kg	380	420 L		420
bis(2-Chloroethoxy) methane	350 U	ug/kg	350	350				80 U	ug/kg	380	420 0		420
2.4-Dichlorophenol	350 U	ug/kg	350	350				80 U	ug/kg	380	420 1		420
1.2.4-Trichlorobenzene	350 U	ug/kg	350	350				80 U	ug/kg	380	420 0		420
Naphthalene	350 U	ug/kg	350	350				80 U	ug/kg	380	420 1		420
4-Chloroaniline	350 U	ug/kg	350	350		•		80 U	ug/kg	380	420 L		420
Hexachlorobutadiene	350 U	ug/kg	350	350		-		80 U	ug/kg	380	420 1		420
4-Chloro-3-methylphenol	350 U	ug/kg	350	350		•		80 U	ug/kg	380	420 L		420
2-Methylnaphthalene	350 U	ug/kg	350	350				80 U	ug/kg	380	420-L		420
Hexachlorocyclopentadiene	350 UJ	ug/kg	350	350		,		80 U	ug/kg	380	420 L		420
2.4.6-Trichlorophenol	350 U	ug/kg	350	350		,		80 U	ug/kg	380	420 L		420
2,4,5-Trichlorophenol	870 U	ug/kg	870	880				70 U	ug/kg	970	1100 0		1100
2-Chloronaphthalene	350 U	ug/kg	350	350				80 U	ug/kg	380	420 L		420
2-Nitroaniline	870 U	ug/kg	870	880		,		770 U	ug/kg	970	1100 L	-3,	1100
Dimethylphthalate	350 U	ug/kg	350	350				80 U	ug/kg	380	420 L		420
Acenaphthylene	350 U	ug/kg	350	350				80 U	ug/kg	380	420 L		420
2,6-Dinitrotoluene	350 U	ug/kg	350	350				80 U	ug/kg	380	420 L		420
3-Nitroaniline	870 U	ug/kg	870	880		•		770 U	ug/kg	970	1100 L		1100
Acenaphthene	350 U	ug/kg	350	350		,	The Control of the Co	80 U	ug/kg	380	420 (420
2,4-Dinitrophenol	870 U	ug/kg	870	880				70 U	ug/kg	970	1100		1100
4-Nitrophenol	870 U	ug/kg	870	880				70 U	ug/kg	970	1100		1100
Dibenzofuran	350 U	ug/kg	350	350		•		80 U	ug/kg	380	420 1		420
2,4-Dinitrotoluene	350 U	ug/kg	350	350				80 U	ug/kg	380	420 L		420
Diethylphthalate	350 U	ug/kg	350	350				80 U	ug/kg	380	420 1		420
4-Chlorophenyl-phenylether	350 U	ug/kg	350	350				80 U	ug/kg	380	420 1		420
Fluorene	350 U	ug/kg	350	350				80 U	ug/kg	380	420 L		420
4-Nitroaniline	870 U	ug/kg	870	880		•		70 U	ug/kg	970	1100 L		1100
4,6-Dinitro-2-methylphenol	870 ป	ug/kg	870	880		•		70 U	ug/kg	970	1100 L	- 0, - 0	1100
N-Nitrosodiphenylamine	350 U	ug/kg	350	350				80 U	ug/kg	380	420 L		420
4-Bromophenyl-phenylether	350 U	ug/kg	350	350				80 U	ug/kg	380	420:1		420
Hexach Corobenzene	350 U	ug/kg	350	350		-		80 U	ug/kg	380	420 L		420
Pentach Lorophenol	870 U	ug/kg	870	880				70 U	ug/kg ug/kg	970	1100 L		1100
Phenanthrene	350 U	ug/kg	350	350				80 U	ug/kg	380	420°L		420
Anthracene	350 U	ug/kg	350	350				80 U		380	420°L	U- U	420 420
Carbazole	350 U		350	350		,		80 U	ug/kg	380	420°C		420 420
Di-n-butylphthalate	350 U	ug/kg ug/kg	350	350				80 U	ug/kg ug/kg	380	420 L		420 420
Fluoranthene	350 U	ug/kg	350	350	• • • • • • • • • • • • • • • • • • • •			59 J	ug/kg ug/kg	380	420 L	- 0.	
	350 U			.350		,		44 J	,	380			420 430
Pyrene Butyl hanzul akthol ata	350 U	ug/kg	350 350	350				80 U	ug/kg	380	420 L 420 L		420
Butylbenzylphthalate	350 U	ug/kg		350 350		• = : :	Address Allega Markey	80 U	ug/kg	380			420
3,3-Dichlorobenzidine	the branch and the first of the contract of th	ug/kg	350 350	350 350					ug/kg	10.5	420 L		420 420
Benzo (a) anthracene	350 U	ug/kg		350 350				56 J	ug/kg	380 380	420°L		420 420
Chrysene	350 U 350 U	ug/kg	350 350			,	10.1	62 J 78 J	ug/kg	380 380	54° J		420
bis(2-Ethylhexyl) phthalate	37U U	ug/kg	350	20	l _e J (ug/k	, 350		10 J	ug/kg	260	420 _, L	ug/kg	420

	ample Number: Site Locator Collect Date:	W 16 09	.856014 HITING S01001 -JAN-96 FAL UNITS	DL	WH 169 09-	356015 ITTING 301001D JAN-96 IL UNITS	DL	WH: 1650 10-	70005 ITING D1101 JAN-96 UNITS	DL	WH 165 09-	56010 ITING D1201 JAN-96 L UNITS	DL	
Di-n-octylphthalate		3 50 U	ug/kg	350	350 U	ug/kg	350	380 U	ug/kg	380	420 U	ug/kg	420	
Benzo (b) fluoranthene		350 U	ug/kg	350	350 U	ug/kg	350	86 J	ug/kg	380	420 U	ug/kg	420	
Benzo (k) fluoranthene	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	350 U	ug/kg	350	350 UJ	ug/kg	350	73 J	ug/kg	380	420 U	ug/kg	420	
Benzo (a) pyrene		350 U	ug/kg	350 350	350 U	ug/kg	350	71 J 380 U	ug/kg	380	120 J	ug/kg	420	
Indeno (1,2,3-cd) pyréné		350 U 350 U	ug/kg	350	350 U 350 U	ug/kg	350 · 350 ·	380 U	ug/kg	380 380	62 J 420 U	ug/kg	420 420	
Dibenzo (a,h) anthracene Benzo (g,h,i) perylene		350 U	ug/kg ug/kg	350	350 U	ug/kg ug/kg	350	380 U	ug/kg ug/kg	380	420 0	ug/kg ug/kg	420 420	
Belizo (9/n,1) perytene	. 17 18. v	3,00	na) va	320	3,0 0	ug/ kg	350		ug/kg	3	470	ug/ kg	420	
CLP PESTICIDES/PCBS 90-SOW	ug/kg						94 25							
alpha-BHC		1.8 UJ	ug/kg	1.8	3.6 U	ug/kg	3.6	2 U	ug/kg	2	2.2 UJ	ug/kg	2.2	
beta-BHC		1.8 UJ		1.8	3.6 U	ug/kg	3.6	2 U	ug/kg	2	2.2 UJ	ug/kg	2.2	
delta-BHC		1.8 UJ		1.8	3.6 U	ug/kg	3.6	2 U	ug/kg	2	2.2 UJ	ug/kg	2.2	
gamma-BHC (Lindane)		1.8 UJ		1.8	3.6 U	ug/kg	3.6	2 U	ug/kg	2	2.2 UJ	ug/kg	2.2	
Heptachlor		1.8 UJ 1.8 UJ		1.8	3.6 U 3.6 U	ug/kg	3.6 3.6	2 U 2 U	ug/kg	2 2	2.2 UJ 2.2 UJ	ug/kg	2.2	
Aldrin		1.6 UJ		1.8 1.8	3.6 U	ug/kg ug/kg	3.6	2 U	ug/kg	2	2.2 UJ	ug/kg ug/kg	2.2 2.2	
Heptachlor epoxide Endosulfan I		1.8 UJ		1.8	3.6 U	ug/kg ug/kg	3.6	2 U	ug/kg ug/kg	2	2.2 UJ	ug/kg ug/kg	2.2	
Dieldrin		33 J	ug/kg	3	60	ug/kg	7.	3.8 บั	ug/kg	3.8	2.9 J	ug/kg	4	
4.4-DDE		13 J	ug/kg	3	22	ug/kg	7	51	ug/kg	- 4	26 J	ug/kg	4	
Endrin		3.5 UJ		3.5	7 U	ug/kg	7	3.8 U	ug/kg	3.8	4.2 UJ	ug/kg	4.2	
Endosulfan II		3.5 UJ	ug/kg	3.5	7 U	ug/kg	7	3.8 U	ug/kg	3.8	4.2 UJ	ug/kg	4.2	
4,4-DDD		3.5 UJ		3.5	7 U	ug/kg	7	2.1 J	ug/kg	4	4.2 UJ	ug/kg	4.2	
Endosulfan sulfate		3.5 UJ		3.5	7 UJ	ug/kg	7	3.8 UJ	ug/kg	3.8	4.2 UJ	ug/kg	4.2	*4
4,4-DDT		6.4 J	ug/kg	3	9	ug/kg	7	28	ug/kg	_4	7.1 J	ug/kg	4	
Methoxychlor	4.	18 UJ		18	36 U	ug/kg	36	20 U	ug/kg	20	, 22 UJ	ug/kg	22	
Endrin ketone		3.5 UJ 3.5 UJ		3.5 3.5	7 U 7 U	ug/kg	7 7	3.8 U 3.8 U	ug/kg	3.8 3.8	4.2 UJ 4.2 UJ	ug/kg	4.2 4.2	
Endrin aldehyde alpha-Chlordane	ngfinis general	3.5 UJ 6.8 J	ug/kg ug/kg	3.3 2	7 U 12 J	ug/kg ug/kg	() ()	2 U	ug/kg ug/kg	3.0 2	2.2 UJ	ug/kg ug/kg	2.2	
gamma-Chlordane		0.0 J	ug/kg	2	7.9 J	ug/kg	70	2 0	ug/kg	2	2.2 UJ	ug/kg	2.2	
Toxaphene	£5	180 บั้ม		180	360 U	ug/kg	360	200 Ŭ	ug/kg	200	220 UJ	ug/kg	220	
Aroclor-1016	Ki i	35 UJ	-0.	35	70 U	ug/kg	70	38 U	ug/kg	38	42 UJ	ug/kg	42	
Aroclor-1221	Vicinity of	71 UJ		71	140 U	ug/kg	140	78 U	ug/kg	78	85 UJ	ug/kg	85	
Aroclor-1232	A.	35 UJ	ug/kg	35	70 U	ug/kg	70	38 U	ug/kg	38	42 UJ	ug/kg	42	
Aroclor-1242	Ž.	35 UJ		35	70 U	ug/kg	70	38 U	ug/kg	38	42 UJ	ug/kg	42	
Aroctor-1248		35 UJ		35	70 U	ug/kg	70	38 U	ug/kg	38	42 UJ	ug/kg	42	
Aroclor-1254	Ļ.	35 UJ		35	70 U	ug/kg	70	38 U	ug/kg	38 70	42 UJ	ug/kg	42	
Aroctor-1260		48 J	ug/kg	35	110 J	ug/kg	70	38 U	ug/kg	38	42 UJ	ug/kg	42	
CLP METALS AND CYANIDE	mg/kg						10). 31)							
Aluminum	11137 N9	2000 J	mg/kg	40	1780 J	mg/kg	40	8210 J	mg/kg	40	13900 : J	mg/kg	40	
Antimony	e fr J	12 UJ		12	12 UJ	mg/kg	12	12 UJ	mg/kg	12	12 UJ	mg/kg	12	
Arsenic	M. S.	.76 J	mg/kg	Ž	.64 J	mg/kg	2	12.1	mg/kg		6.6	mg/kg	2	
Barium	a.):	4.9 J	mg/kg	40	4 J	mg/kg	40	92.5	mg/kg	40	39.5 J	mg/kg	40	
Beryllium		1 U	mg/kg	1	1 U	mg/kg	1	.06 J	mg/kg	1	.23 J	mg/kg	1	
Cadmium		1 U	mg/kg	1	.23∶J	mg/kg	1	5.3	mg/kg	1	2.1	:mg/kg	1	
Calcium		101 J	mg/kg	1000	99.8 J	mg/kg	1000	1230	mg/kg	1000	658 J	mg/kg	1000	
Chromium		3.9	mg/kg	2	3.3	mg/kg	2	24.5	mg/kg	2	19.3	mg/kg	2	
Cobalt	N.S S	10 U	mg/kg	10	ຼ 10 ປ	mg/kg	10	3.9 J	mg/kg	10	1.2 J	mg/kg	10	
Copper	edi.	10.2	mg/kg	5	8.6	mg/kg	5	139	mg/kg	5	80.1	mg/kg	5	
Iron		1470 J	mg/kg	20	1310 J	mg/kg	20	48900 436	mg/kg	20 .6	13500 J 128 J	mg/kg	20	
Lead	2-000-00 1-000-00 1-000-00	13.5 J 38.5 J	mg/kg mg/kg	.6 1000	12.4 J 29.9 J	mg/kg mg/kg	.6 1000	436 255 J	mg/kg mg/kg	1000	168 J	mg/kg mg/kg	.6 1000	
Magnesium	9.5	20.2 J	mg/kg	1000	CY.Y J	ilig/ Kg	1000	273 3	IIIA) KB	1000	100 J	ilig/ Kg	1000	

		Naval Air	Station Whiting Site 16 Surface		, Florida	;		
Lab Sample Number: Site Locator Collect Date:	WHITI 168010	NG 01 -96	RA856019 WHITING 16S0100 09-JAN-Y VALUE QUAL UN	G 1D 96	1	RAB70005 WHITING 16S01101 10-Jan-96 DUAL UNITS DL	RA856010 WHITING 16S01201 09-JAN-96 VALUE QUAL UNITS	DL
Manganèse Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanidė	.2 m 8 U m 1000 U m .13 J m 4.1 m 139 J m 2 U m 3.4 J m 4.1 J m	g/kg 3 g/kg .1 g/kg 8 g/kg 1000 g/kg 1 g/kg 2 g/kg 1000 g/kg 1000 g/kg 1000 g/kg 1000 g/kg 4 g/kg 15	.17 mg. 8 U mg. 77.6 J mg. 1 U mg. 3.6 mg. 118 J mg. 2 U mg. 3.2 J mg. 3.4 J mg.	/kg 3 /kg .1 /kg 8 /kg 1000 /kg 1 /kg 2 /kg 1000 /kg 1000 /kg 4 /kg .5	1 .18 J 3 26 1 107 J 1 1 U 2 2.2 J 2 189 J 2 2 U 16.7 J 488	mg/kg 8 J mg/kg 1000 J mg/kg 1 J mg/kg 2 J mg/kg 1000 J mg/kg 1000 J mg/kg 10 mg/kg 10 mg/kg 4	.11 mg/kg 5.9 J mg/kg 1000 UJ mg/kg .19 J mg/kg 1.3 J mg/kg 145 J mg/kg 2 U mg/kg	3 .1 8 1000 1 2 1000 2 10 4
Total organic carbon Total petroleum hydrocarbons		g/kg g/kg		/kg /kg	-	mg/kg mg/kg	- mg/kg - mg/kg	

	Lab Sample Number: Site Locator Collect Date:	16 09	856011 HITING S01301 -JAN-96 AL UNITS	DL	VALUE	RA870003 WHITING 16S01401 10-JAN-96 QUAL UNITS	DL	VALUE	RA856005 WHITING 16S01501 08-JAN-96 QUAL UNIT	S DL	VALUE	RA870007 WHITING 16S01601 10-JAN-96 QUAL UNITS	DL
CLP VOLATILES 90-SOW	ug/kg												
Chloromethane		11 U	ug/kg	11	11		11		1 U ug/k		1 12		12
Bromomethane	2002년 - 설립 전환경 2011년 - 11일 - 11일 - 11일	11 U	ug/kg	11	11		11		1 U ug/k			U ug/kg	12
Vinyl chloride	920 (1. 1. 1. 1800) 1933. 1833 - Francisco III (1. 1800)	11 U 11 UJ	ug/kg	11	11 11	U. U	11 11		1 U ug/k			U ug/kg	12
Chloroethane		11 U		11 11	11		11		1 UJ ug/k 1 U ug/k			U ug/kg UJ ug/kg	12
Methylene chloride		11 UJ	ug/kg ug/ka	11	11	-0	11		veten to migginals and a si-		· 0.		12 12
Acetone Carbon disulfide		11 03	ug/kg ug/kg	11	11		11	Arrest Seed Control of Control	1 UJ ug/k 1 U ug/k			UJ ug/kg UJ ug/kg	12
1.1-Dichloroethene		11 0	ug/kg ug/kg	11	11		11	"KPT CONSTRUCTION AND THE STATE	iiu ug/k I1U ug/k		, ,	UJ ug/kg	12
1.1-Dichloroethane		11 0	ug/kg ug/kg	11	11		1.1	And the second of the second o	liu ug/k liu ug/k			U ug/kg	12
1.2-Dichloroethene (total	11 0	ug/kg ug/kg	11	11		11		llu ug/k l1U ug/k			U ug/kg	12
Chloroform	total /	11 0	ug/kg	11	11		11		1 U ug/k			U ug/kg	12
1.2-Dichloroethane		11 UJ		11	11		11		1 UJ ug/k			U ug/kg	12
2-Butanone	1일을 보고 있다면서 100 mg (100 mg) 1	11 03		11	11		11		1 UJ ug/k			UJ ug/kg	12
1,1.1-Trichloroethan		11 0	ug/kg	11	11		11		11 U ug/k			U ug/kg	12
Carbon tetrachloride		11 0	ug/kg	11	11		11		l1ti ug/k			U ug/kg	12
Bromodichloromethane		11 Ŭ	ug/kg	11	ii		11		1 U ug/k			U ug/kg	12
1,2-Dichloropropane		11 Ŭ	ug/kg	11	11		11		1 U ug/k			U ug/kg	12
cis-1.3-Dichloroprop	Y ene	ii ŭ	ug/kg	11	ii		11	14. 000 service 19.000 co.com	11 U ug/k	PORTURE STOP OF THE LIVE THE	7.	U ug/kg	12
Trichloroethene		11 Ŭ	ug/kg	11	11		11		1 U ug/k			U ug/kg	12
Dibromochloromethane	로 하고 아이를 가끔할 것 ▶ 이 하고 이 사람이라	11 Ŭ	ug/kg	11	11		11		1 U ug/k			U ug/kg	12
1,1,2-Trichloroethan		11 Ú	ug/kg	11	11		11		1 U ug/k			U ug/kg	12
Benzene	김기를 শ্রেম	11 Ŭ	ug/kg	11	11		11		1 U ug/k			U ug/kg	12
trans-1,3-Dichloropr	opene	11 U	ug/kg	11	11		11		1 U ug/k			U ug/kg	12
Bromoform	- Telephone	11 U	ug/kg	11	11		11		1 U ug/k			U ug/kg	12
4-Methyl-2-pentanone	r de la	11 U	ug/kg	11	11		11		1 U ug/k			UJ ug/kg	12
2-Hexanone	i deti	11 0	ug/kg	11	11		11		1 U ug/k		1 12	UJ ug/kg	12
Tetrachloroethene	[[하다]]	11 U	ug/kg	11	11	0. 0	11		1 U ug/k			U ug/kg	12
Toluene	불병 이렇게	11 U	ug/kg	11	11		11		1 U ug/k			U ug/kg	12
1,1,2,2-Tetrachloroe	thane	11 U	ug/kg	11	11	U ug/kg	11		1 U ug/k		1 12	U ug/kg	12
Chlorobenzene		11 U	ug/kg	11	11		11	- 3.43	1 U ug/k		1 12	U ug/kg	12
Ethylbenzene	[17] 1 [18] 1 (H. 18] 1 (H. 18] 1 (H. 18] 1 (H. 18] 1 (H. 18] 1 (H. 18] 1 (H. 18] 1 (H. 18] 1 (H. 18] 1 (H. 18]	11 U	ug/kg	1. 2023-11	11	U ug/kg	11		1 U ug/k	j 1	1 12	U ug/kg	12
Styrene		- 11 U	ug/kg	- 11	11	U ug/kg	-11		1 U ug/k		1 12	U ug/kg	12
Xylenes (total)		11 U	ug/kg	11	11	U ug/kg	11		11 U ug/k	, 1	1 12	U ug/kg	12
CLP SEMIVOLATILES 90-S	OW ug/kg												
Phenol	~a/ \g	370 U	ug/kg	370	370	U ug/kg	370	رۍ ر	60 U ug/k	36	0 400	U ug/kg	400
bis(2-Chloroethyl) e	ther	370 U	ug/kg	370	370		370		60 U ug/k				400
2-Chlorophenol		370 U	ug/kg	370	370		370		50 U ug/k				400
1.3-Dichlorobenzene		370 U	ug/kg	370	370		370	40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60 U ug/k				400
1.4-Dichlorobenzene		370 U	ug/kg	370	370		370		60 U ug/k	Programme and the state of the			400
, , , , , , , , , , , , , , , , , , ,					- · · · · · · · · · · · · · · · · · · ·							,	
				Sandaria da		1					\$1.		

Lab Sample Number: Site Locator Collect Date:	<u>.</u>	WI 169 09	356011 HITING S01301 -JAN-96 AL UNITS	DL	VALUE	1650 10-J	TING	DL	VALUE	WH 16S 08-	56005 ITING 01501 JAN-96 L UNITS	DL	VALU	W 16 10	870007 HITING S01601 -JAN-96 AL UNITS	DL
1,2-Dichlorobenzene	**	370 U	ug/kg	370		'0 U	ug/kg	3	70	360 U	ug/kg	30	50	400 U	ug/kg	400
2-Methylphenol		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		60	400 U	ug/kg	400
2,2-oxybis(1-Chloropropane)		370 U	ug/kg	370		ั0 บ	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
4-Methylphenol		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
N-Nitroso-di-n-propylamine		370 UJ	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
Hexachloroethane		370 U	ug/kg	370		ับ บ	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
Nitrobenzene		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg	30	50	400 U	ug/kg	400
Isophorone		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
2-Nitrophenol		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
2,4-Dimethylphenol		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
bis(2-Chloroethoxy) methane		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
2,4-Dichlorophenol		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
1,2,4-Trichlorobenzene		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
Naphthalene		370 U	.ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
4-Chloroaniline		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
Hexachlorobutadiene		370 U	ug/kg	3 70		0 υ	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
4-Chloro-3-methylphenol		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
2-Methylnaphthalene		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg	30		400 U	ug/kg	400
Hexachlorocyclopentadiene		370 UJ	ug/kg	370		'0 U	ug/kg		70	360 U	ug/kg	5 12 1 1 1 1 1 T	50	400 U	ug/kg	400
2,4,6-Trichlorophenol		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
2,4,5-Trichlorophenol		920 U	ug/kg	920		0 U	ug/kg		20	900 U	ug/kg		00	1000 U	ug/kg	1000
2-Chloronaphthalene		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
2-Nitroaniline		920 U	ug/kg	920		0 U	ug/kg		20	900 U	ug/kg		00	1000 U	ug/kg	1000
Dimethylphthalate		370 U	ug/kg	370		0 U	ug/kg	37	70	360 U	ug/kg	30	50	400 U	ug/kg	400
Acenaphthylene		370 U	ug/kg	370		0 U	ug/kg	37	70	360 U	ug/kg		50	400 U	ug/kg	400
2,6-Dinitrotoluene		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
3-Nitroaniline		920 U	ug/kg	920		0 U	ug/kg		20	900 U	ug/kg	33.00		1000 U	ug/kg	1000
Acenaphthene		370 U	:ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		60	400 U	ug/kg	400
2,4-Dinitrophenol		920 U	ug/kg	920		0 U	ug/kg		20	900 U	ug/kg		00	1000 U	ug/kg	1000
4-Nitrophenol		920 U	ug/kg	920		0 U	ug/kg	97	20	900 U	ug/kg	. 9	00	1000 UJ	ug/kg	1000
Dibenzofuran		370 U	ug/kg	370	37	0 U	ug/kg	37	70	360 U	ug/kg	30	50	400 U	ug/kg	400
2,4-Dinitrotoluene	1	370 U	ug/kg	370	37	0 U	ug/kg	37	70	360 U	ug/kg	30	50	400 U	ug/kg	400
Diethylphthalate		370 U	ug/kg	370		0 U	ug/kg	37	70	360 U	ug/kg	30	60	400 U	ug/kg	400
4-Chlorophenyl-phenylether	1	370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg	30	50	400 U	ug/kg	400
Fluorene	* * * * * * * * * * * * * * * * * * *	370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
4-Nitroaniline		920 U	ug/kg	920		0 U	ug/kg	97	20	900 U	ug/kg		00	1000 U	ug/kg	1000
4,6-Dinitro-2-methylphenol		920 U	ug/kg	920	92	0 U	ug/kg	97	20	900 U	ug/kg	9	00	1000 U	ug/kg	1000
N-Nitrosodiphenylamine		370 U	ug/kg	370	37	0 U	ug/kg	37	70	360 U	ug/kg	30	50	400 U	ug/kg	400
4-Bromophenyl-phenylether		370 U	ug/kg	370		0 U	ug/kg	37	70	360 U	ug/kg	30	50	400 U	ug/kg	400
Hexachlorobenzene		370 U	ug/kg	370		0 U	ug/kg	37	70	360 U	ug/kg	3	50	400 U	ug/kg	400
Pentachlorophenol		920 U	ug/kg	920		0 U	ug/kg		20	900 U	ug/kg	9	00	1000 U	ug/kg	1000
Phenanthrene	1. 1. 1.	370 U	ug/kg	370	37	0 U	ug/kg	37	70	360 U	ug/kg	30	50	400 U	ug/kg	400
Anthracene	100	370 U	ug/kg	370	37	0 U	ug/kg	37	70	360 U	ug/kg	3	50	400 U	ug/kg	400
Carbazole	H. Zubb	370 U	ug/kg	370	37	0 U	ug/kg	37	70	360 U	ug/kg	30	50	400 U	ug/kg	400
Di-n-butylphthalate		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
Fluoranthene		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg	VAN (VAL)	50	400 U	ug/kg	400
Pyrene	de de vert	370 U	ug/kg	370		O U	ug/kg		70	360 U	ug/kg		50	400 U	ug/kg	400
Butylbenzylphthalate		370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg		50	400 ·U	ug/kg	400
3,3-Dichlorobenzidine		370 U	ug/kg	370		0 ¹ U	ug/kg		70	360 U	ug/kg	30	50	400 U	ug/kg	400
Benzo (a) anthracene	Mariti.	370 U	ug/kg	370		0 U	ug/kg		70	360 U	ug/kg	30	50	400 U	ug/kg	400
Chrysene		370 U	ug/kg	370		0 U	ug/kg	37	70	360 U	ug/kg	30	50	400 U	ug/kg	400
bis(2-Ethylhexyl) phthalate		370 U	ug/kg	370	37	0 U	ug/kg	37	70	360 U	ug/kg	30	60	45 J	ug/kg	400

Lab Sample Nu Lo Collect	Site Whocator 165 Date: 09-	856011 HITING 801301 JAN-96 NL UNITS	DL	WH 165 10-	870003 HITING 801401 JAN-96 AL UNITS	DL	WH 16s 08-	56005 ITING 01501 JAN-96 L UNITS	DL	WH 165 10-	70007 ITING 01601 JAN-96 L UNITS	DL	
Di-n-octylphthalate	370 U	ug/kg	370	370 U	ug/kg	370	360 U	ug/kg	360	400 U	ug/kg	400	
Benzo (b) fluoranthene	370 U	ug/kg	370	370 U	ug/kg	370	360 U	ug/kg	360	400 U	ug/kg	400	
Benzo (k) fluoranthene	370 U	ug/kg	370	370 U	ug/kg	370	360 U	ug/kg	360	400 U	ug/kg	400	
Benzo (a) pyrene	370 U	ug/kg	370	370 U	ug/kg	370	360 U	ug/kg	360	400 U	ug/kg	400	
Indeno (1,2,3-cd) pyrene	370 U	ug/kg	370	370 U	ug/kg	370	360 U	ug/kg	360	400 U	ug/kg	400	
Dibenzo (a,h) anthracene	370 U	ug/kg	370	370 U	ug/kg	370	360 U	ug/kg	360	400 U	ug/kg	400	
Benzo (g,h,i) perylene	370 U	ug/kg	370	370 U	ug/kg	370	360 U	ug/kg	360	400 U	ug/kg	400	
CLP PESTICIDES/PCBS 90-SOW	ıg/kg												
alpha-BHC	1.9 UJ	ug/kg	1.9	1.9 U	ug/kg	1.9	1.8 U	ug/kg	1.8	2 U	ug/kg	2	
beta-BHC	1.9 UJ	ug/kg	1.9	1.9 U	ug/kg	1.9	1.8 U	ug/kg	1.8	2 U	ug/kg	2	
delta-BHC	1.9 UJ	ug/kg	1.9	1.9 U	ug/kg	1.9	1.8 U	ug/kg	1.8	2 U	ug/kg	2	
gamma-BHC (Lindane)	1.9 UJ	ug/kg	1.9	1.9 U	ug/kg	1.9	1.8 ປ	ug/kg	1.8	2 U	ug/kg	2	
Heptachlor	1.9 UJ	ug/kg	1.9	1.9 U	ug/kg	1.9	1.8 U	ug/kg	1.8	2 U	ug/kg	2	
Aldrin	1.9 UJ	ug/kg	1.9	1.9 U	ug/kg	1.9	1.8 U	ug/kg	1.8	2 U	ug/kg	2	
Heptachlor epoxide	1.9 UJ	ug/kg	1.9	1.9 U	ug/kg	1.9	1.8 U	ug/kg	1.8	2 U	ug/kg	2	
Endosul fan I	1.9 UJ	ug/kg	1.9	1.9 U	ug/kg	1.9	1.8 U	ug/kg	1.8	2 U	ug/kg	2	
Dieldrin	7.2 J	ug/kg	- 4	3.7 U	ug/kg	3.7	3.6 U	ug/kg	3.6	4 U	ug/kg	4	
4,4-DDE	3.7 UJ 3.7 UJ	ug/kg	3.7	3.7 U	ug/kg	3.7	3.6 U	ug/kg	3.6	4 U	ug/kg	4	
Endrin		ug/kg	3.7	3.7 U	ug/kg	3.7	3.6 U	ug/kg	3.6	4 U	ug/kg	4	
Endosulfan II	3.7 UJ 3.7 UJ	ug/kg	3.7	3.7 บ 3.7 บ	ug/kg	3.7	3.6 U	ug/kg	3.6	4 U 4 U	ug/kg	4	
4,4-DDD Endosulfan sulfate	3.7 UJ	ug/kg	3.7 3.7	3.7 UJ	ug/kg	3.7 3.7	3.6 U 3.6 UJ	ug/kg ug/kg	3.6 3.6	4 UJ	ug/kg	2	
4,4-DDT	3.7 UJ	ug/kg ug/kg	3.7	3.7 U	ug/kg ug/kg	3.7	3.6 U	ug/kg ug/kg	3.6	4 U	ug/kg ug/kg	2	
Methoxychlor	19 UJ	ug/kg ug/kg	19	19 U	ug/kg ug/kg	19	18 U	ug/kg ug/kg	18	20 U	ug/kg ug/kg	20	
Endrin ketone	3.7 UJ	ug/kg ug/kg	3.7	3.7 U	ug/kg ug/kg	3.7	3.6 U	ug/kg	3.6	4 U	ug/kg ug/kg	. 4	
Endrin aldehyde	3.7 UJ	ug/kg	3.7	3.7 U	ug/kg	3.7	3.6 U	ug/kg	3.6	4 Ŭ	ug/kg	7	
alpha-Chlordane	1.6 J	ug/kg	2	1.9 U	ug/kg	1.9	1.8 U	ug/kg	1.8	2 0	ug/kg	2	
gamma-Chlordane	1 1	ug/kg	. 2	1.9 Ŭ	ug/kg	1.9	1.8 U	ug/kg	1.8	ŽŪ	ug/kg	2	
Toxaphene	190 UJ	ug/kg	190	190 U	ug/kg	190	180 U	ug/kg	180	200 U	ug/kg	200	
Aroclor-1016	37 UJ	ug/kg	37	37 Ü	ug/kg	37	36 U	ug/kg	36	40 U	ug/kg	40	
Aroclor-1221	74 UJ	ug/kg	74	74 U	ug/kg	74	73 U	ug/kg	73	81 U	ug/kg	81	
Aroclor-1232	37 UJ	ug/kg	37	37 U	ug/kg	37	36 U	ug/kg	36	40 U	ug/kg	40	
Aroctor-1242	37 UJ	ug/kg	37	37 U	ug/kg	37	36 U	ug/kg	36	40 U	ug/kg	40	
Aroclor-1248	37 UJ	ug/kg	37	37.U	ug/kg	37	36 U	ug/kg	36	40 U	ug/kg	40	
Aroclor-1254	37 UJ	ug/kg	37	37 U	ug/kg	37	36 U	ug/kg	36	40 U	ug/kg	40	
Aroclor-1260	37 UJ	ug/kg	37	37 U	ug/kg	37	36 U	ug/kg	36	40°U	ug/kg	40	
CLP METALS AND CYANIDE	ng/kg					¥.					1 1		
Aluminum	91 3 0 J	mg/kg	40	8050 J	mg/kg	40	5010 J	ma/ka	40	7280 J	mg/kg	40	
Antimony	12 UJ	mg/kg	12	12 UJ	mg/kg	12	12 UJ	mg/kg	12	12 UJ	mg/kg	12	
Arsenic	1.6 J	mg/kg	'2	1.5 J	mg/kg	2	1.4 j	mg/kg	ž	2.2 J	mg/kg	2	
Barium	12.3 J	mg/kg	40	19.7 J	mg/kg	40	7.8 J	mg/kg	40	10.7 J	mg/kg	40	
Beryllium	.1 J	mg/kg	1	.09 J	mg/kg	` i '	.06 J	mg/kg	· 1	1 U	mg/kg	ĭ	
Cadmium	.21 J	mg/kg	i	.21 J	mg/kg	1 :	.23 J	mg/kg	i	.38 J	mg/kg	i	
Calcium	441 J	mg/kg	1000	670 J	mg/kg	1000	96.5 J	mg/kg	1000	327 J	mg/kg	1000	
Chromium	8	mg/kg	2	5.4	mg/kg	2	3.2	mg/kg	2	5.5	mg/kg	2	
Cobalt	.7 J	mg/kg	10	.85 J	mg/kg	10	10 U	mg/kg	10	10 U	mg/kg	10	
Copper	5.6	mg/kg	5	6.1	mg/kg	5	2.9 J	mg/kg	5	5.4 J	mg/kg	5	
Iron	4760 J	mg/kg	20	4030	mg/kg	20	2920 J	mg/kg	20	5290	mg/kg	20	
Lead	60 J	mg/kg	.6	22.9	mg/kg	.6	4.4 J	mg/kg	.6	15.8	mg/kg	.6	
Magnes i um	142 J	mg/kg	1000	186 J	mg/kg	1000	84.2 J	mg/kg	1000	95.8 J	mg/kg	1000	

Lab Sample Number Sit Locato Collect Date	e W r 16 : 09	856011 HITING S01301 -JAN-96 IAL UNITS	DL	WH 165 10-	B70003 HITING S01401 -JAN-96 AL UNITS	DL VALI	WHI 1680 08-J	66005 TING 01501 JAN-96 . UNITS [)L	W 16: 10	B70007 HITING S01601 -JAN-96 AL UNITS	DL	
Manganese	54.7	mg/kg	3	372	mg/kg	3	253	mg/kg	3	32.3	mg/kg	3	
Mercury	.1 U	mg/kg	.1	.05 J	mg/kg	.1	.1 บ	mg/kg	.1	.06 J	mg/kg	.1	
Nickel	8 U	mg/kg	8	4.1 J	mg/kg	8	8 U	mg/kg	- 8	8 U	mg/kg	8	
Potassium	1000 UJ	mg/kg	1000	69.7 J	mg/kg	1000	1000 U	mg/kg	1000	76.9 J	mg/kg	1000	
Selenium	1 U	mg/kg	1	.15 J	mg/kg	1986	.2 J	mg/kg	1	1 U	mg/kg	1	
Silver	2 U	mg/kg	2	2 U	mg/kg	2	2 U	mg/kg	2	2 U	mg/kg	2	
Sodium	117 J	mg/kg	1000	181 J	mg/kg	1000	114 J	mg/kg	1000	186 J	mg/kg	1000	
Thallium	2 U	mg/kg	2	2 U	mg/kg	2	2 U	mg/kg	2	2 U	mg/kg	2	
Vanadium	14	mg/kg	10	11.2	mg/kg	10	7 J	mg/kg	10	13.3	mg/kg	10	
Zinc	16.3	mg/kg	4	8	mg/kg	4	4.7	mg/kg	4	16.7	mg/kg	4	
Cyanide	.5 U	mg/kg	.5	.5 U	mg/kg	.5	.51 J	mg/kg	.5	.5 UJ	mg/kg	.5	
Total organic carbon	<u>-</u>	mg/kg		-	mg/kg	5.43		mg/kg		-	mg/kg		
Total petroleum hydrocarbons	-	mg/kg		-	mg/kg			mg/kg		•	mg/kg		

Lab Sample Number: Site Locator Collect Date:

RA870006 WHITING 16S01701 10-JAN-96

VALUE

QUAL UNITS

S	D

			100				
		lika (b. 1)				er G	
CLP VOLATILES 90-SOW	ug/kg			4			
Chloromethane		11		ug/kg		11	
Bromomethane		11	U	ug/kg		11	
Vinyl chloride		11	U	ug/kg		11	- 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
Chloroethane	Normalidados	. 11	U	ug/kg		- 11	
Methylene chloride		11	UJ	ug/kg		11	
Acetone		11	UJ	ug/kg		11	
Carbon disulfide		11	IJ	ug/kg		11	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
1,1-Dichloroethene		11		ug/kg		11	
1,1-Dichloroethane		11		ug/kg		11	
1,2-Dichloroethene (total)		11		ug/kg		11	
Chloroform		11	_	ug/kg		11	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
1.2-Dichloroethane		11	-	ug/kg		11	
2-Butanone		11		ug/kg		11	
		11					
1,1,1-Trichloroethane	14. 134			ug/kg		11	
Carbon tetrachloride		11		ug/kg		11	
Bromodichloromethane		11		ug/kg		11	
1,2-Dichloropropane	7*	11	_	ug/kg		11	
cis-1,3-Dichloropropene		11	-	ug/kg		.11	
Trichloroethene			U	ug/kg		. 11	
Dibromochloromethane		11		ug/kg		11	
1,1,2-Trichloroethane		11	U	ug/kg		11	
Benzene		11	U	ug/kg		11	
trans-1,3-Dichloropropene		11	U	ug/kg		.11	
Bromoform		- 11	U	ug/kg		11	
4-Methyl-2-pentanone		11	UJ	ug/kg		11	
2-Hexanone		11	UJ .	ug/kg		11	
Tetrachloroethene		11	U	ug/kg		11	
Toluene		11	_	ug/kg		11	
1,1,2,2-Tetrachloroethane	1 (A. 14)	11		ug/kg		11	
Chlorobenzene		11	_	ug/kg		11	
Ethylbenzene		11		ug/kg		11	
Styrene	1,4-1	11		ug/kg		11	
		11				11	
Xylenes (total)		11	U	ug/kg	100		
N.B. OCHIVOLATILEO DO COL			- 1				
CLP SEMIVOLATILES 90-SON	ug/kg	740			12.0	740	
Phenol		360		ug/kg	1981	360	
bis(2-Chloroethyl) ether		360		ug/kg		360	
2-Chlorophenol		360		ug/kg		360	
1,3-Dichlorobenzene		360		ug/kg		360	
1,4-Dichlorobenzene		360	U	ug/kg	1.0%	360	는 아이들의 보고 있었다. 경기를 위한 경기를 받는다. 1000년 1월 1일 1일 1일 1일 1일 1일 1일 1일 1일 1일 1일 1일 1일
				of S		en et en en en en en en en en en en en en en	
						945	
						.##	
		New To		Addition to the			

Lab Sample Number: Site Locator Collect Date:	16 10	870006 HITING SS01701 -JAN-96 HAL UNITS	DL	
1,2-Dichlorobenzene	360 U	ug/kg	360	
2-Methylphenol	360 U	ug/kg	360	
2,2-oxybis(1-Chloropropane)	360 U	ug/kg	360	
4-Methylphenol	360 U	ug/kg	360	
N-Nitroso-di-n-propylamine	360 U	ug/kg	360 740	
Hexachloroethane	360 U 360 U	ug/kg	360 360	
Nitrobenzene Isophorone	360 U	ug/kg ug/kg	360	
2-Nitrophenol	360 U	ug/kg ug/kg	360	
2,4-Dimethylphenol	360 U	ug/kg	360	
bis(2-Chloroethoxy) methane	360 U	ug/kg	360	
2,4-Dichlorophenol	360 U	ug/kg	360	
1,2,4-Trichlorobenzene	360 U	ug/kg	360	
Naphthalene	360 U	ug/kg	360	
4-Chloroaniline	360 U	ug/kg	360	
Hexach Lorobutadiene	360 U	ug/kg	360	
4-Chloro-3-methylphenol	360 U	ug/kg	360	
2-Methylnaphthalene	360 U	ug/kg	360	
Hexachlorocyclopentadiene	360 U	ug/kg	360	
2,4,6-Trichlorophenol	360 U	ug/kg	360	
2,4,5-Trichlorophenol	910 U	ug/kg	910	
2-Chloronaphthalene	360 U	ug/kg	360	
2-Nitroaniline	910 U	ug/kg	910	
Dimethylphthalate	360 U	ug/kg	360	
Acenaph thy lene	360 U	ug/kg	360	
2,6-Dinitrotoluene	360 U	ug/kg	360	
3-Nitroaniline	910 U	ug/kg	910	
Acenaph thene	360 U	ug/kg	360	
2,4-Dinitrophenol	910 U	ug/kg	910	
4-Nitrophenol	910 U	ug/kg	910	
Dibenzofuran	360 U	ug/kg	360	
2,4-Dinitrotoluene	360 U	ug/kg	360	
Diethylphthalate	360 U	ug/kg	360	
4-Chlorophenyl-phenylether	360 U 360 U	ug/kg	360 360	
Fluorene 4-Nitroaniline	910 U	ug/kg ug/kg	910	
	910 U	ug/kg ug/kg	910	
4,6-Dinitro-2-methylphenol	360 U	ug/kg ug/kg	360	
N-Nitrosodiphenylamine 4-Bromophenyl-phenylether	360 U		360	
Hexach Lorobenzene	360 U	ug/kg	360	
Pentachtorophenol	910 U	ug/kg	910	
Phenanthrene	360 U	ug/kg	360	가는 사람들은 사람들이 되었다. 그렇게 되었다면 보다 되었다. 그렇게 되었다.
Anthracene	360 U	ug/kg	360	아기 맛있는 얼마 나를 가게 되었다.
Carbazole	360 U	ug/kg	360	
Di-n-butylphthalate	360 U	ug/kg	360	
Fluoranthene	360 U	ug/kg	360	
Pyrene	360 U	ug/kg	360	
Butylbenzylphthalate	360 U	ug/kg	360	
3,3-Dichlorobenzidine	360 U	ug/kg	360	
Benzo (a) anthracene	360 U	ug/kg	360	그리는 그리는 그리는 그리는 그리는 그리는 그리는 그리는 그리는 그리는
Chrysene	360 U	ug/kg	360	
bis(2-Ethylhexyl) phthalate	48 J	ug/kg	360	

Lab :	Sample Number: Site Locator Collect Date:	VALUE	RA870006 WHITING 16S01701 10-JAN-96 QUAL UNITS	DL	
Di-n-octylphthalate Benzo (b) fluoranthene		360 360		360 360	
Benzo (k) fluoranthene	1000 (100) (1000 (1000 (1000 (100) (1000 (1000 (100) (1000 (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (100) (100) (1000 (100) (100) (1000 (100) (100) (1000 (100) (100) (100) (100) (1000 (100) (360		360 360	
Benzo (a) pyrene	5 A CANADA 1 5 A CANADA 1 1 A CANADA 1	360		360	
Indeno (1,2,3-cd) pyrene		360		360	
Dibenzo (a,h) anthracene		360		360	
Benzo (g,h,i) perylene		3 60	U ug/kg	360	
CLP PESTICIDES/PCBS 90-SOW	un/ba				
alpha-BHC	ug/kg	1.9	U ug/kg	1.9	
beta-BHC		1.9		1.9	
delta-BHC	10.1626/6 3.465.46	1.9		1.9	
gamma-BHC (Lindane)		1.9		1.9	
Heptachlor		1.9		1.9	
Aldrin		1.9		1.9	
Heptachlor epoxide		1.9		1.9	
Endosulfan I		1.9 3.6		1.9 3.6	
Dieldrin 4,4-DDE		3.6		3.6	
Endrin		3.6		3.6	
Endosulfan II		3.6		3.6	
4,4-DDD	juji.	3.6	U ug/kg	3.6	
Endosulfan sulfate		3.6		3.6	
4,4-DDT		3.6		3.6	
Methoxychlor		19 3.6		19 3.6	
Endrin ketone Endrin aldehyde		3.6		3.6	
alpha-Chlordane	t evil 1.	1.9		1.9	
gamma-Chlordane		1.9		1.9	
Toxaphene	Carrier Anton	190		190	
Aroclor-1016		36	3. 4	36	
Aroclor-1221		74		74	
Aroclor-1232		36 36		36 36	
Aroclor-1242 Aroclor-1248		36		36	
Aroclor-1254	기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	36		36	
Aroctor-1260		36		36	
CLP METALS AND CYANIDE	mg/kg			e 15를 잃고 있는	
Aluminum		4320		40	
Antimony	1000 000 0000 000		UJ mg/kg	12	
Arsenic Barium	area s	1.3 6.7		2 40	
Beryllium	Markey A Watasa		U mg/kg		
Cadmium		.26		i	
Calcium		158	J mg/kg	1000	
Chromium		3.5	mg/kg	2	
Cobalt		10	U mg/kg	10	
Copper		5.8		7	
Iron		3070		20 .6	
Lead		29.6 56.6		1000	는 이 등학자들은 것이 되었다. 그 이 이 아이는 생각이 되었다. 그 가장 없었다. 기가 있는 것은 것이 되었다. 그 이 그 이 그 사람들이 되었다. 그 것이 되었다.
Magnes i um		JU.0	J mg/kg	1000	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
		gerade de Jenografia		To Administration of the Community of th	
 Leading the looks with the court in waiting and A.M. P. D. L.L. 	(44) 計 (5)			ANAMACH CONTRACTOR	문화가는 문화화회에는 항상을 받아 있다면 보다는 것은 모든 사용 등을 사용하지 않아 있다는 것은 작업하다.

		Site 16 Surface Soil Data	•	
Lab Sample Number: Site Locator Collect Date:	WHITING 16S01701			
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	34.3 mg/kg 3 .06 J mg/kg .1 2.5 J mg/kg 8 1000 U mg/kg 1000 1 U mg/kg 1 2 U mg/kg 2 170 J mg/kg 1000 2 U mg/kg 2 7.3 J mg/kg 10 14.7 mg/kg 4 .5 UJ mg/kg .5			
Total organic carbon Total petroleum hydrocarbons	- mg/kg - mg/kg			

APPENDIX E SURFACE WATER ANALYTICAL DATA

Naval Air Station Whit Field, Milton, Florida Site 16 Surface Water Data

Lab Sample Number: Site Locator Collect Date:

RA903003 WHITING 16W00101 05-JAN-96 QUAL UNITS

VALUE

P VOLATILES 90-SOW	ug/l	
Chloromethane	10 U ug/L 10	
Bromomethane	10 U ug/L 10	
Vinyl chloride	10 U ug/l 10	
Chloroethane	10 U ug/L 10	
Methylene chloride	10 U ug/L 10	
Acetone	10 U ug/l 10	
Carbon disulfide	10 U ug/L 10	
1,1-Dichloroethene	10 U ug/l 10	
1,1-Dichloroethane	10 U ug/l 10 U ug/l 10	
1,2-Dichloroethene (total)	10 U ug/l 10	
Chloroform	10 U ug/l 10	
1,2-Dichloroethane	10 U ug/l 10	
2-Butanone	수 등 사실 - 10 U 등	
1,1,1-Trichloroethane	10 U a. ug/l 10	
Carbon tetrachloride	10 U ug/l 10	
Bromodichloromethane	10 U ug/l 10	
1,2-Dichloropropane	10 U ug/l 10	
cis-1,3-Dichloropropene	10 U ug/l 10	
Trichloroethene	10 U ug/l 10	
Dibromochloromethane	3 10 U ug/L 25 10	
1,1,2-Trichloroethane	10 U ug/l 10	
Benzene	10 U ug/l 10	
trans-1,3-Dichloropropene	10 U ug/l 10	
Bromoform	10 U ug/l 10	
4-Methyl-2-pentanone	10 U ug/l 10	
2-Hexanone	10 U ug/l 10	
Tetrachloroethene	10 U ug/L 10	
Toluene	10 U ug/l 10	
1,1,2,2-Tetrachloroethane	10 U ug/l 10	
Chlorobenzene	10 U ug/l 10	
Ethylbenzene	10 U ug/l 10	
Styrene	10 U ug/l 10	
Xylenes (total)	10 U ug/l 10	
SEMIVOLATILES 90-SOW	ug/l	
Phenol	10 ປ ug/l 10	
bis(2-Chloroethyl) ether	10 U ug/l 10	
2-Chlorophenol	10 U ug/l 10	•
1.3-Dichlorobenzene	10 U ug/l 10	
	10 U ug/l 10	
1,4-Dichlorobenzene 1.2-Dichlorobenzene	10 U ug/l 10	
	10 U ug/l 10	
2-Methylphenol	10 U ug/l 10	
?,2-oxybis(1-Chloropropane)		
4-Methylphenol	Andreastate state in Tale Tendat are not The Telephone action about the Tile	
N-Nitroso-di-n-propylamine	9000000000000 11 FA. This is a size 1 This is not been been 1000 1700	
Hexachloroethane	10 U ug/l 10 10 U ug/l 10	
Nitrobenzene	4000 40000000 To To To 2000 10 TWO TO 10 000 40 10 1	
Isophorone	10 U ug/L 10	
2-Nitrophenot	10 U ug/L 10	
2,4-Dimethylphenol	10 U - ug/L - 10 U	아는 그녀들은 것이 그들은 기업이 가지 않는 것이다. 이 남자 기업을 하는 것이 되는 것이 되는 것이 되었습니다.
	: : : : : : : : : : : : : : : : : : :	그 가는 가는 사람들은 그 사람들이 살아 있다면 살아 있다.

Naval Air Station Whiting Field, Milton, Florida Site 16 Surface Water Data

Lab Sample Number: Site Locator Collect Date:	VALUE	RA903003 WHITING 16W00101 05-JAN-96 QUAL UNITS	DL			
bis(2-Chloroethoxy) methane		OU ug/l	10			
2,4-Dichlorophenol		0 U ug/l	10			
1,2,4-Trichlorobenzene Naphthalene		DU ug/l DU ug/l	10 10			
4-Chloroaniline		DU ug/l	10			
Hexachlorobutadiene		00 ug/l	10			
4-Chloro-3-methylphenot		0U ug/l	iŏ	•		
2-Methylnaphthalene		0U ug/l	10			
Hexachlorocyclopentadiene	1	0U ug/l	10			
2,4,6-Trichlorophenol		DU ug/L	10			
2,4,5-Trichlorophenol		5U ug/L	25			
2-Chloronaphthalene		00 ug/l	10			
2-Nitroaniline		50 ug/l	25			
Dimethylphthalate Acenaphthylene		00 ug/l 00 ug/l	10 10			
2,6-Dinitrotoluene		0U ug/l	10			
3-Nitroaniline		50 ug/l	25			
Acenaphthene		00 ug/l	10			
2,4-Dinitrophenol		5U ug/l	25			
4-Nitrophenol		5 U ug∕l	25			
Dibenzofuran		00 ug/l	10			
2,4-Dinitrotoluene		DU ug/L	10			
Diethylphthalate		OU ug/l	10			
4-Chlorophenyl-phenylether		OU ug/l	10	•		
Fluorene 4-Nitroaniline		0U ug/l 5U ug/l	10 25			
4,6-Dinitro-2-methylphenol		5U ug/l 5U ug/l	25			
N-Nitrosodiphenylamine		OU ug/l	10			
4-Bromophenyl-phenylether		0U ug/l	iŏ			
Hexach Lorobenzene	1 1 1	0 U ug∕l	10			
Pentachlorophenol		5 U ug∕l	25			
Phenanthrene		DU ug/l	10			
Anthracene		OU ug/L	10			
Carbazole		OU ug/l	10			
Di-n-butylphthalate Fluoranthene		0 U ug/l 0 U ug/l	10 10			
Pyrene		00 ug/l 00 ug/l	10			
Butylbenzylphthalate		OU ug/l	10			
3,3-Dichlorobenzidine		ου ug/l	10			
Benzo (a) anthracene	11	0U ug∕l	10			
Chrysene	11	U ug/l	10			
bis(2-Ethylhexyl) phthalate	and the state of the state of the	งบ ug/l	10			
Di-n-octylphthalate		U ug/l	10			
Benzo (b) fluoranthene		Ug/l	10			
Benzo (k) fluoranthene		OU ug/l	10			
Benzo (a) pyrene Indeno (1,2,3-cd) pyrene)U ug/l)U ug/l	10 10			
Dibenzo (a,h) anthracene	11) U ug/l	10			
Benzo (g,h,i) perylene		DU ug/l				
CLP PESTICIDES/PCBS 90-SOW ug/l						•
alpha-BHC	.0!	5 UJ ug/l	.05			
		4. 無動 · 二位		•	- 이번 : 불쾌경하다면 하는 것은 물리를 하다고 했었다.	
					그 아이들은 사람들은 그들은 가는 것이 없었다.	· · · · · · · · · · · · · · · · · · ·

Naval Air Station Whit. Field, Milton, Florida Site 16 Surface Water Data

	Lab Sample Number: Site Locator Collect Date:	VALUE	RA903003 WHITING 16W00101 05-JAN-96 QUAL UNITS	DL	
beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE Endrin Endosulfan II 4,4-DDD Endosulfan sulfate 4,4-DDT Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1016 Aroclor-1221		.05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .5 .05 .05	UJ ug/l UJ ug/l	.05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .1	
Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 CLP METALS AND CYANIDI Aluminum Antimony Arsenic Barium Beryllium	Ē ug∕l	1 1 1	UJ ug/t UJ ug/t UJ ug/t UJ ug/t UJ ug/t U ug/t U ug/t U ug/t U ug/t U ug/t	200 60 10 200 5	
Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium		5 8890 10 50 25 730 5.2 1170 4.4 .2 40 2780	U ug/l ug/l U ug/l U ug/l U ug/l UJ ug/l ug/l ug/l J ug/l U ug/l U ug/l U ug/l	5 5000 10 50 25 100 3 5000 15 -2 40	
Setenium Sitver Sodium Thallium Vanadium Zinc		10 1120 10 50 29.2	J ug/l U ug/l U ug/l ug/l	5 10 5000 10 50 20	

Naval Air Station Whiting Field, Milton, Florida Site 16 Surface Water Data

Qualifiers: U = NOT DETECTED J = ESTIMATED VALUE UJ = REPORTED QUANTITATION LIMIT IS QUALIFIED AS ESTIMATED R = RESULT IS REJECTED AND UNUSABLE

Lab Sample Number:

Site Locator

RA903003

Collect Date:

WHITING 16W00101 05-JAN-96

	VALUE	QUAL UNITS DL	
Cyanide		0 U ug/l 10	

APPENDIX F

GROUNDWATER ANALYTICAL DATA

NAS WHITING LOCALD -- SITE 16

Lab Sample M L Collect	Site W Locator W t Date: 16	0226004 HITING HF16-1 5-NOV-93 VAL UNITS DL	VALUE	90214002 WHITING WHF16-2 24-NOV-93 QUAL UNITS	DL	VALUE	90272002 WHITING WHF16-2B 06-DEC-93 QUAL UNITS	DL.	W W	0272001 WHITING HF16-2C 6-DEC-93 UAL UNITS	DL		
CLP VOLATILES 90~SOW			• • • • • • • • • • • • • • • • • • • •										
Chloromethane	10 U	ug/1	10 1	.0 UJ ug/1	10	11	0 VJ ug/1	10	10 U	1 00/1		10	
Bromomethane	10 U			.0 U ug/1	10		0 00 ug/1	10	10 U	J ug/l ug/l		10	
Vinyl chloride	10 U			0 U ug/1	10		0 U ug/1	10	10 U	ug/1 ug/1		10	
Chloroethane	10 U	ug/l		.0 UJ ug/1	10		0 U ug/1	10	10 U	ug/1 ug/1		10	
Methylene chloride	10 U	ug/l		.0 UJ ug/1	10		0 Ŭ ug/1	10	10 U	ug/1		10	
Acetone	10 UJ			.0 UJ ug/1	10		0 U ug/1	io	10 U	ug/1		10	
Carbon disulfide	10 U			.0 U ug/1	10		0 U ug/1	ÎO	10 U	ug/1		10	
1.1-Dichloroethene	iου			.0 U ug/1	10		0 U ug/1	10	10 U	ug/1		10	
1.1-Dichloroethane	10 Ŭ			0 U ug/1	10		0 Ú ug/1	10	10 Ŭ	ug/1		10	
1,2-Dichloroethene (total)	10 Ŭ	ug/i	io	4 J ug/1	10		0 U ug/1	iŏ	10 Ŭ			10	
Chloroform	10 Ŭ		10	3 J ug/1	10		0 U ug/1	10	10 Ŭ	ug/1	•	10	
1.2-Dichloroethane	10 Ū	ug/1	10	3 J ug/1	10		0 ปี นี้นี้/1	îŏ	20	ug/1		10	
2-Butanone	10 Ú	ug/1		0 UJ ug/1	10		0 U ug/1	io	10 U	ug/1		10	131
1.1.1-Trichloroethane	10 Ū	ug/1		0 U ug/1	10		0 U ug/1	10	10 U	ug/1		10	
Carbon tetrachloride	10 U	ug/1		0 U ug/1	10		0 U ug/1	Ĭ0	10 Ū	ug/1		10	
Bromodichloromethane	10 U	ug/1	10	.0 U ug/1	10	1	0 U ug/1	10	10 U	ug/1		10	
1,2-Dichloropropane	10 U	ug/1	10	.0 U ug/1	10	1	0 U ug/1	. 10	10 U	ug/1		10	
cis-1,3-Dichloropropene	10 U	uq/1	10	.0 U ug/1	10	1	0 V ug/1	10	10 U	ug/l		10	
Trichloroethene	10 U	ug/l	10	6 J ug/1	10	1	0 U ug/1	10	10 U	ug/1		10	1.4
Dibromochloromethane	10 U	ug/1	10 1	.0 U ug/1	10		0 U ug/1	10	10 U	ug/1		10	
1,1,2-Trichloroethane	10 U	ug/l	10 1	.0 U ug/1	10		0 U ug/1	10	10 U	ug/1		10	
Benzene	10 U	ug/l	10	59 J ug/1	10		0 U ug/1	10	560 J	ug/1	100	10	
trans-1,3-Dichloropropene	10 U			.0.U ug/1	10		0 V ug/1	10	10 U			10	
Bromoform	10 U	ug/l		.0 U ug/1	10		0 V ug/1	10	10 U			10	
4-Methyl-2-pentanone	10 U	ug/1		.0 U ug/1	10		0 U ug/1	. 10	10 U			10	
2-Hexanone	10 U	ug/1		.0 UJ ug/1	10		0 U ug/1	10	10 U			10	
Tetrachloroethene	10 U	ug/1		.0 U ug/1	10		0 U ug/1	10	10 U	.ug/1	•	10	
Toluene	10 U	ug/l		.0 U ug/1	10		0 U ug/1	10	10 U			10	
1,1,2,2-Tetrachloroethane	10 U			.0 U ug/1	10		0 U ug/1	10	10 U			10	est i
Chlorobenzene	10 U	ug/]		.0 U ug/1	10		0 U ug/1	10	10 U			10	
Ethylbenzene	10 U	ug/]		.0 U ug/1	10		0 U ug/1	10	10 U			10	
Styrene	10 U	ug/]		0 U ug/1	10		0 U ug/]	10	10 U			10	
Xylenes (total)	10 U	ug/1	10 1	.0°U ug/1	10	1	0 V ug/1	10	10 U	ug/l		10	

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- VOLATILES -- REPORT NO. 10499

Lab Sample Number: Site Locator Collect Date:	VALUE	90225001 WHITING WHF16-3B 15-NOV-93 QUAL UNITS	DL	VALÚE	90221002 WHITING WHF16-3C 12-NOV-93 QUAL UNII	VALUE	WHF1 11-N	TING	DL	VALUE	90220002 WHITING WHF16-3DA 11-NOV-93 QUAL UNIT	
CLP VOLATILES 90-SOW Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylenes (total)	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 U ug/1 0 U ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1		10 U ug/ 10 UJ ug/ 10 UJ ug/ 10 UJ ug/ 10 UJ ug/ 10 U ug/	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U 10 UJ 10 UJ 10 U 10 U 10 U 10 U 10	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 U ug/ 0 UJ ug/ 0 UJ ug/ 0 UJ ug/ 0 UJ ug/ 0 U ug/	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10

NAS WHITING D -- SITE 16
GROUNDWATER -- VOLATIL -- REPORT NO. 10499

	Lab Sample Number: Site Locator Collect Date:	WI WHI 16-	226001 HITING F16-4B -NOV-93	DI	WH: WHF: 16-	26002 ITING 16-4BA NOV-93	ni .	VALUE	90226 WHIT WHF16 16-NO	ING -4CD V-93	Di	VAI 11F	90225002 WHITING WHF16-4D 15-NOV-93	NI.	
CLP VOLATILES 90-SOW Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroetha Carbon tetrachlorid Bromodichloromethan 1,2-Dichloropropane cis-1,3-Dichloropro Trichloroethane Dibromochloromethan 1,1,2-Trichloroetha Benzene	(total) ne e e pene	VALUE QU/ 5 UJ 10 U 10 U 10 U 2 J 10 UJ 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	VALUE QUAI 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		10 10 10 10 10 10 10 10 10 10 10 10 10 1	QUAL (10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0L 10 10 10 10 10 10 10 10 10 10		QUAL UNITS 10 U ug/1	DL 10 10 10 10 10 10 10 10 10 10 10 10 10	
trans-1,3-Dichlorop Bromoform 4-Methyl-2-pentanon 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloro Chlorobenzene Ethylbenzene Styrene Xylenes (total)	e	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		10 10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10		10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l	100 100 100 100 100 100 100 100 100 100	

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- VOLATILES -- REPORT NO. 10499

Lab Sample Collec	Number: Site Locator t Date: VALUE	90236003 WHITING WHF16-5 17-NOV-93 QUAL UNITS	DL V	16G0 19-A	6004 TING 10101 NUG-96 UNITS	DL VA	ME340009 WHITING 16G00101 24-JUL-97 LUE QUAL UNITS	DL VA	ME340010 WHITING 16G00101D 24-JUL-97 KLUE QUAL UNITS	DL.
CLP VOLATILES 90-SOW Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 2-Butanone 1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 8enzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylenes (total)		10 U ug/l 10 UJ ug/l 10 U ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U ug/1 10 U ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U ug/1 10 U ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1
U= NOT DETECTED. J=0 UJ= REPORTED QUANT R≃ RESULT IS REJECT	STIMATED VALUE TATION LIMIT IS ED AND UNUSABLE	QUALIFIED AS	ESTIMATED							

NAS WHITING D -- SITE 16 GROUNDWATER -- VOLATILES -- REPORT NO. 10499

	Lab Sample Number: Site Locator Collect Date:		RB980006 WHITING 16G00201 14-AUG-96 QUAL UNITS	DL	VALUE	RB980016 WHITING 16G00202 15-AUG-96 QUAL UNITS	DL	VALUE	MC424004 WHITING 16G00202 19-NOV-96 QUAL UNITS	DL	W 16 23	322004 HITING G00202 -JUL-97 AL UNITS	DL	
CLP VOLATILES 90-SOW Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroetha Carbon tetrachlorid Bromodichloromethan 1,2-Dichloropropane cis-1,3-Dichloropro Trichloroethene Dibromochloromethan 1,1,2-Trichloroetha Benzene trans-1,3-Dichlorop Bromoform 4-Methyl-2-pentanon 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloro Chlorobenzene Ethylbenzene Styrene Xylenes (total)	(tota)) ne le e e pene e ne ropene	10 10 10 10 10 10 10 10 10 10 10 10 10 1	U ug/1 U ug/1	100 100 100 100 100 100 100 100 100 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 UJ ug/1 0 U ug/1 0 U ug/1 0 U ug/1 0 UJ ug/1 0 UJ ug/1 0 UJ ug/1 0 U ug/1 0 U ug/1 0 U ug/1 1 J ug/1 1 J ug/1 0 U ug/1		10	50 U ug/1 50 U ug/1	50 50 50 50 50 50 50 50 50 50 50 50 50 5	50 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50 50 50 50 50 50 50 50 50 50 50 50 50 5	

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- VOLATILES -- REPORT NO. 10499

	Site Locator Dllect Date:	RB980017 WHITING 16G00203 15-AUG-96 QUAL UNITS DL	WH 166 19-	24005 ITTING 100203 NOV-96 IL UNITS DL	16G0 23-J	ring -	RC016005 WHITING 16G00301 20-AUG-96 VALUE QUAL UNITS	DL
CLP VOLATILES 90-SOW Chloromethane Bromomethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Irichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylenes (total)	10 10 10 10 10 10 10 10 10 10 10 10 10 1	U ug/1 U ug/1	10	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 U 10 10 U	ug/1 10 ug/1 10	10 U ug/1 10 U ug/1 10 U ug/1 10 UJ ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1 10 U ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1
U= NOT DETECTED UJ= REPORTED OU R= RESULT IS RE	J=ESTIMATED VALUE ANTITATION LIMIT IS QU JECTED AND UNUSABLE	ALIFIED AS ESTIMATI	.					

NAS WHITING . D -- SITE 16 GROUNDWATER -- VOLATILES -- REPORT NO. 10499

Lab Sample Number Sit Locato Collect Date	e r	ME340008 WHITING 16G00301 24-JUL-97 QUAL UNITS	DL	VALUE	RC01600 WHITIN 16G0030 20-AUG- QUAL UN	NG D2 -96	DL.	VALUE	ME322002 WHITING 16G00302 22-JUL-97 QUAL UNITS	DL	VALUE	RC0160 WHITI 16G003 21-AUG QUAL U	NG 803 6-96	DL	
CLP VOLATILES 90-SOW Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 8-romoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylenes (total)	10 10 10 10 10 10 10 10 10 10 10 10 10 1	U ug/1 U ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1		10 UJ	19/1 19/1 19/1 19/1 19/1 19/1 19/1 19/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 U ug/1 0 U ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1		10 UJ 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10 1	

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- VOLATILES -- REPORT NO. 10499

Description Description		ple Number: Site Locator Ilect Date: VAL	ME3220 WHITI 16G003 22-JUL UE QUAL U	NG 03 -97	VALUE	RC016007 WHITING 16G00304 20-AUG-96 QUAL UNITS	DL		ME340006 WHITING 16G00304 24-JUL-97 QUAL UNITS	DL	1	C016002 WHITING 6G00401 9-AUG-96 UAL UNITS	DL
m_{ij} m	Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 8-rans-1,3-Dichloropropene Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene		10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U ug/1 10 UJ ug/1 10 UJ ug/1 10 UJ ug/1 10 UJ ug/1 10 U ug/1		10 10 10 10 10 10 10 10 10 10 10 10 10 1	U ug/1 U ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1

NAS WHITING D -- SITE 16
GROUNDWATER -- VOLATILES -- REPORT NO. 10499

Lab Sample Number: Site Locator Collect Date:	VALUE	ME306003 WHITING 16G00401 22-JUL-97 QUAL UNITS	DL	16 22	306004 HITING GG00401D P-JUL-97 JAL UNITS	DL	VALUE	RC016003 WHITING 16G00402 19-AUG-96 QUAL UNITS	DL	VALUE	ME306005 WHITING 16G00402 22-JUL-97 QUAL UNITS	DL		
CIP VOLATILES 90-SOW Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethane Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylenes (total)		0 U ug/1 0 U ug/1	100 100 100 100 100 100 100 100 100 100	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		10 10 10 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	10 U ug/1 10 U ug/1	100 100 100 100 100 100 100 100 100 100	10 10 10 10 10 10 10 11 11 11 11 11 11 1	0 U ug/l 0 U ug/l 0 U ug/l 0 U ug/l 0 U ug/l 0 U ug/l 0 U ug/l 0 U ug/l 1 J ug/l 0 U ug/l		10 10 10 10 10 10 10 10 10 10 10 10 10 1	

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- VOLATILES -- REPORT NO. 10499

Lab Sample Number: Site Locator Collect Date:	<u>:</u>	RB980020 WHITING 16G00403 16-AUG-96 QUAL UNITS	DL	VALUE	WH: 1660 22-1	48003 ITTING 100403 NOV-96 LUNITS	DL	VALUE	WH1 16G0 22-5	06006 (TING 00403 UUL-97 _ UNITS	DL	WH 166 16-	80021 ITING 00403D AUG-96 L UNITS	DL	
CLP VOLATILES 90-SOW Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylenes (total)	10 10 10 10 10 10 10 10 10 10 10 10 10 1) U ug/1) U ug/1		10 10 10 10 10 10 10 10 10 10 10 10 10 1	55555555555555555555555555555555555555	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	555555555555555555555555555555555555555	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 U 40 U 40 U 40 U 40 U 40 U 40 U 40 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	40 40 40 40 40 40 40 40 40 40 40 40 40 4	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10 1	

U# NOT DETECTED J=ESTIMATED VALUE
UJ# REPORTED QUANTITATION LIMIT IS QUALIFIED AS ESTIMATED
R= RESULT IS REJECTED AND UNUSABLE

NAS WHITING D -- SITE 16 GROUNDWATER -- VOLATILES -- REPORT NO. 10499

	Lab Sample Number Site Locator Collect Date	•	RC016009 WHITING 16G00501 21-AUG-96 QUAL UNITS	DL	VALUE	RC016013 WHITING 16G00501D 21-AUG-96 QUAL UNITS	DL	VALUE	RB980019 WHITING 16G00601 16-AUG-96 QUAL UNITS	DL	VALUE	ME340002 WHITING 16G00601 23-JUL-97 QUAL UNITS	DL	
CLP VOLATILES 90-SOW Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethan Carbon tetrachloric Bromodichloromethan 1,2-Dichloropropane cis-1,3-Dichloropro Trichloroethene Dibromochloromethan 1,2-Trichloroethan 2,2-Trichloroethan 1,1,2-Trichloroethan Enzene trans-1,3-Dichlorop Bromoform 4-Methyl-2-pentanor 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloro Chlorobenzene Ethylbenzene Styrene Xylenes (total)	(totàl) ine de de de de de de de de de de de de de	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 U ug/l 0 U ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 U ug/1 0 U ug/1		10	0 U ug/1 0 U ug/1	100 100 100 100 100 100 100 100 100 100		10 U ug/1 10 U ug/1		10 10 10 10 10 10 10 10 10 10 10 10 10 1

NAS WHITING FIELD -- SITE 16

					GROU			LATILES			10499								
La	b Sample Number: Site Locator Collect Date:	VALUE	WH1 16G0 15-A	80018 TING 10602 NUG-96 UNITS	DL	١	/ALUE	ME340004 WHITING 16G00602 23-JUL-97 QUAL UNIT			VALUE	RB887 WHIT 16G00 25-JU QUAL	ING 1701	DL	VALUE	WHI 16G0 25-J	8004 TING 00701 UUL-97 UNITS	DL	
CLP VOLATILES 90-SOW Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloromethane 1,2-Dichloromethane 1,2-Dichloromethane 1,2-Tichloroethane 1,2-Tichloroethane Benzene trans-1,3-Dichloroprop Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroeth Chlorobenzene Ethylbenzene Styrene Xylenes (total)	e. ené		10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/		10 10 10 10 10 10 10 10 10 10 10 10 10 1		0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	100 100 100 100 100 100 100 100 100 100		10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1		10 10 10 10 10 10 10 10 10 10 10 10 10 1
U= NOT DET UJ= REPORT R= RESULT	ECTED J=ESTIMATE ED QUANTITATION IS REJECTED AND I	D VALUE LIMIT I UNUSABL	S QUALIF	TED AS	ESTIMA	TED									:				

NAS WHITING 0 -- SITE 16 GROUNDWATER -- VOLATILES -- REPORT NO. 10499

	ample Number: Site Locator Collect Date:	16 25	B887016 WHITING GG00702 5-JUL-96 UAL UNITS	DL	VALUE	MC448001 WHITING 16G00702 21-NOV-96 QUAL UNIT	S DL	VALUE	ME348002 WHITING 16G00702 25-JUL-97 QUAL UNITS	DL	1 2	B887017 WHITING 6G00703 5-JUL-96 UAL UNITS	DL	
CLP VOLATTLES 90-SOW Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylenes (total)		10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 U ug/ 80 U ug/		80 4 80 4 80 4 80 4 80 4 80 80 80 80 80 80 80 80 80 80 80 80 80	40 U ug/1 40 U ug/1	40 40 40 40 40 40 40 40 40 40	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 J ug/1 J ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	

U= NOT DETECTED J=ESTIMATED VALUE
UJ= REPORTED QUANTITATION LIMIT IS QUALIFIED AS ESTIMATED
R= RESULT IS REJECTED AND UNUSABLE

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- VOLATILES -- REPORT NO. 10499

DL

Lab Sample Number:

Site Locator

MC448002 WHITING ME348003

Collect Date:

VALUE

16G00703 21-NOV-96 QUAL UNITS

WHITING 16G00703 25-JUL-97 DL VALUE QUAL UNITS

CLP VOLATILES 90-SOW					
Chloromethane	80 U	ug/1 80	20 U	ug/l	20
Bromomethane	80 U	ug/1 80	20 U	ug/l	20
Vinyl chloride	80 U	ug/1 80	20 U	ug/1	20
Chloroethane	80 U	ug/] 80	20 U	ug/l	20
Methylene chloride	80 U	ug/1 80	20 U	ug/l	20
Acetone	80 U	ug/] 80	20 U	ug/l	20
Carbon disulfide	80 U	ug/1 80	20 U	ug/1	20
1,1-Dichloroethene	80 U	ug/1 80	20 U	ug/1	20
1,1-Dichloroethane	80 U	ug/1 80	20 U	ug/1	20
1,2-Dichloroethene (total)	10 J	ug/1 80	10 J	ug/l	20
Chloroform	80 U	ug/1 80	20 U	ug/1	20
1,2-Dichloroethane	80 U	ug/1 80	20	ug/1	20
2-Butanone	80 U	ug/1 80	20 U	ug/1	20
1,1,1-Trichloroethane	80 ป	ug/1 80	20 U	ug/1	20
Carbon tetrachloride	80 U	ug/1 80	20 U	ug/1	20
Bromodichloromethane	80 U	ug/1 80	20 U	ug/1	20
1,2-Dichloropropane	80 U	ug/1 80	20 U	ug/1	20
cis-1,3-Dichloropropene	80 U	ug/1 80	20 U	ug/1	20
Trichlaroethene	80 U	ug/1 80	20 U	ug/1	20
Dibromochloromethane	80 U	ug/1 80	20 U	ug/1	20
1,1,2-Trichloroethane	90 U	ug/1 80	20 U	ug/1	20
Benzene	860	ug/1 80	480 R	ug/1	20
trans-1,3-Dichloropropene	80 U	ug/1 80	20 U	ug/1	20
Bromoform	80 U	ug/1 80	20 U	ug/l	20
4-Methyl-2-pentanone	80 U	ug/1 80	20 U	ug/1	20
2-Hexanone	80 U	ug/1 80	20 U	ug/l	20
Tetrachloroethene	80 U	ug/1 80	20 U	ug/1	20
Toluene	80 U	ug/1 80	20 U	ug/1	20
1.1.2.2-Tetrachloroethane	80 U	ug/1 80	20 U	ug/1	20
Chlorobenzene	80 U	ug/1 80	20 U	ug/1	20
Ethylbenzene	80 U	ug/1 80	20 U	ug/l	20
Styrene	80 U	ug/1 80	20 U	ug/1	20
Xylenes (total)	80 U	ug/1 80	20 U	ug/1	20
T				-	999,6999
					10000000

DL

VALUE

NAS WHITING 1.20 -- SITE 16
GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

Lab Sample Number: Site Locator Collect Date:

90226004 WHITING WHF16-1 16-NOV-93 QUAL UNITS

VALUE

90214002 WHITING WHF16-2 24-NOV-93 QUAL UNITS

VALUE

DL

90272002 WHITING WHF16-2B 06-DEC-93 QUAL UNITS

DL

VALUE

90272001 WHITING WHF16-2C 06-DEC-93 QUAL UNITS

DL

				3 0.003		1860 per el la compania	 	
CLP SEMIVOLATILES 90-SOW				0000000 0000000 0000000				
Pheno1	10 U	ug/1 10	10 U ug/l	10	10 U ug/l	10	10 UJ ug/l	10
bis(2-Chloroethyl) ether	iŏ Ŭ	ug/1 10	10 UJ ug/1	10	10 U ug/1	iŏ	10 U ug/1	10
2-Chlorophenol	iŏ Ŭ	ug/1 10	10 U ug/1	10	10 U ug/1	io	10 U ug/1	10
1.3-Dichlorobenzene	10 Ŭ	ug/1 10	10 UJ ug/1	10	10 U ug/1	iŏ	10 U ug/l	10
1,4-Dichlorobenzene	ĵοŭ	ug/1 10	10 UJ ug/1	10	10 U ug/1	iŏ	10 U ug/l	10
1.2-Dichlorobenzene	10 Ŭ	ug/1 10	10 UJ ug/1	10	10 U ug/1	iŏ	10 U ug/1	10
2-Methylphenol	ĨŎŪ	ug/1 10	10 U ug/1	10	10 V ug/1	ĩõ	10 U ug/1	10
2,2-oxybis(1-Chloropropane)	10 Ŭ	ug/1 10	10 UJ ug/1	10	10 U ug/1	īō	10 U ug/1	10
4-Methylphenol	10 U	ug/1 10	10 U ug/l	10	10 U ug/1	10	10 U ug/1	10
N-Nitroso-di-n-propylamine	10 U	ug/1 10	10 UJ ug/l	10	10 U ug/1	Ī0	10 U ug/l	10
Hexachloroethane	10 U	ua/1 10	10 UJ ug/1	10	10 V ug/1	10	10 U ug/1	10
Ni trobenzene	10 U	ug/1 10	10 UJ ug/1	10	10 U ug/1	10	10 U ug/1	10
Isophorone	10 U	ug/1 10	10 UJ ug/1	10	10 U ug/1	10	10 U ug/l	10
2-Nitrophenol	10 U	ug/l 10	10 U ug/l	10	10 V ug/l	10	10 U ug/1	10
2,4-Dimethylphenol	10 U	ug/1 10	10 U ug/l	10	10 U ug/1	10	10 Մ ug/l	10
bis(2-Chloroethoxy) methane	10 U	ug/1 10	10 UJ ug/l	10	10 U ug/1	10	10 U ug/l	10
2,4-Dichlorophenol	10 U	ug/1 10	10 U ug/l	10	10 U ug/1	10	10 U ug/l	10
1,2,4-Trichlorobenzene	10 U	ug/1 10	10 UJ ug/l	10	10 U ug/1	10	10 U ug/l	10
Naphthalene	10 U	ug/1 10	10 UJ ug/l	10	10 U ug/1	10	10 U ug/l	10
4-Chloroaniline	10 U	ug/1 10	10 U ug/l	10	10 U ug/1	10	10 V ug/l	10
Hexachlorobutadiene	10 U	ug/1 10	10 UJ ug/l	10	10 U ug/1	10	10 V ug/l	10
4-Chloro-3-methylphenol	10 บ	ug/1 10	10 U ug/l	10	10 U ug/1	10	10 U ug/1	10
2-Methylnaphthalene	10 U	ug/1 10	10 VJ ug/1	10	10 U ug/]	10	10 U ug/1	10
Hexachlorocyclopentadiene	10 U	ug/1 10	10 UJ ug/l	10	10 U ug/]	10	10 U ug/l	10
2,4,6-Trichlorophenol	10 U	ug/1 10	10 U ug/l	10	10 U ug/1	10	10 U ug/l	10
2,4,5-Trichlorophenol	25 U	ug/1 25	25 U ug/1	25	25 U ug/]	25	25 U ug/1	25
2-Chloronaphthalene	10 U	ug/1 10	10 UJ ug/l	10	10 U ug/1	10	10 U ug/l	10
2-Nitroaniline	25 U	ug/1 25	25 UJ ug/]	25	25 U ug/1	25	25 U ug/1	25
Dimethylphthalate	10 U	ug/] 10	10 UJ ug/1	10	10 U ug/l	10	10 U ug/l	10
Acenaphthylene	10 U	ug/1 10	10 UJ ug/1	10	10 U ug/l	10	10 U ug/1	10
2,6-Dinitrotoluene	10 U	ug/] 10	10 UJ ug/1	10	10 U ug/1	10	10 U ug/1	10
3-Nitroaniline	25 U 10 U	ug/1 25 ug/1 10	25 VJ ug/l 10 VJ ug/l	25 10	25 U ug/1 10 U ug/1	25 10	25 U ug/l 10 U ug/l	25 10
Acenaphthene 2,4-Dinitrophenol	25 UJ		10 VJ ug/l 25 VJ ug/l	25		10 25	10 U ug/l 25 UJ ug/l	25
4-Nitrophenol	25 UJ	ug/1 25 ug/1 25	25 U ug/1	25 25	25 UJ ug/1 25 UJ ug/1	25 25	25 UJ ug/1	25 25
01benzofuran	25 UJ 10 U	ug/1 25 ug/1 10	25 0 ug/1 10 UJ ug/1	10	25 00 ug/1 10 U ug/1	10	25 00 ug/1 10 U ug/1	10
2,4+Dinitrotoluene	10 U	ug/1 10 ug/1 10	10 UJ ug/1	10	10 U ug/l	10	10 U ug/1	10
Diethylphthalate	10 U	ug/1 10 ug/1 10	10 UJ ug/1	10	10 0 ug/1	10	10 U ug/1	10
4-Chlorophenyl-phenylether	10 U	ug/1 10	10 UJ ug/l	10	10 U ug/1	10	10 U ug/l	10
Fluorene	10 U	ug/1 10	10 UJ ug/1	10	10 U ug/l	10	10 U ug/l	10
4-Nitroaniline	25 UJ	ug/1 25	25 UJ ug/1	25	25 UJ ug/1	25	25 UJ ug/1	25
4,6-Dinitro-2-methylphenol	25 U	ug/1 25	25 UJ ug/1	25 25	25 U ug/1	25	25 U ug/1	25
N-Nitrosodiphenylamine	10 U	ug/1 10	10 UJ ug/1	10	10 U ug/1	10	10 U ug/l	10
4-Bromophenyl-phenylether	10 Ŭ	ug/1 10 ug/1 10	10 UJ ug/1	10	10 U ug/1	iŏ	10 U ug/l	10
Hexachlorobenzene	10 Ŭ	ug/1 10	10 UJ ug/1	10	10 U ug/1	îŏ	10 U ug/l	10
Pentachlorophenol	25 U	ug/1 25	25 U ug/1	25	25 UJ ug/1	25	25 UJ ug/l	25
Phenanthrene	10 Ŭ	ug/1 10	10 UJ ug/1	10	10 U ug/1	10	10 U ug/l	10
Anthracene	iου	ug/1 10	10 UJ ug/1	10	10 Ŭ ug/l	iŏ	10 U ug/l	10
Carbazole	iου	ug/1 10	10 UJ ug/1	10	10 U ug/1	io	10 U ug/l	10
Di-n-butylphthalate	ĨŎ Ũ	ug/1 10	10 UJ ug/1	10	10 U ug/1	ĩõ	10 U ug/1	10
		그 마음이 생겨 되었다. 그렇게 하는 살이 하는 것들은 그		7, 1997(1999)			J.	

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

Lab Sample Number: Site Locator Collect Date:	WHITING WHF16-1		90214002 WHITING WHF16-2 24-NOV-93 VALUE QUAL UNITS	DL	90272002 WHITING WHF16-2B 06-DEC-93 VALUE QUAL UNITS	DL VALUE	90272001 WHITING WHF16-2C 06-DEC-93 QUAL UNITS	DL
Fluoranthene Pyrene Butylbenzylphthalate 3,3-Dichlorobenzidine Benzo (a) anthracene Chrysene	10 U ug, 10 U ug, 10 U ug, 10 U ug, 10 U ug, 10 U ug,	1 10 1 10 1 10 1 10 1 10	10 UJ ug/l 10 UJ ug/l 10 UJ ug/l 10 UJ ug/l 10 UJ ug/l 10 UJ ug/l	10 10 10 10 10	10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l	10 10 10 10 10	10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l	10 10 10 10 10
bis(2-Ethylhexyl) phthalate Di-n-octylphthalate Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (g,h,i) perylene	10 U ug, 10 U ug, 10 U ug, 10 U ug, 10 U ug, 10 U ug, 10 U ug, 10 U ug, 10 U ug, 10 U ug,	1 10 1 10 1 10 1 10 1 10 1 10	10 UJ ug/l 10 UJ ug/l 10 UJ ug/l 10 UJ ug/l 10 UJ ug/l 10 UJ ug/l 10 UJ ug/l 10 UJ ug/l 10 UJ ug/l	10 10 10 10 10 10 10	10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l	10	10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l	10 10 10 10 10 10 10

NAS WHITING P -- SITE 16 GROUNDWATER -- SEMIVOLA S -- REPORT NO. 10500

Lab Sample Number: Site Locator Collect Date:	VALUE	90225001 WHITING WHF16-3B 15-NOV-93 QUAL UNITS	DL	V/	ALUE	902210 WHITI WHF16- 12-NOV QUAL U	ING -3C V-93	DL	VALUE	WHI WHF1 11-N	0001 TING 6-3D OV-93 UNITS	DL	VALUE	WHI WHF1 11-N	0002 TING 6-3DA 10V-93 UNITS	DL	
CLP SEMIVOLATILES 90-SOW Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorocyclopentadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene 4-Chlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,-Chloronaphthalene 2,1-Trichlorophenol 2,-Chloronaphthalene 2,-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate	10 10 10 10 10 10 10 10 10 10 10 10 10 1	15-NOV-93 QUAL UNITS OU ug/1	DL .	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	12-NOV QUAL U	v-93 UNITS ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/	DL	10 10 10 10 10 10 10 10 10 10 10 10 10 1	11-N QUAL 10 U	0V-93 UNITS ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/	100 100 100 100 100 100 100 100 100 100		11-N QUAL 0.00 U U U U U U U U U U U U U U U U U U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	DL	10 10 10 10 10 10 10 10 10 10 10 10 10 1
4-Chlorophenyl-phenylether Fluorene) U ug/1) U ug/1		10 10		0 U 0 U	ug/l ug/l		10 10	10 U 10 U	ug/1 ug/1	10 10		10 U 10 U	ug/l ug/l		10 10

NAS WHITING FIELD -- SITE 16

GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

Lab Sample Numbe Si Locat Collect Dat	te or	90225 WHIT WHF16 15-NO QUAL	ING -3B V-93	DL	VALUE	WHF1 12-N	1002 TING 6-3C OV-93 UNITS	DL	VALU	WHI WHF1 11-N	0001 TING 6-3D IOV-93 UNITS	DL	VALUE	90220 WHIT WHF16 11-NO QUAL	ING 3-3DA	DL		
4-Nitroaniline	1.00000 No.0000 N. N. N. 00000 NO.0000 N. N. O.	25 UJ	ug/1		5	25 UJ	ug/1		25	25 UJ	ug/1	25	2	5 UJ	ug/l		25	
4,6-Dinitro-2-methylphenol		25 U	ug/1			25 UJ	ug/l		25	25 UJ	ug/1	25		5 UJ	ug/1		25	
N-Nitrosodiphenylamine		10 Ŭ	ug/1			10 U	ug/1		10	10 Ŭ	ug/1	ĩõ		0 U	ug/1	•	10	
4-Bromophenyl-phenylether		io v	ug/1			10 Ü	ug/1		10	10 U	ug/1	10		οŪ	ug/1		10	
Hexachl orobenzene		10 Ū	ug/1			10 Ŭ	ug/l		10	ĨŌŪ	ug/1	īŌ		ŎŨ	ug/1		10	
Pentachlorophenol		25 UJ	ug/1	2		25 U	ug/1		25	25 U	ug/1	25		5 U	ug/1		10 25	
Phenanthrene		10 U	ug/1			10 U	ug/1		10	10 U	ug/1	10		0 U	ug/1		10	
Anthracene		10 U	ug/1	1	0	10 U	ug/1		10	10 U	ug/1	10		0 U	ug/1		10	
Carbazole	504.30 500.2000 504.50 104.35550	10 U	ug/1		0.	10 U	ug/l		10	10 U	ug/1	10		0 U	ug/l		10	
Di-n-butylphthalate		10 U	ug/l		0	10 U	ug/l		10	10 U	ug/1	10		0 U	ug/l		10 10	
Fluoranthene		10 U	ug/1			10 U	ug/]		10	10 U	ug/]	10		0 U	ug/1		10	
Pyrene	000 00 000 000 000 000 000 000 000 000	10 U	ug/1		0	10 U	ug/l		10	10 U	ug/1	10		0 U	ug/1		10	
Butylbenzylphthalate		10 U	ug/1		0	10 U	ug/l		10	10 U	ug/l	10		0 U	ug/1		10 10	
3,3-Dichlorobenzidine		10 U	ug/]			10 U	ug/]		10	10 U	ug/]	10		0 U	ug/l		10	
Benzo (a) anthracene	7000 E 24 (5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 U	ug/]		0	10 U	ug/l		10	10 U	ug/]	10		0 0	ug/1		10	
Chrysene	0.36307.613	10 U	ug/1		0	10 U	ug/1		10	10 U	ug/]	10		0 U	ug/1		10	
bis(2-Ethylhexyl) phthalate		10 U 10 UJ	ug/l		0	10 U 10 U	ug/1		10 10	10 U 10 U	ug/]	10 10		0 U	ug/l ug/l		10 10	
Di-n-octylphthalate Benzo (b) fluoranthene		10 U	ug/1		Ö	10 U	ug/1		10	10 U	ug/1 ug/1	10		0 0	ug/1		10	
Benzo (k) fluoranthene	0.000 0000 000 000 0.000 0000 0000 0000	10 U	ug/l ug/l		Ö	10 U	ug/l ug/l		10	10 U	ug/1 ug/1	10		ου	ug/1		10	
Benzo (a) pyrene		10 U	ug/1		ŏ	10 U	ug/1		10	10 U	ug/1	10		ου	ug/1		10	
Indeno (1,2,3-cd) pyrene	48988.0	10 U	ug/1		-	10 U	ug/1		10	10 Ŭ	ug/1	10		οŭ	ug/1		10	
Dibenzo (a,h) anthracene		10 Ŭ	ug/1		Ŏ	10 U	ug/1		10	ĨŎŬ	ug/i	10		οŭ	ug/l		10	
Benzo (g.h.i) perylene		10 U	ug/1			10 U	ug/1		10	io v	ug/1	îŏ		ŌŪ	ug/1		10	
7.7 T			. •								7							

NAS WHITING L. LD -- SITE 16

11110			
GROUNDWATER	SEMIVOLATILES	REPORT NO.	10500

Lab Sample Number: Site

Locator Collect Date:

VALUE

90226001 WHITING WHF16-4B 16-NOV-93 QUAL UNITS

90226002 WHITING WHF16-4BA 16-NOV-93

QUAL UNITS

VALUE

DL

90226003 WHITING WHF16-4CD 16-NOV-93 QUAL UNITS

DL

VALUE

VALUE

DL

90225002 WHITING WHF16-4D 15-NOV-93 QUAL UNITS

DL

AN ANATONIA PROGRAMMA AND ANTONIA CONTROL TO A TOTAL CONTROL C							
CLP SEMIVOLATILES 90-SOW	10.0	100	10.11/1	10 10 10 1		10 U ug/l	10
Phenol	10 U 10 U	ug/1 10 ug/1 10	10 U ug/l 10 U ug/l	10 10 L 10 10 L			10 10
bis(2-Chloroethyl) ether	10 U						10
2-Chlorophenol	10 U	ug/1 10 ug/1 10		10 10 l 10 10 l			10
1,3-Dichlorobenzene	10 U		10 U ug/l	10 10 t			10 10
1,4-Dichlorobenzene	10 U	ug/1 10	10 U ug/1				
1,2-Dichlorobenzene		ug/] 10	10 U ug/l			10 U ug/1	10
2-Methylphenol	10 U	ug/1 10	10 U ug/1	10 10 U		10 U ug/1	10
2,2-oxybis(1-Chloropropane)	10 U	ug/1 10	10 U ug/l	10 10 l		10 U ug/1	10
4-Methylphenol	10 U	ug/] 10	10 U ug/l	10 10 U		10 U ug/1	. 10
N-Nitroso-di-n-propylamine	10 U	ug/1 10	10 U ug/1	10 10 l		10 U ug/l	10
Hexachloroethane	10 U	ug/] 10	10 U ug/l	10 10 L	Nation with a first of the second of the sec	10 U ug/1	10
Nitrobenzene	10 U	ug/1 10	10 U ug/1	10 10 t		10 U ug/l	10
Isophorone	10 U	ug/] 10	10 U ug/l	10 10 L		10 U ug/1	10
2-Nitrophenol	10 U	ug/1 10	10 U ug/l	10 10 L		10 U ug/1	10
2,4-Dimethylphenal	10 U	ug/1 10	10 U ug/l	10 10 l		10 U ug/l	10
bis(2-Chloroethoxy) methane	10 U	ug/] 10	10 U ug/1	10 10 l		10 U ug/1	10
2,4-Dichlorophenol	10 U	ug/1 10	10 U ug/l	10 10 U		10 U ug/l	10
1,2,4-Trichlorobenzene	10 U	ug/1 10	10 U ug/1	10 10 U	Non-tenangangang (1772) 🐸 kandar tenanggan panggangan 👉 📆 .	10 U ug/]	10
Naphthalene	10 U	ug/1 10	10 U ug/l	10 10 l		10 U ug/1	10
4-Chloroaniline	10 U	ug/1 10	10 U ug/1	10 10 U	the and the reason to the state of the control of t	10 U ug/l	10
Hexachlorobutadiene	10 U	ug/1 10	10 U ug/]	10 10 l		10 U ug/1	10
4-Chloro-3-methylphenol	10 U	ug/1 10	10 U ug/l	10 10 U		10 U ug/1	10
2-Methylnaphthalene	10 U	ug/1 10	10 U ug/1	10 10 (10 U ug/1	10
Hexachlorocyclopentadiene	10 U	ug/1 10	10 U ug/l	10 10 L		10 U ug/1	102
2,4,6-Trichlorophenol	10 U	ug/1 10	10 U ug/l	10 10 U		10 U ug/1	10
2,4,5-Trichlorophenol	25 U	ug/1 25	25 U ug/l	25 25 l		26 U ug/1	26
2-Chloronaphthalene	10 U	ug/1 10	10 U ug/l	10 10 l		10 U ug/l	10
2-Nitroaniline	25 U	ug/1 25	25 U ug/1	25 2 5 l		26 U ug/1	26
Dimethylphthalate	10 U	ug/1 10	10 U ug/1	10 10 t		10 U ug/1	10
Acenaphthylene	10 U	ug/l 10	10 U ug/l	10 10 U		10 U ug/l	10
2,6-Dinitrotoluene	10 U	ug/1 10	10 U ug/l	10 10 U		10 U ug/l	10
3-Nitroaniline	25 U	ug/1 25	25 U ug/1	25 25 l		26 U ug/1	26
Acenaphthene	10 U	ug/1 10	10 U ug/1	10 10 l		10 U ug/1	10
2,4-Dinitrophenol	25 UJ	ug/1 25	25 UJ ug/1	25 25 l		26 UJ ug/1	26
4-Nitrophenol	25 UJ	ug/1 25	25 UJ ug/l	25 25 (26 UJ ug/1	26
Dibenzofuran	10 U	ug/1 10	10 U ug/1	10 10 l) ug/] 10	10 U ug/1	10
2.4-Dinitrotoluene	10 0	ug/1 10	10 U ug/1	10 10 l	J ug/1 10	10 U ug/l	10
Diethylphthalate	10 ป	ug/1 10	10 U ug/1	10 10 l) ug/1 10	10 U ug/l	10
4-Chlorophenyl-phenylether	10 U	ug/1 10	10 U ug/1	10 10 l	J ug/1 10	10 U ug/l	10
Fluorene	ĨÓ Ŭ	ug/1 10	10 U ug/1	10 10 l		10 U ug/1	10

NAS WHITING FIELD -- SITE 16

GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

Lab Sample Nu Lo Collect	Site cator Date:	90226001 WHITING WHF16-4B 16-NOV-93 QUAL UNITS	DL	VALUE	90226002 WHITING WHF16-4BA 16-NOV-93 QUAL UNITS	DL	VALUE	90226003 WHITING WHF16-4CD 16-NOV-93 QUAL UNITS	DL	VALUE	90225002 WHITING WHF16-4D 15-NOV-93 QUAL UNIT		
4-Nitroaniline	25	UJ ug/1	2	5	25 UJ ug/1		25 2	25 UJ ug/1	25	26	UJ ug/	'1 26	
4,6+Dinitro-2-methylphengl	25	U ug/1			25 U ug/1			25 U ug/1	25		U ug/		
N-Nitrosodiphenylamine	10				10 U ug/1	•		(Ö U ug/1	10		U ug/		
4-Bromophenyl-phenylether	10				10 U ug/1			10 U ug/1	10		U ug/		
Hexachlorobenzene	10				10 U ug/1			LO U ug/1	10		U ug/		
Pentachlorophenol Pentachlorophenol	25	U ug/1			25 U ug/1			25 U ug/1	25		UJ ug/		
Phenanthrene	10				10 U ug/1			LO U ug/1	10		U ug/		
Anthracene	10		1	0	10 U ug/1		10 1	10 U ug/1	10	10	∖U ug/		
Carbazole	10	U ug/1	1	0	10 U ug/l		10 1	10 U ug/1	10	10)U ug/		
Di-n-butylphthalate	10				10 U ug/1		10 1	10 U ug/1	10	10	U ug/		
Fluoranthene	10	U ug/1			10 U ug/1			10 U ug/1	10	10)U ug∕		
Pyrene	10		1	0	10 U ug/l		10 1	LO V ug/1	10	10)U ug/		ı
Butylbenzylphthalate	10	U ug/1	1	0	10 U ug/1		10 1	10 U ug/1	10	10)U ug∕		
3,3-Dichlorobenzidine	10		1	o o	10 U ug/1		10 1	10 V ug/1	10	10)U ug/	/1 10	l .
Benzo (a) anthracene	10		1	0	10 U ug/1		10 1	10 U ug/1	10	10)U ug/	/1 10	ı
Chrysene	10	U ug/1	1	0	10 U ug/1		10 1	10 U ug/1	10	10)U ug∕		
bis(2-Ethylhexyl) phthalate	10	U ug/1	1	0	10 U ug/1		10 1	10 ug/1	10	10)U ug/		l
Di-n-octylphthalate	10	U ug/1	. 1	0	10 U ug/l		10	10 U ug/1	10	10)UJ ug/	/1 10	ŧ
Benzo (b) fluoranthene	10		1	O	10 U ug/1		10 1	10 U ug/1	10	10)U ug/	/1 10	ł
Benzo (k) fluoranthene	10		1	0.	10 U ug/1		10	10 U ug/1	10	10)U ug/	/1 10	l
Benzo (a) pyrene	10	U ug/1	1	0	10 U ug/1		10	10 U ug/1	10	10)ປ ug/	/1 10	t
Indeno (1,2,3-cd) pyrene	10	U ug/1	. 1	Ö	10 U ug/1		10	10 V ug/1	10	10)U ug/		l
Dibenzo (a,h) anthracene	10	U ug/1	1	O .	10 U ug/1		10	10 U ug/1	10	10)U ug/		
Benzo (g,h,i) perylene	10		1	0	10 U ug/1		10	10 U ug/1	10	10)U ug/	/1 10	ł
		s in the second		16. 14.	_			7			_		

NAS WHITING D -- SITE 16 GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

CLP SEMIVOLATILES 90-SOW Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2-oxybis(1-Chloropropane) 4-Methylphenol M-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene	10 10 10 10 10 10 10 10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	10 10 10 10 10 10 10 10	10 t 10 t 10 t 10 t 10 t 10 t 10 t 10 t	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 L 10 L 10 L 10 L 10 L 10 L 10 L 10 L	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10	
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Oichlorobenzene 2-Methylphenol 2,2-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10 10 10 10 10 10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	10 10 10 10 10 10 10 10	10 (10 (10 (10 (10 (10 (10 (10 (ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10	10 L 10 L 10 L 10 L 10 L 10 L 10 L 10 L	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10	
bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10 10 10 10 10 10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	10 10 10 10 10 10 10 10	10 (10 (10 (10 (10 (10 (10 (10 (ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1 J ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10	10 L 10 L 10 L 10 L 10 L 10 L 10 L 10 L	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10	
2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10 10 10 10 10 10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	10 t 10 t 10 t 10 t 10 t 10 t 10 t 10 t	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10	10 L 10 L 10 L 10 L 10 L 10 L 10 L 10 L	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10	
1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroantline Dimethylphthalate	10 10 10 10 10 10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	10 t 10 t 10 t 10 t 10 t 10 t 10 t 10 t	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10 10 10	10 t 10 t 10 t 10 t 10 t 10 t 10 t 10 t	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10	
1,2-Dichlorobenzene 2-Methylphenol 2,2-oxybis(1-Chloropropane) 4-Methylphenol N-Mitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Exachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10 10 10 10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	10 10 10 10 10 10 10 10	10 t 10 t 10 t 10 t 10 t 10 t 10 t 10 t	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10	10 L 10 L 10 L 10 L 10 L 10 L 10 L 10 L	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10	
2-Methylphenol 2,2-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10 10 10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	10 t 10 t 10 t 10 t 10 t 10 t 10 t 10 t	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10	10 (10 (10 (10 (10 (10 (10 (10 (ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10 10	
2.2-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2.4-Dimethylphenol bis(2-Chloroethoxy) methane 2.4-Dichlorophenol 1.2.4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2.4.6-Trichlorophenol 2.4.5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10 10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	10	10 t 10 t 10 t 10 t 10 t 10 t 10 t	ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/	10 10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10	10 t 10 t 10 t 10 t 10 t 10 t 10 t	ug/lug/lug/lug/lug/lug/lug/lug/lug/lug/l	10 10 10 10 10 10 10 10	
4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2+Chloroethoxy) methane 2,4-Dichlorophenol 1;2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	10 (10 (10 (10 (10 (10 (10 (10 (ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10 10	10 t 10 t 10 t 10 t 10 t 10 t	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10	
N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1:2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	10 t 10 t 10 t 10 t 10 t 10 t 10 t	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10 10 10	10 t 10 t 10 t 10 t 10 t 10 t	ug/ ug/ ug/ ug/ ug/ ug/	10 10 10 10 10 10 10	
Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2+Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/ U ug/	1 10 1 10 1 10 1 10 1 10 1 10	10 (10 (10 (10 (10 (ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10	10 t 10 t 10 t 10 t 10 t	ug/1 ug/1 ug/1 ug/1 ug/1	10 10 10 10 10	
Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10 10	U ug/ U ug/ U ug/ U ug/ U ug/	1 10 1 10 1 10 1 10 1 10	10 (10 (10 (10 (10 (ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10	10 U 10 U 10 U 10 U	ug/1 ug/1 ug/1 ug/1	10 10 10 10 10	10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l	10 10 10 10	
2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10 10	U ug/ U ug/ U ug/ U ug/	1 10 1 10 1 10 1 10	10 (10 (10 (10 (ug/l ug/l ug/l ug/l	10 10 10 10	10 U 10 U 10 U	ug/1 ug/1 ug/1	10 10 10	10 U 10 U 10 U	ug/1 ug/1 ug/1	10 10 10	
2,4-Dimethylphenol bis(2+Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10 10	U ug/ U ug/ U ug/	10 10 10 10	10 (10 (10 (ug/l ug/l ug/l	10 10 10	10 U 10 U	l ug/1 l ug/1	10 10	10 t 10 t	ug/1 ug/1	10 10	
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1;2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Chloronaphthalene Dimethylphthalate	10	U ug/ U ug/] 10] 10	10 (10 (l ug/1 l ug/1	10 10	10 U	l ug/1	10	10 (ug/1	10	
2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10	U ug/	1 10		l ug/1		10.1		46 46 6 6 6 6 7 E				
Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	11.5 a 1 d 100 d 1 T T	11 1101	ነ 10	10 t	i/1				10	10 t			
4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10		·			10	10 U	Contract Con	10	10 L		10	
Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10	U ug/		10 t 10 t		10 10	10 U 10 U	AND THE RESERVE OF THE STATE OF	10 10	1 3		10	
4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10			10 t		10	10 U		10	10 U 10 U		107 107	
2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	iŏ			10 (10	10 U		10	10 (103	
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	10			10 (10	10 U	l ug/1	ĪŌ	10 i		102	
2,4,5-Trichlorophenol 2=Chloronaphthalene 2-Nitroaniline Dimethylphthalate		U ug/		10 (10	10 U	l ug/1	10	10 t		102	
2=Chloronaphthalene 2=Nitroaniline Dimethylphthalate		U ug/		10 (10	10 U		10	10 (10	
2-Nitroaniline Dimethylphthalate	45 JUNE 1997 - T. T.	U ug/ U ug/		25 i 10 l	- 3, .	25 10	25 U 10 U		25 10	25 l 10 l	-3, .	25 · 10 /	
Dimethylphthalate	2.0.000.000.000.000.000.000.000	U ug/		25 i		25	25 U		25	25 L	ug/1	25	
Acenanhthulene		U ug/	2 0000000000000000000000000000000000000	10 l		10	10 Ū		ĪŌ	10 (10	
		U ug/		10 (10	10 U	ug/1	10	10 U		10	
2,6-Dinitrotoluene	10	U ug/	1 10	10 l		10	10 U		10	10 (10	
3-Nitroaniline Acenaphthene	1.0000000000000000000000000000000000000	U ug/ U ug/		25 U 10 U		25 10	25 U 10 U		25 10	25 t 10 t		25 10	
2,4-Dinitrophenol		U ug/	2 ************************************	25 (25	10 U 25 U	, ug/1 J ug/1	25	25 L		25	
4-Nitrophenol		U ug/		25 i		25	. 25 Ŭ		25	25 (ug/1	25	
Dibenzofuran		U ug/	1 10	10 (ug/1	10	10 U	ug/1	10	10 t	ug/1	10	
2.4-Dinitrotoluene	15 199795 00 183 🛋	U ug/		10 (10	10 U		10	10 t		10	
Diethylphthalate				10 U		10	10 U		10	10 l		10	
4-Chlorophenyl-phenylether Fluorene	10 10 10		1 10	10 U 10 U		10 10	10 U 10 U		10 10	10 l 10 l		10 10	

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 1050

	ample Number: Site Locator Collect Date:	VALUE	90236003 WHITING WHF16-5 17-NOV-93 QUAL UNITS	DL	RC016004 WHITING 16G00101 19-AUG-96 VALUE QUAL UNITS	DL	VALUE	RB980006 WHITING 16G00201 14-AUG-96 QUAL UNITS DL	RB980016 WHITING 16G00202 15-AUG-96 VALUE QUAL UNITS	DL
4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Carbazole Di+n-butylphthalate Fluoranthene Pyrene Butylbenzylphthalate 3,3-Dichlorobenzidine Benzo (a) anthracene Chrysene bis(2-Ethylhexyl) phthalat Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (g,h,i) perylene	.	5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0 U ug/1 0 U ug/1	50 50 10 10 10 10 10 10 10 10 10 10 10 10 10	25 UJ ug/1 25 UJ ug/1 10 U ug/1		25	5 UJ ug/l 25 5 UJ ug/l 25 5 UJ ug/l 25 0 U ug/l 10 0 U ug/l 10 5 UJ ug/l 10 5 UJ ug/l 10 0 U ug/l 10	25 UJ ug/l 10 U ug/l 10 U ug/l 10 U ug/l 25 UJ ug/l 10 U ug/l	25 25 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10
period (gyrr, r) per yrene										

NAS WHITING D -- SITE 16
GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

RC016005

RC016006

RC016008

Lab Sample Number:

RB980017

Co.	Site Locator lect Date:		160	HITING G00203 -AUG-96			WHIT 16G00 20-AU	TING 0301			WH: 16G	TTING 20302 AUG-96			WHITI 16G003 21-AUG	NG 03	
	at a second	VALUE		AL UNITS	DL	VALUE		UNITS	DL	VAL		UNITS	DL	VALUE	QUAL U		DL
P SEMIVOLATILES 90-SOW																	
Phenol .		garajan Antono	5 J	ug/1	10		10 U	ug/1		10	10 U	ug/1	10			ug/1	10
bis(2-Chloroethyl) ether			10 U	ug/1	10		10 U	ug/l		10	10 U	ug/1	10			ug/1	10
2-Chlorophenal			10 U	ug/]	10		10 U	ug/1		10	10 U	ug/1	10			ug/l	10
l,3-Dichlorobenzene			10 U	ug/]	10		10 U	ug/]		10	10 U	ug/]	10			ug/1	10
1,4-Dichlorobenzene			10 U	ug/1	10		10 U	ug/1		10	10 U	ug/]	10			ug/]	10
,2-Dichlorobenzene	·		10 U	ug/]	10		10 U	ug/]		10	10 U	ug/]	10			ug/]	10
-Methylphenol	•		10 U	ug/1	10		10 U	ug/]		10	10 U	ug/]	10			ug/]	10
,2-axybis(1-Chloropropane)			10 U	ug/1	10		10 U	ug/l		10	10 U	ug/1	10			ug/1	10
-Methylphenol -Nitroso-di-n-propylamine			10 U 10 U	ug/1	10		10 U 10 U	ug/1		10 10	10 U	ug/l	10			ug/]	10
exachloroethane			10 U	ug/1	10 10		10 U	ug/l ug/l		10 10	10 U 10 U	ug/]	10 10			ug/]	10
itrobenzene			10 U	ug/1 ug/1	10		10 U	ug/1 ug/1		10	10 U	ug/1 ug/1	10			ug/1	10 10
sophorone			10 U	ug/1	10		10 U	ug/1		10	10 U	ug/1	10			ug/1 ug/1	10
-Nitrophenol			10 U	ug/1	10		10 U	ug/1		10	10 U	ug/1	10			ug/i ug/l	10
.4-Dimethylphenol	· .	Section 1	10 U	ug/1	10		10 U	ug/1		10	10 U	ug/1	10			ug/1	10
is(2-Chloroethoxy) methane		100	10 U	ug/1	10		10 U	ug/1		10	10 U	ug/1	10			ug/1	10
,4-Dichlorophenol			10 Ŭ	ug/1	10		10 U	ug/1		10	10 Ü	ug/1	10			ug/1	10
,2,4-Trichlorobenzene			10 U	ug/1	iŏ		10 U	ug/1		10	10 Ŭ	ug/1	îŏ			ug/1	10
laphthalene	en B		ĬŎ Ŭ	ug/1	iŏ		10 Ŭ	ug/1		10	ĺΟ̈́Ū	ug/1	iŏ			ug/1	10
-Chloroaniline			10 UJ	ug/1	10		10 UJ	ug/1		10	ĨŌ Ŭ	ug/1	ìo			ug/1	10:
lexachlorobutadiene			10 U	ug/1	10		10 U	ug/1		10	10 U	uq/1	10			ug/1	10
-Chloro-3-methylphenol	j.		10 U	ug/1	10		10 U	ug/1		10	10 U	ug/1	10	-10		ug/1	10
-Methylnaphthalene		Marie Marie	10 U	ug/1	10		10 U	ug/1		10	10 U	ug/1	10	10		ug/1	10
lexachì orocycl opentadi ene	B		10 0	ug/1	10		10 U	ug/1		10	10 U	ug/1	10	10	U	ug/1	10
2,4,6-Trichlarophenol	7		10 U	ug/1	10		10 U	ug/1		10	10 U	ug/1	10			ug/1	10
,4,5-Trichlorophenol	à i		25 U	ug/1	25		25 U	ug/l		25	25 U	ug/1	25			ug/l	25
-Chloronaphthalene			10 U	ug/1	10		10 U	ug/1		10	10 U	ug/]	10		U	ug/l	10
-Nitroaniline	7) .5.		25 U	ug/]	25		25 U	ug/l		25	25 U	ug/]	25			ug/]	25
imethylphthalate			10 U	ug/1	10		10 U	ug/l		10	10 U	ug/]	10			ug/]	10
cenaphthylene			10 U	ug/]	10		10 U	ug/1		10	10 U	ug/1	10			ug/1	10
.6-Dinitrotoluene	ki i		10 U	ug/1	10		10 U	ug/1		10	10 U	ug/]	10			ug/]	10
-Nitroaniline	Y Y		25 UJ	ug/l	25		25 UJ	ug/1		25	25 U	ug/1	25			ug/]	25
cenaphthene ,4-Dinitrophenol			10 U 25 UJ	ug/1	10 25		10 U 25 UJ	ug/1		10	10 U 25 U	ug/1	10			ug/1	10
-Nitrophenol			25 U	ug/1 ug/1	25 25		25 UJ 25 U	ug/1 ug/1		25 25	25 U	ug/1	25 25			ug/1	25 25
ibenzofuran			10 U		10		25 U 10 U			25 10	10 U	ug/l	10			ug/]	10
,4-Dinitrotoluene			10 U	ug/1 ug/1	10		10 U	ug/1 ug/1		10	10 U	ug/1 ug/1	10			ug/1 ug/1	10
iethylphthalate	i i		10 U	ug/1	10		10 U	ug/1 ug/1		10	10 U	ug/1 ug/1	10			ug/i ug/l	10
l-Chlorophenyl-phenylether		the state of the s	10 U	ug/1	10		10 U	ug/1		10	10 U	ug/1	10		_	ug/1 ug/1	10
luorene			10 U	ug/1	10		10 U	ug/1		10	10 U	ug/1	10			ug/1	10
	į.	83.0		~7'			•	~g/ ·				~ 77 / 1		•	- •	-9/ '	
										2000000000 20000000000			en aller og det en skriver Baltiste og det en skriver Baltiste og det en skriver				
	#									1000000							
	0.00	wasio See T			\$\$\$\$\$\$\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					3000000000	Mag Nyang dikin Militati	a. Pist Walk	wa.408000004				

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

Lab Sample Number Sit Locator Collect Date	e W r 16 : 15	980017 HITING G00203 -AUG-96 AL UNITS DL	V	16G0 20-A	6005 TING 0301 UG-96 UNITS	DL	V ALUE	RC016006 WHITING 16G00302 20-AUG-96 QUAL UNITS	DL	W 160 21-	016008 HITING 500303 -AUG-96 AL UNITS	DL	
4-Nitroaniline	25 UJ	ug/l	25	25 UJ	ug/1		25	25 U ug/1	25	25 U	ug/l	25	
4,6-Dinitro-2-methylphenol	25 UJ	ug/l	25	25 UJ	ug/l		25	25 U ug/1	25	25 U	ug/1	25	
N-Nitrosodiphenylamine	10 U	ug/l	10	10 U	ug/1			10 U ug/1	10	10 U	ug/1	10	
4-Bromophenyl-phenylether	10 U	ug/1	10	10 U	ug/l			10 U ug/1	10	10 U	ug/l	10	
Hexachlorobenzene	10 U	ug/l	10	10 U	ug/1			10 U ug/1	10	10 U	ug/l	10	
Pentachlorophenol	25 UJ		25	25 UJ	ug/l			25 U ug/1	25	25 U	ug/1	25	
Phenanthrene	10 U	ug/l	10	10 U	ug/1			10 U ug/]	10	10 U	ug/]	10	
Anthracene	10 U	ug/]	10	10 U	ug/l			10 U ug/]	10	10 U	ug/1	10	
Carbazole	10 U	ug/1	10	10 U	ug/l			10 U ug/]	10	10 U	ug/l	10	
Di-n-butylphthalate	10 U	ug/]	10	10 U	ug/1			10 U ug/]	10	10 U	ug/]	10	
Fluoranthene	10 U	ug/]	10	10 U	ug/]			10 U ug/1	10	10 U	ug/1	10	
Pyrene	10 U	ug/l	10	10 U	ug/]			10 U ug/]	10	10 U	ug/1	10	
Butylbenzylphthalate	10 U	ug/j	10	10 U	ug/l			10 U ug/1	10	10 U	ug/l	10	
3,3-Dichlorobenzidine	10 UJ		10	10 UJ	ug/]			10 U ug/1	10	10 U	ug/l	10	
Benzo (a) anthracene	10 U	ug/]	10	10 U	ug/l			10 U ug/1	10	10 U	ug/1	10	
Chrysene	10 U	ug/1	10	10 U	ug/l			10 V ug/1	10	10 U	ug/l	10 10	
bis(2-Ethylhexyl) phthalate	10 U	ug/1	10	10 U	ug/]			10 U ug/1	10	10 U	ug/l	10	
Di-n-octylphthalate	10 U	ug/]	10	10 U	ug/1			10 U ug/1	10	10 U	ug/l	10	
Benzo (b) fluoranthene Benzo (k) fluoranthene	10 U	ug/l	10	10 U	ug/]			10 U ug/1	10	10 U	ug/l	10	
	10 U	ug/]	10	10 U	ug/l			10 U ug/1	10	10 U	ug/1	10	
Benzo (a) pyrene	10 U	ug/1	10	10 U	ug/1			10 U ug/l	10	10 U	ug/1	10	
Indeno (1,2,3-cd) pyrene	10 U	ug/]	10	10 U	ug/1			10 U ug/1	10	10 U	ug/1	10	
Dibenzo (a,h) anthracene	10 U 10 U	ug/1	10 10	10 U	ug/1			10 U ug/l	10	10 U	ug/1	10 10	
Benzo (g,h,i) perylene	10 0	ug/1	TO	10 U	ug/1		10	10 V ug/1	10	10 U	ug/1	10	

NAS WHITING D -- SITE 16 GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

Lab Sample Number: Site Locator Collect Date:	WH 160 20-	016007 HITING G00304 -AUG-96 AL UNITS DL	VALUE	RC016002 WHITING 16G00401 19-AUG-96 QUAL UNITS	DL ·	VALUE	RC016003 WHITING 16G00402 19-AUG-96 QUAL UNITS	DL	VALUE	RB980020 WHITING 16G00403 16-AUG-96 QUAL UNITS	DL	
CLP SEMIVOLATILES 90-SOW Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,2,5-Dinitrotoluene 3-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U ug/l 10 U ug/l	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 U ug/1 10 U ug/1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 J ug/l 0 U ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10 1	

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

Lab Sample Number: Site Locator Collect Date:	VALUE	RC016007 WHITING 16G00304 20-AUG-96 QUAL UNITS	DL	RC016002 WHITING 16G00401 19-AUG-96 VALUE QUAL UNIT		RC016003 WHITING 16G00402 19-AUG-96 VALUE QUAL UNITS	DL.	RB980020 WHITING 16G00403 16-AUG-96 VALUE QUAL UNITS	DL	
4-Nitroaniline	2!	5 U ug/1	25	25 UJ ug/	1 25	25 UJ ug/1	25	25 UJ ug/1	25	
4,6-Dinitro-2-methylphenol		5 U ug/1	25	25 UJ ug/		25 UJ ug/1	25	25 UJ ug/1	25	
N-Nitrosodiphenylamine) Uug/l	10	10 U ug/			10	10 U ug/1	10	
4-Bromophenyl-phenylether) U = ug/1	10	10 U ug/			10	10 U ug/l	10	
Hexachlorobenzene) U ug/1	10	10 U ug/			10	10 U ug/1	10	
Pentachlorophenol		5 U ug/1	25	25 UJ ug/			25	25 UJ ug/1	25	
Phenanthrene) Uug/1	10	10 U ug/			10	10 U ug/]	10	
Anthracene) Uug/]	10	10 U ug/			10	10 U ug/1	10	
Carbazole) Uug/1	10	10 U ug/			10	10 U ug/]	10	
Di-n-butylphthalate) U ug/]	10	10 U ug/		10 U ug/1	10	10 U ug/1	10 10	
Fluoranthene) Uug/]	10	10 U ug/			10	10 U ug/1	10	
Pyrene) U ug/1	10	10 U ug/			10	10 U ug/1	10	
Butylbenzylphthalate) Մ ug/]	10	10 U ug/			10	10 U ug/1	10	
3.3-Dichlorobenzidine) U ug/1	10	10 UJ ug/			10	10 UJ ug/1	10	
Benzo (a) anthracene) U ug/]	10	10 U ug/			10	10 U ug/l	10	
Chrysene) U ug/1	10	10 U ug/			10	10 U ug/1	10	
bis(2-Ethylhexyl) phthalate	53		10	10 U ug/] 10		10	1 J ug/l	10	
Di-n-octylphthalate		0 U ug/1	10	10 U ug/		10 U ug/1	10	10 U ug/l	10	
Benzo (b) fluoranthene		0 U ug/1	10	10 U ug/			10	10 U ug/1	10	
Benzo (k) fluoranthene) Uug/]	10	10 U ug/			10	10 U ug/1	10	
Benzo (a) pyrene) U ug/1	10	10 U ug/			10	10 U ug/1	10	
Indeno (1,2,3-cd) pyrene) Uug/]	10	10 U ug/			10	10 U ug/1	10	
Dibenzo (a,h) anthracene		0 U ug/1	10	10 U ug/			10 10	10 U ug/1 10 U ug/1	10 10	
Benzo (g,h,1) perylene	10	0 U ug/1	10	10 U ug/	1 10	10 V ug/1	10	10 U ug/l	IA	

NAS WHITING ... ZD -- SITE 16

GROUNDWATER	 SEMIVOLATILES	 REPORT	NO.	10500

	Lab Sample Number: Site Locator Collect Date:	RB980021 WHITING 16G00403D 16-AUG-96 QUAL UNITS	DL	VALUE	RC016009 WHITING 16G00501 21-AUG-96 QUAL UNITS	DL	VALUE	RC016 WHIT 16G00 21-AU QUAL	ING)501D	DL	VALUE	RB980019 WHITING 16G00601 16-AUG-96 QUAL UNITS	DL
CLP SEMIVOLATILES 90- Phenol bis(2-Chloroethyl) 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2-oxybis(1-Chloro 4-Methylphenol N-Nitroso-di-n-prop Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) 2,4-Dichlorophenol 1,2,4-Trichlorobenz Naphthalene 4-Chloroaniline Hexachlorocyclopent 2,4,6-Trichlorophen 2,4,6-Trichlorophen 2,4,6-Trichlorophen 2,4,6-Trichlorophen 2,4,5-Trichlorophen 2,4-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrotoluene 3-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phen Fluorene	Collect Date: SOW Ether propane) ylamine methane ene enol addene ol ol	16-AUG-96 QUAL UNITS J ug/1 U ug/1	DL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	21-AUG-96	•	10 10 10 10 10 10 10 10 10 10 10 10 10 1	21-AU	JG-96	DL 100 100 100 100 100 100 100 100 100 10		16-AUG-96	10 10 10 10 10 10 10 10 10 10 10 10 10 1

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

Lab Sample Number: Site Locator Collect Date:	VALUE	RB980021 WHITING 16G00403D 16-AUG-96 QUAL UNITS	DL	VALUE	RC016009 WHITING 16G00501 21-AUG-96 QUAL UNITS	DL	VALUE	WHI 16G0 21-A	6013 TING 0501D UG-96 UNITS	DL	VALUE	16G0 16-A	TING	DL	
4-Nitroaniline		25 UJ ug/1	25	25	5U ug/1		25	25 U	ug/1	25	2	5 U	ug/1	25	
4,6-Dinitro-2-methylphenol		25 UJ ug/1	25		5 U ug/1		25	25 U	ug/l	25		5 U	ug/1	25	
N-Nitrosodiphenylamine		10 U ug/l	10)U ug/l		10	10 U	ug/1	10		UC	ug/l	10	
4-Bromophenyl-phenylether		10 U ug/1	10)U ug/1		10	10 U	ug/1	10) U	ug/1	10	
Hexachlorobenzene		10 U ug/1	10) U ug/1		10	10 U	_ug/1	10		O U	ug/]	10	
Pentachlorophenol		25 UJ ug/1	25		5 U ug/1		25	25 U	ug/1	25		5 U	ug/l	25	
Phenanthrene		10 U ug/1	10)U ug/]		10	10 U	ug/]	10		UC	ug/l	10	
Anthracene		10 U ug/l	10)U ug/1		10	10 U	ug/1	10) U	ug/]	10	
Carbazole		10 U ug/1	10) U ug/1		10	10 U	ug/]	10		U	ug/1	10	
Di-n-butylphthalate		10 U ug/]	10) U ug/]		10	10 U	ug/]	10		0 U	ug/1	10	
Fluoranthene		10 U ug/1	10) U ug/1		10	10 U	ug/]	10		ט ט	ug/1	10	
Pyrene		10 U ug/1	10) U ug/l		10	10 U	ug/ <u>]</u>	10		טט	ug/l	10	
Butylbenzylphthalate		10 U ug/]	10) U ug/]		10	10 U	ug/]	10		טט	ug/l	10	
3,3-Dichlorobenzidine		10 UJ ug/1	10) U ug/]		10	10 U	ug/1	10		U	ug/1	10	
Benzo (a) anthracene		10 U ug/l	10) U ug/1		10	10 U	_ug/j	10		0 U	ug/1	10	
Chrysene		10 U ug/1	10) U ug/1		10	10 U	ug/]	10		οų	ug/l	10	
bis(2-Ethylhexyl) phthalate		10 U ug/1	10		2 J ug/1		10	10 U	ug/1	10		1 J	ug/l	10	
Di-n-octylphthalate		10 U ug/1	10) U ug/1		10	10 U	ug/l	10		טס	ug/l	10	
Benzo (b) fluoranthene		10 U ug/1	10) U ug/]		10	10 U	ug/]	10		U	ug/]	10	
Benzo (k) fluoranthene		10 U ug/1	10) U ug/1		10	10 U	ug/l	10		U	ug/1	10	
Benzo (a) pyrene		10 U ug/1	10) U ug/1		10	10 U	ug/]	10		U	ug/1	10	
Indeno (1,2,3-cd) pyrene		10 U ug/]	10) U ug/l		10	10 U	ug/1	10		0 U	ug/1	10	
Dibenzo (a,h) anthracene		10 U ug/l 10 U ug/l	10 10)U ug/1)U ug/1		10 10	10 U 10 U	ug/]	10 10		0 U D U	ug/1 ug/1	10 10	
Benzo (g,h,i) perylene		10 U ug/1	10	,10) U ug/1		10	10.0	ug/1	10	1	UU	ug/ i	10	
							00000000000000000000000000000000000000								

NAS WHITING ...ZD -- SITE 16 GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

Lab Sample Number: Site Locator Collect Date:

RB980018 WHITING 16G00602 15-AUG-96 QUAL UNITS

DL

VALUE

VALUE

RB887015 WHITING 16G00701 25-JUL-96

QUAL UNITS

DL

VALUE

RB887016 WHITING 16G00702 25-JUL-96 QUAL UNITS

RB887017 WHITING 16G00703 25-JUL-96 QUAL UNITS

VALUE

DL

LP SEMIVOLATILES 90-SOW		1	10.11	. /1	10			1.0	4.3	/2	. 10
Phenol	10 U	ug/] 10	10 U	ug/1	10	10 U	ug/]	10	4 J 10 U	ug/]	10 10
bis(2-Chloroethyl) ether		ug/] 10	10 U	ug/1	10	10 U	ug/]	10	10 U	ug/1	
2-Chlorophenal	10 U	ug/l 10	10 U	ug/1	10	10 U	ug/]	10	10 U 10 U	ug/1	10 10
1,3-Dichlorobenzene	10 U	ug/] 10	10 U 10 U	ug/1	10	10 U 10 U	ug/l	10	10 U	ug/l ug/l	10
1,4-Dichlorobenzene		ug/1 10		ug/1	10		ug/]	10	10 U		
1,2-Dichlorobenzene		ug/] 10	10 U	ug/1	10	10 U	ug/]	10	10 U 10 U	ug/1	10 10
2-Methylphenol		ug/1 10	10 U	ug/l	10	10 U	ug/1	10	10 U	ug/1	10
2,2-oxybis(1-Chloropropane)		ug/l 10	10 U	ug/l	10	10 U	ug/1	10	10 U	ug/1	10
4-Methylphenol		ug/l 10	10 U	ug/l	10	10 U 10 U	ug/l	10	10 U	ug/1	
N-Nitroso-di-n-propylamine		ug/1 10	10 U	ug/1	10		ug/]	10	10 U	ug/1	10 10
Hexachloroethane		ug/] 10	10 U	ug/l	10	10 U	ug/]	10	10 U	ug/1	
Nitrobenzene	10 U	ug/] 10	10 U	ug/l	10	10 0	ug/l	10		ug/1	10
Isophorone	10 0	ug/] 10	10 U	ug/l	10	10 U	ug/1	10	10 U 10 U	ug/l	10 10
2-Nitrophenol		ug/] 10	10 U	ug/1	10	10 U	ug/l	10		ug/1	
2,4-Dimethylphenol		ug/] 10	10 U	ug/l	10	10 U	ug/l	10	10 U 10 U	ug/1	10
bis(2-Chloroethoxy) methane		ug/] 10	10 U	ug/1	10	10 U	ug/l	10	10 U	ug/]	10 10
2,4-Dichlorophenol		ug/1 10	10 U	ug/l	10	10 U	ug/]	10		ug/1	
1,2,4-Trichlorobenzene		ug/] 10	10 U	ug/1	10	10 U	ug/1	10	10 U 10 U	ug/1	10
Naphthalene		ug/] 10	10 U	ug/1	10	1 J	ug/]	10	10 U	ug/1	10 10
4-Chloroaniline		ug/1 10	10 U	ug/l	10	10 U	ug/j	10		ug/l	
Hexachlorobutadiene		ug/] 10	10 U	ug/l	10	10 U	ug/l	10	10 U	ug/l	10
4-Chloro-3-methylphenol		ug/1 10	10 U	ug/l	10	10 U	ug/]	10	10 U	ug/1	10
2-Methylnaphthalene		ug/] 10	10 U	ug/l	10	10 U	ug/l	10	10 U	ug/l	10
Hexachlorocyclopentadiene		ug/1 10	10 U	ug/l	10	10 U	ug/l	10	10 U 10 U	ug/1	10
2,4,6-Trichlarophenol		ug/l 10	10 U	ug/]	10	10 U	ug/l	10	10 U 25 U	ug/l	10
2,4,5-Trichlorophenol		ug/1 25	25 U	ug/l	25	25 U	ug/1	25		ug/l	25
2-Chloronaphthalene		ug/] 10	10 U	ug/l	10	10 U	ug/l	10	10 U	ug/]	10
2-Nitroaniline		ug/] 25	25 U	ug/1	25	25 U	ug/l	25	25 U	ug/l	25
Dimethylphthalate		ug/l 10	10 U	ug/l	10	10 U	ug/]	10	10 U	ug/l	10
Acenaphthylene		ug/] 10	10 U	ug/l	10	10 U	ug/]	10	10 U	ug/l	10
2,6-Dinitrotoluene		ug/1 10	10 U	ug/l	10	10 U	ug/]	10	10 U	ug/]	10
3-Nitroaniline		ug/1 25	25 U	ug/1	25	25 U	ug/1	25	25 U	ug/]	25
Acenaphthene		ug/] 10	10 U	ug/1	10	10 U	ug/l	10	10 U	ug/]	10
2,4-Dinitrophenol		ug/1 25	25 U	ug/1	25	25 U	ug/j	25	25 U	ug/]	25 .
4-Nitrophenol	25 U	ug/l 25	25 U	ug/l	25	25 U	ug/1	25	25 U	ug/]	25
Dibenzofuran		ug/] 10	10 U	ug/l	10	10 U	ug/j	10	10 U	ug/]	10
2,4-Dinitrotoluene		ug/] 10	10 U	ug/l	10	10 U	ug/]	10	10 U	ug/]	10
Diethylphthalate		ug/1 10	10 U	ug/l	10	10 U	ug/ <u>]</u>	10	10 U	ug/l	10
4-Chlorophenyl-phenylether		ug/l 10	10 U	ug/l	10	10 U	ug/]	10	10 U	ug/]	10
F1uorene	10 U	ug/1 10	10 U	ug/l	10	10 U	ug/l	10	10 U	ug/l	10

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- SEMIVOLATILES -- REPORT NO. 10500

Lab Sample Collec	Number: Site Locator t Date: VALUE	RB980018 WHITING 16G00602 15-AUG-96 QUAL UNITS D	L VALUI	RB887015 WHITING 16G00701 25-JUL-96 E QUAL UNITS	DL	RB887016 WHITING 16G00702 25-JUL-96 VALUE QUAL UNITS	DL VALI	RB887017 WHITING 16G00703 25-JUL-96 UE QUAL UNITS	DL
4-Nitroaniline	25	U ug/1	25	25 UJ ug/l	25	25 UJ ug/1	25	25 UJ ug/l	25
4,6-Dinitro-2-methylphenol	25	U ug/1	25	25 U ug/1	25	25 U ug/1	25	25 U ug/1	25
N-Nitrosodiphenylamine	10		10	10 U ug/1	10	10 V ug/1	10	10 U ug/1	10
4-Bromophenyl-phenylether	10		10	10 U ug/1	10		10	10 U ug/l	10
Hexachlorobenzene	10	U ug/l	10	10 U ug/1	10	10 V ug/l	10	10 U ug/1	10 25
Pentachlorophenol	25	U ug/1	25	25 U ug/1	25	25 U ug/1	25	25 U ug/1	25
Phenanthrene	10	U ug/1	10	10 U ug/1	10	10 U ug/1	10	10 U ug/1	10
Anthracene	10		10	10 U ug/l	10	10 U ug/1	10	10 U ug/1	10
Carbazole	10		10	10 U ug/1	10	10 U ug/l	10	10 U ug/1	10
Di-n-butylphthalate	10		10	10 U ug/1	10		10	10 U ug/1	10
Fluoranthene	10		10	10 U ug/1	10		10	10 U ug/1	10
Pyrene	10		10	10 U ug/1	10			10 U ug/1	10
Butylbenzylphthalate	10		10	10 U ug/l	10		10	10 U ug/1	10
3,3-Dichlorobenzidine	10		10	10 U ug/1	10		10	10 U ug/1	10
Benzo (a) anthracene	10		10	10 U ug/1	10		10	10 U ug/l	10
Chrysene	10		10	10 UJ ug/]	10		10	10 UJ ug/l	10
bis(2-Ethylhexyl) phthalate	6		10	10 U ug/1	10		10	10 U ug/1	10
Di-n-octylphthalate	10		10	10 U ug/1	10		10	10 U ug/1	10
Benzo (b) fluoranthene	10		10	10 U ug/]	10		10	10 U ug/1	10
Benzo (k) fluoranthene	10		10	10 U ug/1	10		10	10 U ug/1	10
Benzo (a) pyrene	10		10	10 U ug/1	10		10	10 U ug/1	10
Indeno (1,2,3-cd) pyrene	10		10	10 U ug/1	10		10	10 U ug/1	10
Dibenzo (a,h) anthracene	10		10	10 U ug/1	10		10	10 U ug/1	10
Benzo (g,h,i) perylene	10	U ug/1	10	10 UJ ug/l	10	10 VJ ug/1	10	10 UJ ug/l	10
 No. 1996; Apr. 180 (1996) 11. (1996) 11. (1997) 11. (1997) 11. (1997) 11. 	filigianaji ilo sire re	es a company of the company of					252355 2531 Self. 1751.		

NAS WHITING D -- SITE 16 GROUNDWATER -- PESTICIDES -- REPORT NO. 10501

	Lab Sample Number: Site Locator Collect Date:	VALUE	90226004 WHITING WHF16-1 16-NOV-93 QUAL UNITS	DL			90214002 WHITING WHF16-2 24-NOV-93 QUAL UNITS	DL	VALUE	902720 WHITI WHF16- 06-DE0 QUAL U	ING -2B C-93	DL	VALUE	90272001 WHITING WHF16-20 06-DEC-9 QUAL UNI	i : 93	DL
	www.tersering.com	VALUE	QUAL UNITS	UL		VALUL	YUNE UNITS	UL.	VALUE	QUAL (ONTID	UL.	VALUE	QUAL UNI	113	UL .
CLP PESTICIDES/PCBS 9	0-S0V							:				9000 11000 14 9880 1879 14				
alpha-BHC		.0	5 U ug/1		. 05	. 05	U ug/l	. 05	. (05 U	ug/1	.05	. 05	i U ud	<u>1/1</u>	. 05
beta-BHC			5 U ug/1		.05	. 05		.05		05 Ŭ	ug/1	.05		U ud	í/i	. 05
delta-BHC			5 U ug/1		. 05	. 05		. 05		05 U	ug/1	.05			i/i	. 05
gamma-BHC (Lindane)			5 U ug/1		. 05	. 05		. 05		05 U	ug/1	.05	. 05		1/1	. 05
Heptachlor			5 U ug/1		.05	. 05		. 05		05 U	ug/1	.05	. 05	iU uğ	1/1	. 05
Aldrin			5 U ug/1		. 05	. 05	U ug/1	. 05		05 U	ug/1	.05	.09	iU uğ	1/1	. 05
Heptachlor epoxide		.0	5 U ug/1	. 5	.05	. 05	U ug/1	. 05		05 U	ug/1	.05	. 05	5 Մ ևջ	1/1	. 05
Endosulfan I			5 U ug/1		. 05	. 05	U ug/1	. 05	, (05 U	ug/1	.05	. 05	i U ug	1/1	. 05
Dieldrin			1 U ug/T		. 1	. 1		. 1		.1 U · · ·	ug/1	.1			j/1	.1
4,4-DDE			1 U ug/1		1.1	.1		. 1		.1 U	ug/1	.1			j/1	.1
Endrin			1 U ug/1		. 1	.1		. 1		.1 U	ug/1	. 1		.Մ այց	g/1	. 1
Endosulfan II			1 U ug/1		. 1	. 1		. 1		.1 U	ug/1	.1			g/1	.1
4,4-DDD	\$200 \$40 \$3 \$3 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$40		1 U ug/1		. 1	.1		. 1		.1 U	ug/1	.1			<u>1</u> /1	.1
Endosulfan sulfate	nmadaga ugaz Subbahinin		1 U ug/1		. 1	. 1		. 1		.1 U	ug/1	.1			1/1	.1
4,4-DDT			1 U ug/1		. 1	. 1		. 1	·	.1 U	ug/1	.1			g/1	.1
Methoxychlor			5 0 ug/1		. 5	. 5		. 5		.5 U	ug/1	.5		iU ug	<u> </u>	.5
Endrin ketone			1 U ug/1	24	. 1	. 1		.1		.1 U	ug/1	.1		.U ug	1/1	.1
Endrin aldehyde			1 U ug/1	W A	. 1	.1		. 1		.1 U	ug/1	.1		.U ug	3/1	.1
alpha-Chlordane			5 U ug/1		. 05	. 05		. 05		05 U	ug/1	.05		U ug	/1	. 05
gamma-Chlordane	2000		5 U ug/1		. 05	. 05		. 05		05 U	ug/1	.05			j/1	. 05
Toxaphene			5 U ug/1		-5	5		5		5. U	ug/1	5		5-Ս u₫	g/1	5
Aroclor-1016			1 Uug/1		. 1	1		1		1 U	ug/1	1		.U ug	1/1	1
Aroclor-1221			2 U ug/1		2	2		2		2 U	ug/1	2		2 U ug	<u> </u>	2
Aroclor-1232			1 U ug/1		1	1		1		1 U	ug/1	1		.U ug	1/1	1
Aroclor-1242			1 U ug/1		1	1		1		10	ug/1	1]/]	1 %
Aroclor-1248			1 U ug/1		1	1		1		1 U	ug/1	1		U u	<u>1/1</u>	1 + 12/2
Araclar-1254			1 U ug/1		1	. 1		1		1 U	ug/1	1.		U u	j/1	1
Aroclor-1260			10 ug/1		1	1	U ug/1	1		1 U	ug/1	1	1	LU uç	j/1	1
					. :											

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- PESTICIDES/PCBs -- REPORT NO. 10501

	ample Number: Site Locator Collect Date:	VALUE	WHI WHF1 15-N	25001 ITING 16-3B NOV-93 UNITS	DL	VAL	WH WHF 12-	21002 ITING 16-3C NOV-93 L UNITS	DL	VALUE	WHI WHF1 11-N	0001 TING 6-3D IOV-93 UNITS	DL.	VALUE	WHF10	0002 TING 6-3DA OV-93 UNITS	DL	
CLP PESTICIDES/PCBS 90-SOW alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE Endrin Endosulfan II 4,4-DDT Methoxychlor Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1222 Aroclor-1242 Aroclor-1254 Aroclor-1250	FED J=ESTIMATEI QUÂNTITATION REJECTED AND	D. VALUE	05 U 05 U 05 U 05 U 05 U 05 U 05 U 05 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1		055 055 055 055 055 055 055 055 055 055	.05 UJ .05 UJ .05 UJ .05 UJ .05 UJ .1 UJ	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	. (. (. (. (. (. (05 05 05 05 05 05 05 05 05 05 1 1 1 1 1	.05 UJ .05 UJ .05 UJ .05 UJ .05 UJ .05 UJ .1 UJ	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	. 05 . 05 . 05 . 05 . 05 . 05 . 05 . 05	.00	5 00 5 00 5 00 5 00 5 00 5 00 6 00 6 00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	. 05 . 05 . 05 . 05 . 05 . 05 . 01 . 11 . 11 . 11 . 12 . 13 . 14 . 15 . 15 . 17 . 17 . 18 . 19 . 19 . 19 . 19 . 19 . 19 . 19 . 19	55 55 55 55 55 11 11 11 11 15 55 11 11 1

NAS WHITING DOWN - SITE 16
GROUNDWATER -- PESTICIDES/PCBs -- REPORT NO. 10501

Lab Sample No Lo Collect	Site WHITING ocator WHF16-4E		90226002 WHITING WHF16-4BA 16-NOV-93 QUAL UNITS DL	90226003 WHITING WHF16-4CD 16-NOV-93 VALUE QUAL UNITS	DL VALUE	90225002 WHITING WHF16-4D 15-NOV-93 QUAL UNITS DL
CLP PESTICIDES/PCBS 90-SOW alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE Endrin Endosulfan Sulfate 4,4-DDU Endosulfan sulfate 4,4-DDT Methoxychlor Endrin aldehyde alpha-Chlordane gamma-Chlordane gamma-Chlordane Toxaphene Aroclor-1211 Aroclor-1221 Aroclor-1248 Aroclor-1254 Aroclor-1260	.05 U3 ug .05 U3 ug .05 U3 ug .05 U3 ug .05 U3 ug .05 U3 ug .05 U3 ug .1 U3 ug	(1) .05 (1) .05 (1) .05 (1) .05 (1) .05 (1) .05 (1) .05 (1) .1 (1) .1 (1) .1 (1) .1 (1) .1 (1) .1 (1) .1 (1) .5 (1) .05 (1) .05 (1) .05 (1) .1	.05 U ug/l .05 U ug/l .05 U ug/l .05 U ug/l .05 U ug/l .05 U ug/l .05 U ug/l .05 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .5 U ug/l .1 U ug/l .5 U ug/l .1 U ug/l	.05	.05	.05 U ug/l .05 .05 U ug/l .05 .05 U ug/l .05 .05 U ug/l .05 .05 U ug/l .05 .05 U ug/l .05 .05 U ug/l .05 .05 U ug/l .05 .05 U ug/l .05 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .1 .1 U ug/l .5 .1 U ug/l .1 .1 U ug/l .5 .1 U ug/l .5 .1 U ug/l .1

Lab Sample Number: Site Locator Collect Date:	VALUE	90236003 WHITING WHF16-5 17-NOV-93 QUAL UNITS	DL	RC016 WHIT 16G00 19-AL VALUE QUAL	TING D101	VALUE	RB980006 WHITING 16G00201 14-AUG-96 QUAL UNITS	DL	WHI 16G0 15-A	80016 ITING 00202 AUG-96 L UNITS	DL
P PESTICIDES/PCBS 90-SOW alpha-BHC beta-BHC delta-BHC delta-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosülfan I Dieldrin 4.4-DDE Endrin Endosulfan II 4,4-DDD Endosulfan sulfate 4,4-DDT Methoxychlor Endrin aldehyde alpha-Chlordane gamma-Chlordane gamma-Chlordane Toxaphene Aroclor-1221 Aroclor-1222 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1250	. 09 . 00 . 00 . 00 . 00 . 00 . 00	5 U3 ug/1 5 U3 ug/1 5 U3 ug/1 5 U3 ug/1 5 U3 ug/1 5 U3 ug/1 5 U3 ug/1 1 U3 ug/1	.1 .5 .05 .05 .05 .1 .2	.05 U .05 U .05 U .05 U .05 U .05 U .05 U .05 U .05 U .05 U .05 U .1 U .1 U .1 U .1 U .1 U .1 U .1 U .	ug/l .05 ug/l .05 ug/l .05 ug/l .05 ug/l .05 ug/l .05 ug/l .05 ug/l .05 ug/l .1		05 UJ ug/1 05 UJ ug/1 05 UJ ug/1 05 UJ ug/1 05 UJ ug/1 05 UJ ug/1 05 UJ ug/1 05 UJ ug/1 1 UJ ug/1	.05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .5 .05 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.05 U .05 U .05 U .05 U .05 U .05 U .05 U .1 U .1 U .1 U .1 U .1 U .1 U .1 U .	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	.05 .05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .05 .05

NAS WHITING D -- SITE 16
GROUNDWATER -- PESTICIDES/PCBs -- REPORT NO. 10501

RC016006

RC016008

RC016005

	Site Locator Collect Date:	WH 160 15-	HITING GOO2O3 -AUG-96 AL UNITS	DL	VALUE	WHITING 16G00301 20-AUG-96 QUAL UNITS	DL	VALUE	WHITING 16G00302 20-AUG-96 QUAL UNITS	DL	· 1	WHITING 16G00303 21-AUG-96 QUAL UNITS	DL	
CLP PESTICIDES/PCBS 90-SOW alpha-BHC beta-BHC delta-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE Endrin Endosulfan II 4,4-DDO Endosulfan sulfate 4,4-DDT Methoxychlor Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1221 Aroclor-1232 Aroclor-1242	correct bate.			DL .05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .5 .05 .05 .5 .1 .2 .2 .1 .1	.05 .05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .5 .05	QUAL UNITS U ug/l	DL	.05 .05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .1 .1 .05 .05	U ug/1 U ug/1	DL		QUAL UNITS U	.05 .05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .1 .5 .05	
Aroclor-1248 Aroclor-1254 Aroclor-1260		1 UJ 1 UJ 1 UJ	ug/l ug/l ug/l	1 1 1	1	U ug/1 U ug/1 U ug/1	1 1 1	1	U ug/1 U ug/1 U ug/1	1 1 1	1 1 1	U ug/1	1 * 1 * 1 *	

Lab Sample Number:

RB980017

NAS WHITING FIELD -- SITE 16

GROUNDWATER -- PESTICIDES/PCBs -- REPORT NO. 10501

	Lab Sample Number: Site Locator Collect Date:	VALUE	RC016007 WHITING 16G00304 20-AUG-96 QUAL UNITS	DL	VALUE	RC016002 WHITING 16G00401 19-AUG-96 QUAL UNITS	DL	VALUE	RC016 WHIT 16G00 19-AU QUAL	ΓING	DL	VALUE	RB98002 WHITIN 16G0040 16-AUG- QUAL UN	1G 03 -96	DL	
CLP PESTICIDES/PCBS 99 alpha-BHC beta-BHC delta-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE Endrin Endosulfan II 4,4-DDT Methoxychlor Endosulfan sulfate 4,4-DDT Methoxychlor Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1254		1 1 1 1 1 1 5 1 0 5 0 5 5 1 2 2 1 1 1 1 1 1 0 5 5 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2 1 1 1 1	UJ ug/1 UJ ug/1	.05 .05 .05 .05 .05 .05 .05 .11 .11 .11 .05 .05 .05	. 05 . 05 . 05 . 05 . 05 . 05 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	5 U ug/l 5 U ug/l 5 U ug/l 5 U ug/l 5 U ug/l 5 U ug/l 5 U ug/l 5 U ug/l 6 U ug/l 6 U ug/l 6 U ug/l 6 U ug/l 6 U ug/l 6 U ug/l 7 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l 8 U ug/l		.05	05 U U 1 U U U 1 U U U 1 U U U 1 U U U 1 U U U 1 U U U 1 U U U 1 U U U 1 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	.05 .05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .1 .2 .5 .05 .05 .05 .05 .05 .05 .05 .05 .05	.05 .05 .05 .05 .05 .05 .1	5 UJ	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	.05 .05 .05 .05 .05 .05 .05 .11 .11 .11 .12 .11 .05 .05 .05	

NAS WHITING

5 ____2D -- SITE 16

			GI	ROUNDWATI	ER PEST	ICIDES/PCBs	- REPOR	T NO. 1050)1			, , , , , , , , , , , , , , , , , , ,	
	Lab Sample Number Site Locato Collect Date	e r	RB980020 WHITING 16G00403D 16-AUG-96 QUAL UNITS	DL	V ALUE	RC016009 WHITING 16G00501 21-AUG-96 QUAL UNITS	DŁ	VALUE	RC016013 WHITING 16G00501D 21-AUG-96 QUAL UNITS	DL	VALUE	RB980019 WHITING 16G00601 16-AUG-96 QUAL UNITS	DL

LP PESTICIDES/PCBS 90-SOW alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE Endrin Endosulfan II 4,4-DDD Endosulfan sulfate 4,4-DDT	.05 UJ .05 UJ .05 UJ .05 UJ .05 UJ .05 UJ	ug/1 .05 ug/1 .05 ug/1 .05 ug/1 .05	.05 U .05 U .05 U	ug/l ug/l	. 05 . 05	.05 U .05 U	ug/1	.05	. 05 UJ	ug/l	.05
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dialdrin 4.4-DOE Endrin Endosulfan II 4.4-DOD Endosulfan sulfate	.05 UJ .05 UJ .05 UJ .05 UJ	ug/1 .05 ug/1 .05 ug/1 .05	.05 U .05 U	ug/1							
delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4:4-DDE Endrin Endosulfan II 4,4-DDD Endosulfan Sulfate	.05 UJ .05 UJ .05 UJ	ug/1 .05 ug/1 .05 ug/1 .05	.05 U		05	05 11	/1	A.C			
gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4.4-DDE Endrin Endosulfan II 4.4-DDD Endosulfan sulfate	.05 UJ .05 UJ	ug/1 .05 ug/1 .05		- /3	• • • • • • • • • • • • • • • • • • • •		ug/1	. 05	.05 UJ	ug/l	. 05
Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE Endrin Endosulfan II 4,4-DDD Endroulfan II 6,4-DDD Endosulfan sulfate	.05 UJ	ug/1 .05		ug/l	. 05	.05 U	ug/1	.05	.05 UJ	ug/l	. 05
Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4.4-DDE Endrin Endosulfan II 4.4-DDD Endosulfan II 4.4-DDD			.05 U	ug/l	. 05	.05 U	ug/l	.05	.05 UJ	ug/l	. 05
Heptachlor epoxide Endosulfan I Dieldrin 4.4-DDE Endrin Endosulfan II 4.4-DDD Endosulfan sulfate	.05 มา	ug/1 .05	.05 U	ug/l	. 05	.05 U	ug/l	. 05	.05 UJ	ug/1	. 05
Endosulfan I Dieldrin 4.4-DDE Endrin Endosulfan II 4.4-DDD Endosulfan sulfate		ug/1 .05	.05 U	ug/1	. 05	.05 U	ug/1	.05	.05 UJ	ug/l	. 05
Dieldrin 4.4-DDE Endrin Endosulfan II 4.4-DDD Endosulfan sulfate	.05 UJ	ug/1 .05	.05 U	ug/l	. 05	.05 U	ug/l	.05	.05 UJ	ug/1	. 05
4.4-DDE Endrin Endosulfan II 4.4-DDD Endosulfan sulfate	.05 UJ	ug/1 .05	.05 U	ug/1	. 05	.05 U	ug/]	.05	.05 UJ	ug/1	. 05
Endrin Endosulfan II 4,4-DDD Endosulfan sulfate	.1 UJ	ug/1 .1	.1 U	ug/l	. 1	.1 U	ug/l	.1	.1 03	ug/1	.1
Endosulfan II 4,4-DDD Endosulfan sulfate	.1 UJ	ug/] .1	.1 U	ug/]	. 1	.1 U	ug/]	.1	.1 UJ	ug/1	.1
4,4-DDD Endosulfan sulfate	.1 เม	ug/1 .1	.1 U	ug/l	. l	.1 U	_ug/]	1	.1 UJ	ug/l	.1
Endosulfan sulfate	.1 UJ	ug/] .1	.1 U	ug/l	. 1	.1 U	ug/]	, <u>1</u>	.1 UJ	ug/l	.1
	.1 ໜ	ug/] .1	.1 U	ug/l	. 1	.1 U	ug/]	333.333	.1 UJ	ug/]	. į
4:4-UU1:18:00:00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.1 UJ	ug/] .1	.1 U	ug/1	. <u>I</u>	.1 U	ug/1		.1 UJ	ug/1	.1
	.1 03	ug/] .1	.1 U	ug/1	. 1	.1 U	ug/1	. [.15 J	ug/]	٠ <u>١</u>
Methoxychlar	.5 UJ	ug/] .5	.5 U	ug/1	. 5	.5 U	ug/l	.,5	.5 UJ	ug/1	.5
Endrin ketone	.1 UJ	ug/1 .1	.1 U	ug/1	. 1	.1 U	ug/]	4 · · · · · · · · · · · · · · · · · · ·	.1 UJ .1 UJ	ug/1	. 1
Endrin aldehyde	.1 03	ug/1 .1 ug/1 .05	.1 U	ug/1	. 05	.1 U	ug/1	.05	. 1 UJ . 05 UJ	ug/1	. 05
alpha-Chlordane	.05 UJ .05 UJ		.05 U .05 U	ug/1	.05	.05 U .05 U	ug/]	.05	.05 UJ	ug/1 ug/1	. 05 . 05
gamma-Chlordane	5 UJ		. US U	ug/1	. 03	.us 0 5 U	ug/]		. 05 03 5 UJ		.03
Toxaphene Aroclor-1016	1 UJ	ug/] 5	3 U 1 U	ug/l ug/l	1	3 U	ug/1 ug/1	1	1 UJ	ug/l ug/l	1.5
Aroclor-1016 Aroclor-1221	2 UJ	ug/1 1 ug/1 2	2 U	ug/1	2	2 0	ug/1	, , , , , , , , , , , , , , , , , , ,	2 UJ	ug/1 ug/1	2
Aroclor-1221 Aroclor-1232	1 UJ		1 U	ug/1	1	ĺÜ	ug/1		1 UJ	ug/1	1
Aroclor-1232 Aroclor-1242	1 00	ug/1 1 ug/1 1	1 U	ug/1	1	iŭ	ug/1 ug/1	7	1 UJ	ug/1	1
Araclor-1248	1 03	ug/1 1	1 U	ug/1	100000000	iŭ	ug/1	# 1	1 UJ	ug/1	1
Aroclor-1254	່ 1 ບັນ	ug/1 1	1 U	ug/1	1	ίŬ	ug/1	1	1 UJ	ug/1	18
Araclor-1260		LUMP CONTRACT	1 0	uu/ I							

NAS WHITING FIELD -- SITE 16

GROUNDWATER -		PESTICIDES/PCBs -	 REPORT 	NO.	10501
---------------	--	-------------------	----------------------------	-----	-------

	Lab Sample Number: Site Locator Collect Date:		RB980018 WHITING 16G00602 15-AUG-96 QUAL UNITS	DL	VALUE	16G0 25-J	7015 TING	DL	VALUE	RB88 WHI 16G0 25-3	37016 TING 30702 DUL-96 UNITS	DL	WI 160 25-	887017 HITING 600703 -JUL-96 AL UNITS	DL
CLP PESTICIDES/PCBS 90 a1pha-BHC beta-BHC delta-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE Endrin Endosulfan II 4,4-DDD Endosulfan sulfate 4,4-DDT Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1242 Aroclor-1254 Aroclor-1254 Aroclor-1260		. 05 . 05 . 05 . 05 . 05 . 05 . 1 . 1 . 1 . 1 . 1 . 05 . 05	5 U ug/1 5 U ug/1 5 U ug/1 5 U ug/1 5 U ug/1 6 U ug/1 6 U ug/1 7 U ug/1	.05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.00	05 05 05 05 05 05 05 05 05 05 05 05 05 0	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	. 00	5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05 U 05 U 05 U 05 U 05 U 05 U 05 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	.05 .05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .05 .05 .05	.05 UJ .05 UJ .05 UJ .05 UJ .05 UJ .05 UJ .1 UJ	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	.05 .05 .05 .05 .05 .05 .05 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
U≐ NOT U.1= RFP	DETECTED J=ESTIMATE ORTED QUANTITATION LT IS REJECTED AND	D VALUE LIMIT IS (UNUSABLE	QUALIFIED AS	ESTIMATED											

NAS WHITING D -- SITE 16 GROUNDWATER -- INORGANICS -- REPORT NO. 10502

		ab Sample Number: Site Locator Collect Date:	VALUE	90226004 WHITING WHF16-1 16-NOV-93 QUAL UNITS	DL	VALUE	90214002 WHITING WHF16-2 24-NOV-93 QUAL UNITS	DL	VALUE	90272 WHIT WHF16 06-DE QUAL	ING -2B C-93	DL	VALUE	90272001 WHITING WHF16-2C 06-DEC-93 QUAL UNITS	O.DL	
CLP METALS AND C	YANIDE							ž.								
A1 um i num			27.2	J ug/1	200	178	J ug/1	200	12400		ug/1	200	25.1	J ug/1	200	
Antimony			20.7	U ug/l	60	20.7		60	20.7	U	ug/1	60	20.7		60	
Arsenic		7, 27, 4, 200 (4, 4, 4, 1) (4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1.7	J ug/1	10	1.6	U ug/1	10	1,6		ug/1	10	1.6	U ug/1	10	
Barium			31.5		200	12.3		200	77.8	J	ug/l	200	34.4	J ug/l	200	
Beryllium				U ug/1	5	. 2	U ug/1	5	.26	. J	ug/1	5		U ug/1	5	
Cadmi um			3.2		5	5	ug/1	5	3.2		ug/1	5	3.2		5	
Calcium			1090	J ug/1	5000	859		5000	785		ug/]	5000	2120		5000	
Chromium			3.3		10	3.3		10	35.5		ug/]	10	3.4		10	
Cobalt			4.1		50	4.1		50		J	ug/1	50	4.1		50	
Copper			_8.2	J ug/]	25	2.1		25		J	ug/[25	2.8		25	
Iron		Later State Control of the Control o	34.5		100	135		100	12400		ug/]	100	545		100	
Lead			1.8		5000	1.3		5000	5.6		ug/1	3	1.6		5000	
Magnesium			1020		5000	534		5000	1270		ug/]	5000	1400		5000	
Manganese			4.2		15	20.5		15	44.4		ug/]	15	115		15	
Mercury		50000 000 5 000 5000 0 0 0 0 0 0 0 0 0 0	.15		.2	. 15		. 2 40		l J	ug/]	.2	. 16		. 2 40	
Nickel Potassium	40.8999C.D.		10.6 852		40 5000	614		5000	1830		ug/]	40 5000	614		5000	
Selentum				J ug/1 U ug/1	2000		U ug/1 U ug/1	5000		บั	ug/]	3000			2000	
Silver		0.00000 40 0.00 0.0000000000000000000000	2.7		10	2.7		10	2,7		ug/1 ug/1	10	3.9		10	
Sodium		1 (0) (0) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	2300		5000			5000	2930		ug/ ug/	5000	3330		5000	
Thallium			.88		10	.88		10		ίŭ	ug/1	10	.88		10	W. 7
Vanadium			2.5		50	2.5		50	37.3		ug/1	ร์ก	2.5		50	
Zinc			29		20	6.5		20	97.7		ug/1	20		J ug/1	20	
Cyanide		effection Clark Manufacture No. 2015	1.7		10	1.7		10	1.7	U	ug/1	ĩõ	1.7	U ug/1	10	. 8.

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- INORGANICS -- REPORT NO. 10502

Lab Sample Number:

Collect Date:

Site

VALUE

90225001 WHITING WHF16-3B 15-NOV-93

OUAL UNITS

DL

90221002 WHITING WHF16-3C 12-NOV-93 VALUE OUAL UNITS

90220001 WHITING WHF16-3D 11-NOV-93 QUAL UNITS

VALUE

90220002 WHITING WHF16-3DA 11-NOV-93 QUAL UNITS

VALUE

S TS DL

LP METALS AND CYANIDE											
Al umi num	85000 U	ug/1 200	82600	ug/l	200	1370	ug/1	200	2590 J	ug/1	200
Antimony	104 Û	ug/1 60	20.7 U	ug/1	60	20.7 U	ug/1	60	20.7 U	ug/1	60
Arsenic	4.5 J	ug/1 10	3.7 J	ug/1	10	1.9 ป	ug/1	10	2 J	ug/1	10
Barlum	105 J	ug/1 200	297	ug/i	200	19.1 J	ug/1	200	20.4 J	ug/1	200
Beryllium	4.7 J	ug/1 5	3.6 J	ug/1	- 5	.32 J	ug/1	Š	.45 J	ug/1	5
Cadmium	16 U	ug/1 5	56.5	ug/1	5	3.2 Ū	ug/1	Š	5.6	ug/1	5
Calcium	79400	ug/1 5000	23000	ug/1	5000	2410 J	ug/1	5000	2420 J	ug/1	5000
Chromium	219	ug/1 10	225	ug/1	10	4.3 J	ug/1	10	5.1 J	ug/1	10
Cobalt	21.3 J	ug/1 50	6.2 J	ug/1	50	4.1 U	ug/1	50	4.1 U	ug/1	50
Copper	43.6 J	ug/1 25	87.1	ug/1	25	2.6 J	ug/1	25	2.4 J	ug/1	25
Iron ·	313000	ug/1 100	83700	ug/1	100	923 J	ug/1	100	1230 J	ug/1	100
Lead	15.2	ug/1 3	69.1	ug/1	3	2.2 UJ	ug/1	៊ី វ	2.4 UJ	ug/1	3
Magnesium	6780 J	ug/1 5000	8660	ug/1	5000	903 J	ug/1	5000	955 J	ug/1	5000
Manganese	1050	ug/1 15	498	ug/l	15	93.4	ug/1	15	94.1	ug/1	15
Mercury	.23	ug/1 .2	.48	ug/1	.2	.15 U	ug/1		.15 U	ug/i	.2
Nickel	82.4 J	ug/1 40	38.5 J	ug/1	40	. 9 Ŭ	ug/1	40	9 Ŭ	ug/1	40
Potassium	7000 J	ug/1 5000	4780 J	ug/1	5000	1890 J	ug/1	5000	1770 J	ug/1	5000
Selenium	2 U	ug/1 5	2 U	ug/1	5	ŽŪ	ug/1	·	2 Ü	ug/1	5
Silver	24.3 J	ug/1 10	2.7 Ŭ	ug/l	10	2.7 ŬJ	ug/1	10	2.7 ŬJ	ug/1	10
Sodium	6980 J	ug/1 5000	13500	ug/1	5000	23200	ug/1	5000	23000	ug/l	5000
Thallium	.88 U	ug/1 10	.88 U	ug/l	10	i UJ	ug/1	10	.88 Ú	ug/1	10
Vanadium	987	ug/1 50	120	ug/1	50	4.4 J	ug/1	50		ug/1	50
		44) (160	uy/ i			0.0000	000000000000000000000000000000000000000		49/1	4 0
Zinc	152	ug/l 20	451	ug/1	20	14.7 J	ug/1	20	17.8 J	ug/1	20

NAS WHITING FIELD SITE 16

GROUNDWATER	INORGANICS	REPORT NO.	10502

Lab	Sample Number: Site Locator Collect Date:	· ·	9022600 WHITIN WHF16-4 16-NOV- QUAL UN	NG 4B -93	DL	VALUE	WHT:	26002 ITING 16-4BA NOV-93 L UNITS	DL	VALUE	90226003 WHITING WHF16-4CD 16-NOV-93 QUAL UNITS	DL	VALUE	WHI WHF1 15-N	25002 ITING 16-4D 10V-93 UNITS	DL	
AND CYANIDE		6280 20.7 3.1))	ug/l ug/l ug/l	200 60 10		70 .7 U .6 U	ug/l ug/l ug/l	â	200 11 60 20.	11 J ug/1 7 U ug/1 6 U ug/1	200 60 10	77: 20.	9 U 7 U 6 U	ug/l ug/l ug/l		2(f

P METALS AND CYANIDE											
Aluminum		6280	ug/1 2	00 5170	ug/1	200 111 J	ug/1	200	779 U	ug/l	200
Antimony		20.7 U	ug/1	50 20.7 l	J ug/1	60 2 0.7 U	ug/1	60	20.7 U	ug/l	60
Arsenic		3.1 J	ug/1	10 1.6 l	J ug/1	10 1.6 U	ug/1	10	1.6 U	ug/1	10
Barium		25.9 J		00 26.3 3	J ug/1	200 15.7 J	ug/1	200	20.3 J	ug/l	200
Beryllium		.2 U	ug/1	5 .2 (J ug/1	5 .2 0	ug/l	5	.2 U	ug/l	5
Cadmitum	4.5	3.2 U	ug/l	5 3.2 (J ug/1	5 3.9 J	ug/1	5	3.2 U.	ug/l	5
Calcium	541	91600	ug/1 50	0 0 90300	ug/l	5000 197 0 J	ug/l	5000	6350	ug/l	5000
Chromium		7 J		10 7.		10 3.3 U	ug/l	10	3.8 J	ug/l	10
Cobalt		4.1 U		50 4.1 U	J	50 4.1 U	ug/l	50	4.1 U	ug/l	50
Copper		6.6 J		25 6.5		25 2.1 U	ug/l	25	2.1 U	ug/l	25
Iron		4640		00 3370	ug/l	100 140	ug/ <u>]</u>	100	223	ug/1	100
Lead		6.1	ug/1	3 4.7	ug/l	3 1 U	ug/]	3	1.2 J	ug/]	_ 3
Magnesium		7840	_ug/1 50		ug/1	5000 459 J	ug/]	5000	528 J	ug/l	5000
Manganese	N	81.1		15 67.2	ug/l	15 18,2	ug/l	15	59.1	ug/1	15
Mercury		.15 U	ug/1	.2 .15 L		.2 .15 U	ug/]		.15 U	ug/1	.2
Nickel		9 U		40 9 (40 9 U	ug/l	40	9 U	ug/]	40
Potassium		3360 J	ug/1 50			5000 614 U	ug/]	5000	614 U	ug/1	5000
Selenium		2 U	ug/]	5 2 1		5 2 U	ug/]	5	2 U	ug/]	5
Silver		2.7 0		10 2.7 (10 2.7 U	ug/]	10	2.7 U	ug/l	10
Sodium		3270 J	ug/1 50		J	5000 3690 J	ug/1	5000	3180 J	ug/1	5000
Thallium		.88 U		10 .88 L		10 .88 U	ug/l	10	.88 U	ug/l	10
Vanadium		14.2 J		50 11.5		50 2.5 U	ug/]	50	3.5 J	ug/1	50
Zinc	4.4	92.5		20 68	ug/1	20 25.7	ug/l	20	3.3 J	ug/]	20
Cyanide		1.7 U	ug/1	1.7 t	J ug/1	10 1.7 U	ug/l	10	1.7 U	ug/1	10

NAS WHITING FIELD -- SITE 16

GROUNDWATER	INORGANICS	REPORT NO.	10502
-------------	------------	------------	-------

				GROUNDWA		ORGANICS R							
	Lab Sample Number: Site Locator Collect Date:		90236003 WHITING WHF16-5 17-NOV-93 QUAL UNITS	DL	VALUE	RC016004 WHITING 16G00101 19-AUG-96 QUAL UNITS	DL	VALUE	WTME340009 WHITING 16G00101 24-JUL-97 QUAL UNITS	DL	1 2	ME340010 WHITING 6G00101D 4-JUL-97 UAL UNITS	DL
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel		64.8 20.7 1.6 7.9 3.2 157 3.3 4.1 2.1 270 1.7 .159 614 22.7 1630 .88 2.5 2.2 1.7	U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1	200 60 10 200 5 5 5 5000 10 3 5000 15 2 40 5000 10 5000 10	1.2 623 2.1 2.3 1.1 39.9 2.1 685 3.8 .1 7.3 375 .66 2.5	U ug/1 U ug/1		60 10 20.5 5000 10 50 25 100 617 11 44 5000 11 2130 2130 2130	5 U ug/l 5 U ug/l 6 U ug/l 7 U ug/l 7 U ug/l 7 U ug/l 8 U ug/l 7 U ug/l 7 U ug/l 7 U ug/l 7 U ug/l 7 U ug/l 7 U ug/l 8 U ug/l 7 U ug/l 8 U ug/l 9 U ug/l 9 U ug/l 9 U ug/l	200 60 10 200 5 5 5000 10 3 3 5000 15 2 40 5000 5 10 5000 20	200 U 60 U 10 U 20.7 J 5 U 5000 U 20 U 3 U 20 U 5000 U 5 U 2110 U 2110 U 2110 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	200 60 10 200 5 5 5000 10 25 100 3 5000 15 .2 40 5000 5000 10 5000 20
U= NOT UJ= REP R= RESU	DETECTED J=ESTIMATE ORTED QUANTITATION LT IS REJECTED AND	D VALUE LIMIT IS C UNUSABLE	UALIFIED AS	ESTIMATED									

NAS WHITING D -- SITE 16
GROUNDWATER -- INORGANICS -- REPORT NO. 10502

9,000				GROUNDW	ATER IN	ORGANICS	REPORT I	NO. 10502					1	
	Lab Sample Number: Site Locator Collect Date:	VALUE	RB980014 WHITING 16G00201F 13-AUG-96 QUAL UNITS	DL	VALUE	RB980006 WHITING 16G00201 14-AUG-96 QUAL UNITS	DL	VALUE	RB980016 WHITING 16G00202 15-AUG-96 QUAL UNITS	DL		VTME322004 WHITING 16G00202 22-JUL-97 QUAL UNITS	DL	
CLP METALS AND CY/ Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	NIDE	17.4 .3 1.2 320 2.3 1.1 5 .5 464 2.5 .1 7.3 316 .6 2.5 2670	U ug/l U ug/l		17.4 .3 1.2 308 2 3 1.1 41.2	U ug/l U ug/l		30. 1. 1999 2 1. 57. 2 1456 1. 7. 333 2. 5266	6 U ug/1 5 U ug/1 1 J ug/1 3 U ug/1 3 U ug/1 0 J ug/1 2 U ug/1 3 U ug/1 1 U ug/1 2 U ug/1 3 J ug/1 0 J ug/1 1 U ug/1 2 J ug/1 1 U ug/1 1 U ug/1 5 U ug/1 6 U ug/1 6 U ug/1 6 U ug/1		5 3660 10 50 25 100 3 3020 21.8 .2 40 5000	U ug/1 U ug/1	60 10 200 5 5 500 10 50 25 100 3 5000 15 .2 40 5000 5000	

NAS WHITING FIELD -- SITE 16

GROUNDWATER -- INORGANICS -- REPORT NO. 10502

	Lab Sample Number Site Locator Collect Date	2	RB980017 WHITING 16G00203 15-AUG-96 QUAL UNITS	DL	1 2	TME322005 WHITING 16G00203 23-JUL-97 QUAL UNITS	DL	VALUE	RC016005 WHITING 16G00301 20-AUG-96 QUAL UNITS	DL	WH 16G 24-	340008 ITING 00301 JUL-97 L UNITS	DL .
CLP METALS AND CYANID Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide		1. 1000 2. 1. 30. 73. 36. 7. 32. 21.6	3 U ug/l 3 U ug/l 3 U ug/l 3 U ug/l 3 U ug/l 2 U ug/l 3 U ug/l 4 U ug/l 5 U ug/l 5 U ug/l 6 U ug/l 6 U ug/l 6 U ug/l 7 U ug/l 8 U ug/l 8 U ug/l 9 Ug/l 9 Ug/l 9 Ug/l 9 Ug/l 9 Ug/l 9 Ug/l 9 Ug/l 9 Ug/l 9 Ug/l		121 c 60 c 10 c 17 c 4 c 1 5 c 1 10 80 c 1 1	J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l J ug/l	200 60 10 200 5 5 5000 10 50 25 100 3 5000 15 .2 40 5000 5000	40.7 .3 1.2 24900 2 2.3 1.1 176 .5 2850 3 3 3730 .6 2.5 4750	U ug/1 U ug/1		749 60 U 10 U 39.3 J 5 U 35700 10 U 25 U 1040 3 U 3450 J 12.1 J 40 U 3510 J 5 U 10 U 6660 10 UJ 50 U 20 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	200 60 10 200 5 5 5000 10 50 25 100 3 5000 15 .2 40 5000 5 10 5000 25 2000 25 2000 25 2000 25 2000 25 2000 25 2000 25 2000 25 2000 2
							000000000000000000000000000000000000000						

NAS WHITING 2D -- SITE 16 GROUNDWATER -- INORGANICS -- REPORT NO. 10502

Lab Sample Number: Site Locator Collect Date:		RC016006 WHITING 16G00302 20-AUG-96 QUAL UNITS	DL	VALUE	WTME322002 WHITING 16G00302 22-JUL-97 QUAL UNITS	DL	VALUE	RC016008 WHITING 16G00303 21-AUG-96 QUAL UNITS	DL	VALUE	WTME322003 WHITING 16G00303 22-JUL-97 QUAL UNITS	DL
CLP METALS AND CYANIDE Aluminum Antimony Arsenic Barlum Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	23.5 1.2 1066 2.6 2.3 1.1 113 5 720 47.3 401 6 2.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	3 U ug/l 5 U ug/l 6 J ug/l 8 U ug/l		66 11 25 999 11 56 22 100 796 11 44 1188	5 U ug/l 5 U ug/l 7 J ug/l 0 U ug/l 5 U ug/l 5 U ug/l 0 U ug/l 3 U ug/l 0 J ug/l 8 ug/l 0 U ug/l 0 U ug/l 0 U ug/l 0 U ug/l 0 U ug/l 0 U ug/l 0 U ug/l	200 60 10 200 5 5 5000 10 50 25 100 3 5000 5 10 5000 5 10 5000	8. 1. 27. 1. 107 4. 2. 1. 141 2. 103 60. 1 7. 31	6 U ug/l 1 U ug/l 2 J ug/l 3 U ug/l 3 U ug/l 6 J ug/l 6 J ug/l 7 J ug/l 0 ug/l 6 U ug/l 7 J ug/l 0 ug/l 6 U ug/l		26.6 5 1380 100 25 1370 3 1220 89.6 5000 5 100 3940 100 500	J ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1	200 60 10 200 5 5 5000 10 50 25 100 3 5000 15 .2 40 5000 10 5000 10 5000

NAS WHITING FIELD -- SITE 16

GROUNDWATER	INORGANICS -	REPORT	NΩ	10502

25.4 U 8.6 U .5 U	ug/1 ug/1		1/1								
.3 U 1.2 U 962 J 3.4 J 2.3 U 1.1 U 396 .5 U 893 J 53.3 .1 U 7.3 U 316 U 2.5 U 4590 J .6 U 1.2 U 3.9 U	ug/] ug/] ug/] ug/] ug/] ug/] ug/] ug/]	1.5 13 .3 1.2 2500 2 2.3 1.1 111 .5 988 73.7 1640 .6 2.5 20600 .6 1.5 53.1	U ug/1 U ug/1		10 16 5 5 2960 10 50 11.9 1040 3 1220 105 .2 40 2010 5 10 20400 10	U ug/1 J ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 J ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1 U ug/1	200 60 10 200 55 5000 10 50 10 5000 15 10 5000 10 500 20	1.4 J 11 J 5 U 2540 J 250 U 25 U 100 U 1030 J 80.4 40 U 1720 J 5 U 20700 10 U 20700 10 U	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	200 60 10 200 5 5 5000 10 50 25 100 3 5000 15 .2 40 5000 10 5000 20	
	18.9 J .3 U 1.2 U 962 J 3.4 J 2.3 U 1.1 U 396 .5 U 893 J 53.3 .1 U 7.3 U 316 U 2.5 U 4590 J .6 U 1.2 U 3.9 U	.5 U ug/l 18.9 J ug/l .3 U ug/l 1.2 U ug/l 962 J ug/l 3.4 J ug/l 2.3 U ug/l 1.1 U ug/l 396 ug/l .5 U ug/l 893 J ug/l 53.3 ug/l .1 U ug/l 7.3 U ug/l 7.3 U ug/l 7.3 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 316 U ug/l 2.5 U ug/l 319 U ug/l 319 U ug/l 319 U ug/l	8.6 U ug/l 1.5 18.9 J ug/l 1.5 18.9 J ug/l 1.3 .3 U ug/l .3 1.2 U ug/l 2500 3.4 J ug/l 2.3 1.1 U ug/l 2.3 1.1 U ug/l 1.1 396 ug/l 55 893 J ug/l 988 53.3 ug/l 73.7 .1 U ug/l .1 7.3 U ug/l .1 7.3 U ug/l .6 6 U ug/l .6 2.5 U ug/l 2.5 4590 J ug/l 2.5 4590 J ug/l .6 1.2 U ug/l .6 1.2 U ug/l .5 3.9 U ug/l .5 3.9 U ug/l 53.1 - ug/l 53.1	8.6 U ug/l .5 U ug/l 1.5 U ug/l 18.9 J ug/l .3 U ug/l .3 U ug/l .3 U ug/l .3 U ug/l .3 U ug/l 1.2 U ug/l 962 J ug/l 2.500 J ug/l 3.4 J ug/l 2.3 U ug/l 2.3 U ug/l 2.3 U ug/l 2.3 U ug/l 2.3 U ug/l 2.3 U ug/l 3.96 ug/l .5 U ug/l .5 U ug/l .5 U ug/l .5 U ug/l .73 U ug/l .73 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .1 U ug/l .2 U ug/l .3 U ug/l .3 U ug/l .4 U ug/l .5 U ug/l .5 U ug/l .5 U ug/l .5 U ug/l .5 U ug/l .5 U ug/l .5 U ug/l .5 U ug/l .5 U ug/l .5 U ug/l .5 U ug/l .6 U ug/l .6 U ug/l .6 U ug/l .6 U ug/l .7 U ug/	8.6 U ug/l .5 U ug/l 1.5 U ug/l 18.9 J ug/l .3 U ug/l .3 U ug/l .3 U ug/l .3 U ug/l .3 U ug/l 1.2 U ug/l 962 J ug/l 2500 J ug/l 2.3 U ug/l 2.3 U ug/l 2.3 U ug/l 2.3 U ug/l 2.3 U ug/l 1.1 U ug/l 3.4 J ug/l 2.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.6 U ug/l 3.7 J ug/l 3.7 J ug/l 3.8 J ug/l 3.1 U ug/l 3.1 U ug/l 3.1 U ug/l 3.1 U ug/l 3.2 U ug/l 3.3 U ug/l 3.3 U ug/l 3.3 U ug/l 3.4 U ug/l 3.5 U ug/l 3.5 U ug/l 3.6 U ug/l 3.6 U ug/l 3.6 U ug/l 3.7 J ug/l 3.7 J ug/l 3.8 U ug/l 3.9 U ug/l 3.0	8.6 U ug/l 1.5 U ug/l 60 18.9 J ug/l 13 J ug/l 16 .3 U ug/l 13 J ug/l 16 .3 U ug/l 12 U ug/l 5 1.2 U ug/l 12 U ug/l 5 962 J ug/l 2500 J ug/l 2960 3.4 J ug/l 2.3 U ug/l 10 2.3 U ug/l 1.1 U ug/l 10 2.3 U ug/l 1.1 U ug/l 11.9 396 ug/l 111 ug/l 114.9 396 ug/l 55 U ug/l 3 893 J ug/l 988 J ug/l 1220 53.3 ug/l 73.7 ug/l 105 51 U ug/l 1 U ug/l 1220 53.3 ug/l 77.7 J ug/l 27.3 U ug/l 26.0 1 U ug/l 1640 J ug/l 2010 6 U ug/l 6 U ug/l 5 2.5 U ug/l 2.5 U ug/l 3 3.9 U ug/l 20600 ug/l 20400 -6 U ug/l 1.5 U ug/l 10 1.2 U ug/l 1.5 U ug/l 20400 -6 U ug/l 5.5 U ug/l 50 3.9 U ug/l 53.1 ug/l 20400 -6 U ug/l 55.1 Ug/l 50 3.9 U ug/l 55.1 ug/l 264.7 - ug/l 53.1 ug/l 265.7 - ug/l 53.1 ug/l 265.7	8.6 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 18.9 J ug/l 1.5 U ug/l 10 U ug/l 18.9 J ug/l 13 J ug/l 16 J ug/l 1.2 U ug/l 1.2 U ug/l 1.2 U ug/l 1.2 U ug/l 2500 J ug/l 2960 J ug/l 2.3 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 2.5 U ug/l 3.6 U ug/l 3.6 U ug/l 3.6 U ug/l 3.6 U ug/l 3.6 U ug/l 3.6 U ug/l 3.6 U ug/l 3.6 U ug/l 3.5 U ug/l 3.6 U ug/l 3.5 U ug/l 3.5 U ug/l 3.6 U ug/l 3.5 U ug/l 3.5 U ug/l 3.6 U ug/l 3.5 U ug/l 3.5 U ug/l 3.6 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.5 U ug/l 3.9 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.5 U ug/l 3.9 U ug/l 3.0 U ug/l 3.0 U ug/l 3.0 U ug/l 3.0 U ug/l 3.0 U ug/l 3.0 U ug/l 3.0 U ug/l 3.0 U ug/l 3.	8.6 0 ug/l 10 U ug/l 60 U ug/l 60 U ug/l 10 18.9 J ug/l 13 J ug/l 16 J ug/l 10 18.9 J ug/l 13 J ug/l 16 J ug/l 20 0 1.2 U ug/l 1.2 U ug/l 5 U ug/l	8.6 U ug/l 10 U ug/l 10 U ug/l 10 U ug/l 10 1.4 J 18.9 J ug/l 13 J ug/l 16 J ug/l 10 1.4 J 18.9 J ug/l 1200 11 J 1.3 J ug/l 16 J ug/l 200 11 J 1.3 J ug/l 1.2 U ug/l 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 10 10 U ug/l 10 10 U ug/l 10 10 U ug/l 10 10 U ug/l 11 11 U ug/l 11.1 U ug/l 11.9 J ug/l 25 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 5 5 U ug/l 5 U ug/l 5 U ug/l 5 5 U ug/l 5 5 U ug/l 5 5 U ug/l 5 5 U ug/l 5 5 U ug/l 5 U ug/l 5 5 U ug/l 5 5 U ug/l 5 5 U ug/l 5 5 U ug/l 5 5 U ug/l 5 U ug/l 5 U ug/l 5 U ug/l 5 U ug/l 5 U ug/l 5 U ug/l 5 U ug/l 5 U	8.6 U ug/l 10 U ug/l 60 U ug/l 60 60 U ug/l 50 60 60 U ug/l 18.9 J ug/l 11.5 U ug/l 10 U ug/l 10 1.4 J ug/l 18.9 J ug/l 13 J ug/l 16 J ug/l 200 11 J ug/l 19.0 L J Ug/l 3 U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 5 S U ug/l 19.0 U ug/l 19.0 U ug/l 19.0 U ug/l 19.0 U ug/l 19.0 U ug/l 3.4 J ug/l 2500 J ug/l 29.0 U ug/l 5000 2540 J ug/l 2.3 U ug/l 500 U ug/l 5000 2540 J ug/l 2.3 U ug/l 500 U ug/l 50 U ug/l 10.0 U ug/l 11.1 U ug/l 11.1 U ug/l 11.3 J ug/l 25 S S U ug/l 39.8 U ug/l 5.5 U ug/l 50 U ug/l 39.8 U ug/l 11.1 U ug/l 11.3 J ug/l 25 S S U ug/l 39.8 U ug/l 5.5 U ug/l 39.8 U ug/l 50 U ug/l 50 U ug/l 39.8 U ug/l 50 U ug/l 60 U ug/l 50 U ug/l 50 U ug/l 50 U ug/l 6	8.6 U ug/l 10 U ug/l 60 U ug/l 60 U ug/l 60 U ug/l 60

NAS WHITING D -- SITE 16 GROUNDWATER -- INORGANICS -- REPORT NO. 10502

	Lab Sample Number: Site Locator Collect Date:	RC016002 WHITING 16G00401 19-AUG-9 VALUE QUAL UNI	RC016003 WHITING 16G00402 19-AUG-96 VALUE QUAL UNITS	S DL	RB980020 WHITING 16G00403 16-AUG-96 VALUE QUAL UNITS	RB9800 WHITI 16G004 16-AUG VALUE QUAL U	NG 03D -96
CLP METALS AND CYANI Aluminum Antimony Arsenic Barlum Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	DE	52.8 U ug 10.7 U ug .6 J ug 59.4 J ug 12.5 ug 12.5 ug 12.5 ug 2.3 U ug 1.7 J ug 167 ug .5 U ug 8690 ug 65.4 ug 7.3 U ug 7.3 U ug 7.3 U ug 7.3 U ug 4790 J ug .6 U ug 2.5 U ug 3490 J ug .6 U ug 3.4 U ug 50.7 ug	34.1 U ug/1 8.6 U ug/1 .5 U ug/1 57.7 J ug/1 .3 U ug/1 1.2 U ug/1 8460 ug/1 2 U ug/1 1.4 J ug/1 57.5 J ug/1 .8 U ug/1 7 J ug/1 .1 U ug/1 7.3 U ug/1 316 U ug/1 3210 J ug/1 1.2 U ug/1 3210 J ug/1 1.2 U ug/1 381 ug/1 381 ug/1		278 ug/ 8.6 U ug/ 1 J ug/ 28.6 J ug/ .3 U ug/ 310 J ug/ 2.3 J ug/ 2.3 J ug/ 2.3 U ug/ 1.1 U ug/ 1370 ug/ 4 ug/ 1320 J ug/ 41.3 ug/ .1 U ug/ 7.3 U ug/ 540 J ug/ 540 J ug/ 2.5 U ug/ 2.5 U ug/ 2.5 U ug/ 2.5 U ug/ 2.2 J ug/ 103 ug/ 103 ug/	8.6 U .5 U 27.5 J .3 U 1.2 U 3300 J 2.9 J 2.3 U 1.3 J 879 2.7 J 987 J 33.5 .1 U 7.3 U 713 J 6 U 2.5 U 2590 J .6 U 1.2 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l

NAS WHITING FIELD -- SITE 16

GROUNDWATER	INORGANICS	REPORT NO.	10502

					NICS R						
	ample Number: Site Locator Collect Date: VALUE	RB980023 WHITING 16G00403F 16-AUG-96 QUAL UNITS	DL	WH 160 21-	016009 HITING G00501 -AUG-96 AL UNITS	DL		RC016013 WHITING 16G00501D 21-AUG-96 QUAL UNITS D	PL VALUE	RC016011 WHITING 16G00501F 21-AUG-96 QUAL UNITS	DL
CLP METALS AND CYANIDE Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide		128 J ug/1 8.6 U ug/1 7.5 J ug/1 7.5 J ug/1 7.5 J ug/1 1.2 U ug/1 680 J ug/1 2 U ug/1 2.3 U ug/1 2.3 U ug/1 2.3 U ug/1 3.3 ug/1 8.8 ug/1 230 J ug/1 8.8 ug/1 7.3 U ug/1 6.0 U ug/1		12.6 U 8.6 U .5 U 10 J .3 U 1.2 U 239 U 3.2 J 1.1 U 9.2 J .56 U 2.5 U 1550 U 1.2 U 2.6 U 1.5 U	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		16.7 8.6 5.5 10 .3 1.2 234 2.3 1.1 5.3 .5 261 2.1 7.3 316 6.2 5.1450 6.1.2	U ug/1 U ug/1	8. 1. 26. 2. 1. 1. 3. 7. 4. 2. 1. 2. 1. 1. 3. 7. 4. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	9 U ug/l 6 U ug/l 7 U ug/l 0 J ug/l 3 U ug/l 2 U ug/l 2 U ug/l 2 U ug/l 5 U ug/l 5 U ug/l 1 U ug/l 5 U ug/l 1 U ug/l 5 U ug/l 6 U ug/l 5 U ug/l 5 U ug/l 6 U ug/l 5 U ug/l 5 U ug/l 6 U ug/l 5 U ug/l 5 U ug/l 6 U ug/l 5 U ug/l 6 U ug/l 7 J ug/l 7 J ug/l 8 U ug/l 9 ug/l 9 ug/l 9 ug/l 9 ug/l 9 ug/l 9 ug/l	

NAS WHITING AD -- SITE 16

GROUNDWATER -- INORGANICS -- REPORT NO. 10502

QUAL UNITS

Lab	Sample	Number:
	·	Site
		incator

Collect Date:

RB980019 WHITING 16G00601 16-AUG-96

QUAL UNITS

VALUE

WTME340002 WHITING 16G00601 23-JUL-97

VALUE

DL

RB980022 WHITING 16G00601F 16-AUG-96 QUAL UNITS

DL

VALUE

VALUE

WSME340003 WHITING 16G00601F 23-JUL-97 QUAL UNITS

DL

C	LP	M	IE.	ſΑ	LS	,	٩N	ID.	C	٧,	٩N	11	JΕ	Š

Cyanide

LE MEINES MIND CIMITAL
Aluminum
Antimony
Arsenic
Barium
Beryllium
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
magnestulli
Manganese
Mercury
Nickel
Potassium
Selenium
Silver
Sodium
Thallium
Vanadium
Zinc

3040 ug/l 8.6 U ug/1 .8 J ug/l 300 ug/1 .3 U ug/1 2.2 J ug/1 61900 ug/1 2 0 ug/1 2.3 U ug/1 6.1 J ug/1 45200 ug/1 5.7 ug/1 3100 J ug/1 516 ug/1 .1 0 ug/1 7.3 U ug/1 2010 J ug/1 ug/1 2.5 U ug/1 1600 J ug/1 .6 U ug/1

ug/1

ug/1

uq/1

17.8 J

12

56.4

3930 ug/1 200 42.3 U ug/1 60 U 60 8.6 U ug/1 ug/1 10 U 10 .5 U ug/1 ug/1 200 251 456 ug/1 ug/1 5 U 5 .32 J ug/1 ug/1 5 U ug/1 1.2 U ug/1 74300 ug/1 5000 61900 ug/110 2 U ug/1 10 U ug/1 50 U ug/1 50 2.3 U ug/1 25 U 25 1.1 U ug/1 ug/1 100 1660 68600 ug/1 ug/l 3 U ug/1 3 .5 U ug/1 3680 J 5000 3110 J ug/l ug/1 1370 ug/1 15 425 ug/1 ug/1 . 2 .1 U .2 U ug/1 7.3 U 40 U ug/l 40 ug/1 ug/1 5000 2110 J 3030 J ug/1 .6 U 5 UJ ug/l 5 ug/1 10 U 10 2.5 U ug/1 ug/1 2730 J 5000 1650 J ug/l ug/1 10 U 10 .6 U ug/1 ug/1 2.2 J 50 25.2 J ug/l ug/1 49.1 ug/1 20 6.5 U ug/1 ug/1

200 200 U ug/1 124 ug/1 60 10 U ug/1 10 200 310 ug/1 5 10.3 ug/1 5 U ug/1 5 72800 ug/1 5000 10 U ug/1 10 50 50 U ug/1 25 25 U ug/1 656 100 ug/1 3 U ug/1 3 3680 J uq/1 5000 43.2 ug/1 15 .2 U .2 ug/1 40 U ug/1 40 3110 J ug/1 5000 5 UJ ug/1 10 U ug/1 10 2940 J ug/1 5000 10 U ug/1 10 50 50 U ug/1 20

ug/1

20 U

NAS WHITING FIELD -- SITE 16 GROUNDWATER -- INORGANICS -- REPORT NO. 10502

	Lab Sample Number: Site Locator Collect Date:	VALUE	RB980018 WHITING 16G00602 15-AUG-96 QUAL UNITS	DL	VALUE	WTME340004 WHITING 16G00602 23-JUL-97 QUAL UNITS	DL	VALUE	16G0 25-J	TING	DL;	10 21	ME348004 WHITING GG00701 5-JUL-97 JAL UNITS	DL
					_									
CLP METALS AND CYANID	E													
Aluminum		24			200) J ug/1	20	0 1	137 J	ug/1		161 J	ug/1	200
Antimony		8.	6 U ug/1)U ug/1			8.6 U	ug/1		60 U	ug/1	60
Arsenic			5 U ug/1) U ug/]		0	.5 U	ug/1		10 U	ug/1	10
Barium		17.			30.9		20	0 27	7.4 J	ug/l		32.9 J	ug/l	200
Beryllium	e y farai		3 U ug/1			5 U ug/		5	.3 U	ug/l		5 U	ug/1	5
Cadmium Calcium		174	2 U ug/1 0 J ug/1		1070	U ug/1	500		1.2 U 000	ug/1 ug/1		5 U 30500	ug/1	5000
Chromium	보는 해보면 보면 1905년 전 1		2 U ug/1) J ug/1) U ug/1		0 360	2 U	ug/1 ug/1		30300 10 U	ug/l ug/l	10
Cobalt			3 U ug/1) U ug/1			2.3 Ŭ	ug/1		50 U	ug/1	50
Copper			6 J ug/1			5 U ug/1			1.1 U	ug/]		25 Ŭ	ug/1	25
Iron		23	2 ug/1		100				328	ug/1		1770	ug/1	100
Lead			5 J ug/1		3	3-U ug/		3	.5 U	ug/1		3 U	ug/l	3
Magnesium			0 J ug/1		985		500		050 J	ug/1		2850 J	ug/1	5000
Manganese		70.			10.9				0.5 J	ug/1		1210	ug/1	15
Mercury	[Markety filt] The Markety file		1 U ug/l			2 U ug/]		2	.1 U	ug/]		.2 U	ug/l	. 2
Nickel Potassium			3 V ug/1 8 J ug/1		5000 5000) U ug/:	500		8.7 J 470 J	ug/1		40 U	ug/1	40 5000
Selenium			8 J ug/1 6 U ug/1)U ug/ 5U ug/		, o	470 J .6 U	ug/1		2850 J 5 U	ug/l J ug/l	5000 E
Silver		2	50 ug/1) U ug/		0 /	2.5 U	ug/1 ug/1		10 U	ug/1 ug/1	10
Sodium		368	0 J ug/1		2720			0 6	210	ug/1		7490	ug/1	5000
Thallium			6 U ug/1	*) U ug/1		0	.6 U	ug/1		10 U		10
Vanadium		1.	5 J ug/1) U ug/	į		1.3 J	ug/1		50 U	ug/1	50
Zinc		21	0 ug/1		20)U ug/		<u>'</u> 0	1.2 U	ug/1		20 U	ug/1	20
Cyanide		3.	5 U ug/1		-	-			4.5 U	ug/1		-		

NAS WHITING GROUNDWATER -- INORGANICS -- REPORT NO. 10502

∠D -- SITE 16

WTME348003 WHITING 16G00703 25-JUL-97 QUAL UNITS RB887016 WHITING 16G00702 WTME348002 WHITING 16G00702 RB887017 WHITING 16G00703 Lab Sample Number: Site Locator 25-JUL-96 QUAL UNITS 25-JUL-96 QUAL UNITS 25-JUL-97 Collect Date: QUAL UNITS VALUE VALUE DL VALUE **VALUE**

CLP METALS AND CYANIDE				1948) 1943)					
Aluminum	72.3 J ug/1	202	ug/l	200	196 J	ug/1	200 U	ug/1	200
Antimony	8.6 U ug/1	60 U	ug/l	60	8.6 U	ug/1	60 U	ug/l	60
Arsenic	.5 U ug/1	10 U	ug/l	10	2 J	ug/1	3.6 J	ug/1	10
Barium	15.6 J ug/l	17.1 J	ug/1	200	10.8 J	ug/1	16.6 J	ug/1	200
Beryllium	.3 U ug/1	5 U	ug/1	5	.3 U	ug/1	5 U	ug/l	5
Cadmi um	1.2 U ug/l	5 U	ug/1	5	1.2 U	ug/1	5 U	ug/1	5
Calcium	1960 J ug/1	1210 J	ug/1	5000	2510 J	ug/l	3080 J	ug/1	5000
Chromium	2 U ug/1	10 U	ug/1	10	2 U	ug/1	10 U	ug/1	10
Cobalt	2.3 U ug/1	50 U	ug/1	50	2.3 U	ug/1	50 U	ug/l	50
Copper	1.1 U ug/1	25 U	ug/l	25	1.1 U	ug/1	25 U	ug/1	25
Iron	201 ug/1	526	ug/l	100	151	ug/1	1200	ug/1	100
Lead	.6 U ug/1	3 U	- ug/1	3	.8 U	ug/1	3 U	ug/1	3
Magnesium	612 J ug/l	673 J	ug/l	5000	496 J	ug/1	818 J	ug/1	5000
Manganese	85 ug/1	34.3	ug/l	15	102	ug/1	170	ug/l	15
Mercury	.1 U ug/1	.2 U	ug/l	.2	.1 U	uǧ/1	.2 U	ug/1	. 2
Nickel	7.3 U ug/1	40 U	ug/l	40	7.3 U	ug/1	8.2 J	ug/1	40
Potassium	316 U ug/1	5000 U	ug/l	5000	930 J	ug/1	5000 U	ug/l	5000
Selenium	.6 U ug/1	5 U	ug/1	5	.6 U	ug/1	5 U	ug/1	5
Silver	2.5 U ug/1	10 U	ug/1	10	2,5 0	ug/1	10 U	ug/1	10
Sodium	4100 J ug/l	3880 J	ug/l	5000	18500	ug/1	2680 J	ug/l	5000
Thallium	.6 U ug/1	10 UJ	ug/l	10	.6 U	ug/1	10 U	ug/1	10
Vanadium	1.2 U ug/1	50 U	ug/l	50	1.2 U	ug/1	50 U	ug/1	50
Zinc	2.8 U ug/l	20 U	ug/l	20	2.8 U	ug/1	20 U	ug/1	20
Cyanide	5.2 U ug/1	-		0000.00 000000 000000	2,6 U	ug/1	-		
				Passion			Augugggg		

APPENDIX G HUMAN HEALTH RISK DATA

Table G-1 Screening Concentrations for Surface Soil for Selection of Chemicals of Potential Concern

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Chemical	Risk Based Screening Concentration ¹	Florida Cleanup Target Level ²	Florida Cleanup Target Level Based on Leaching	Selected Screening Concentration ³
Volatile Organic Compound	<u>ls</u> (µg/kg)			
Toluene	1,600,000	380,000	500	380,000
Xylenes (total)	16,000,000	5,900,000	200	5,900,000
<u>Semivolatile Organic Comp</u>	ounds (µg/kg)			
Anthracene	2,300,000	18,000,000	2,500,000	2,300,000
Benzo(a)anthracene	870	1,400	3,200	870
Benzo(a)pyrene	87	100	8,000	87
Benzo(b)fluoranthene	870	1,400	10,000	870
Benzo(g,h,i)perylene	⁴ 230,000	2,300	3,200,000	2,300
Benzo(k)fluoranthene	8,700	15,000	25,000	8,700
bis(2-Ethylhexyl)phthalate	46,000	76,000	3,600,000	46,000
Carbazole	32,000	53,000	600	32,000
Chrysene	87,000	140,000	77,000	87,000
Dibenz(a,h)anthracene	87	100	30,000	87
Fluoranthene	310,000	2,900,000	1,200,000	310,000
Indeno(1,2,3-c,d)pyrene	870	1,500	28,000	870
Phenanthrene	4230,000	2,000,000	250,000	230,000
Pyrene	230,000	2,200,000	880,000	230,000
Pesticides and PCBs (µg/kg	g)			
4,4'-DDD	2,700	4,600	4,000	2,700
4,4'-DDE	1,900	3,300	18,000	1,900
4,4'-DDT	1,900	3,300	11,000	1,900
Arocior-1254	320	⁵ 500	⁵ 17,000	320
Aroclor-1260	⁵ 320	⁵500	⁵ 17,000	320

Table G-1 (Continued) Screening Concentrations for Surface Soil for Selection of Chemicals of Potential Concern

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Chemical	Risk Based Screening Concentration ¹	Florida Cleanup Target Level ²	Florida Cleanup Target Level Based on Leaching	Selected Screening Concentration ³
Pesticides and PCBs (µg/kg) (Continued)			
Dieldrin	40	70	4	40
alpha-Chlordane	⁶ 1,800	⁶ 3,100	⁶ 9,600	1,800
gamma-Chlordane	⁶ 1,800	⁶ 3,100	⁶ 9,600	1,800
Inorganic Analytes (mg/kg)				
Aluminum	7,800	72,000	NC	7,800
Antimony	3.1	26	5	3.1
Arsenic	⁷ 0.43	8.0	29	0.43
Barium	550	110	1,600	110
Beryllium	16	120	63	16
Cadmium	3.9	75	8	3.9
Calcium	⁸ 1,000,000	NSC	NC	1,000,000
Chromium	⁹ 23	⁹ 210	38	23
Cobalt	470	4,700	NC	470
Copper	310	110	NC	110
Cyanide	¹⁰ 160	30	NC	30
Iron	2,300	23,000	NC	2,300
Lead	11400	400	NC	400
Magnesium	⁸ 460,468	NSC	NC	460,468
Manganese	160	1,600	NC	160
Mercury	2.3	3.4	2.1	2.3
Nickel	160	110	130	110
Potassium	°1,000,000	NSC	NC	1,000,000
Selenium	39	390	5	39
Silver	39	390	17	39

Table G-1 (Continued) Screening Concentrations for Surface Soil for Selection of Chemicals of Potential Concern

BREELER PROPERTY

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Chemical	Risk Based Screening Concentration ¹	Florida Cleanup Target Level ²	Florida Cleanup Target Level based on Leaching	Selected Screening Concentration ³
Inorganic Analytes (mg/	(kg) (Continued)			
Sodium	81,000,000	NSC	NC	1,000,000
Thallium	¹² 5.5	NSC	NC	5.5
Vanadium	55	15	980	15
Zinc	2,300	23,000	6,000	2,300

¹ For all chemicals except the essential nutrients, the U.S. Environmental Protection Agency Region III Risk Based concentration (RBC) Table for residential soil (October 1998) has been used, unless otherwise noted. Screening values are based on a cancer risk of 1×10^6 or a hazard quotient of 1.0. Noncarcinogenic RBCs have been adjusted to reflect a target hazard quotient of 0.1.

² Florida Department of Environmental Protection (FDEP) Cleanup Target Levels, Chapter 62-777, Florida Administrative Code (FDEP, 1999).

RBC value for pyrene is used as a surrogate.

Value for PCBs is used as a surrogate.

General value for chlordane is used.

RBC value is based on arsenic as a carcinogen.

Essential nutrient screening value (see General Information Report).

RBC and Florida Cleanup Target Level values are based on Chromium VI.

¹⁰ RBC value is based on hydrogen cyanide.

11 RBC is not available for lead; value is from Revised Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites (OSWER Directive 9355.4-12).

12 RBC value is based on thallium sulfate.

Notes: $\mu g/kg = micrograms per kilogram$.

PCB = polychlorinated biphenyl.

DDD = dichlorodiphenyldichloroethane.

DDE = dichlorodiphenyldichloroethene. DDT = dichlorodiphenyltrichloroethane.

NC = not calculated, per FDEP, 1996

mg/kg = milligrams per kilogram.

NSC = no screening criteria available.

The selected screening concentration for the human health risk assessment is the lowest value of the RBC and the Florida Cleanup Target Level. For analytes that are selected as a human health chemical of potential concern in groundwater, then the Florida Soil Cleanup Target Level based on leaching is selected as the screening concentration.

Table G-2 Screening Concentrations for Subsurface Soil for Selection of Chemicals of Potential Concern

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Analyte	Risk Based Screening Concentration ¹	Florida Cleanup Target Level ²	Florida Cleanup Target Level based on Leaching ²	Selected Screening Concentration ³
Volatile Organic Compounds	(µg/kg)			
Acetone	20,000,000	5,500,000	2,800	5,500,000
2-Butanone	120,000,000	21,000,000	17,000	21,000,000
Carbon Disulfide	20,000,000	1,400,000	5,600	1,400,000
Ethylbenzene	20,000,000	8,400,000	600	8,400,000
Methylene chloride	760,000	23,000	20	23,000
Toluene	41,000,000	2,600,000	500	2,600,000
Xylenes (total)	410,000,000	40,000,000	200	40,000,000
Semivolatile Organic Compo	ounds (µg/kg)			a tribayeseed a garagest in
2-Methylnaphthalene	4,100,000	560,000	6,100	560,000
Acenaphthene	12,000,000	18,000,000	2,100	12,000,000
Benzo(a)pyrene	780	500	8,000	. 500
Benzo(b)fluoranthene	7,800	4,800	10,000	4,800
Benzo(k)fluoranthene	78,000	52,000	25,000	52,000
Fluoranthene	8,200,000	48,000,000	1,200,000	8,200,000
Fluorene	8,200,000	28,000,000	160,000	8,200,000
Naphthalene	4,100,000	270,000	1,700	270,000
Phenanthrene	4 6,100,000	30,000,000	250,000	6,100,000
Pyrene	6,100,000	37,000,000	880,000	6,100,000
bis(2-Ethylhexyl)phthalate	410,000	280,000	3,600,000	280,000
Pesticides (µg/kg)	•			
4,4'-DDD	24,000	18,000	4,000	18,000
4,4'-DDE	17,000	13,000	18,000	13,000
4,4'-DDT	17,000	13,000	11,000	11,000
Dieldrin	360	300	4	300
Inorganic Analytes (mg/kg)				
Aluminum	200,000	NSC	NC	200,000
Antimony	82	240	5	82
Arsenic	⁵ 3.8	3.7	29	3.7
Barium	14,000	87,000	1,600	14,000
Beryllium	410	800	63	410

Table G-2 (Continued) Screening Concentrations for Subsurface Soil for Selection of Chemicals of Potential Concern

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

		Willton, Florida		
Analyte	Risk Based Screening Concentration ¹	Florida Cleanup Target Level ²	Florida Cleanup Target Level Based on Leaching ²	Selected Screening Concentration ³
Inorganic Analytes (mg/	kg) (Continued)			
Cadmium	100	1,300	8	100
Calcium	⁶ 1,000,000	NSC	NC	1,000,000
Chromium	⁷ 610	⁷ 400	38	400
Cobalt	12,000	110,000	NC	12,000
Copper	8,200	76,000	NC	8,200
Cyanide	4,100	28,000	NC	4,100
Iron	61,000	480,000	NC	61,000
Lead	⁸ 400	920	NC ·	400
Magnesium	⁶ 460,468	NSC	NC	460,468
Manganese	4,100	22,000	NC ·	4,100
Mercury	61	26	2.1	26
Nickel	4,100	28,000	130	4,100
Potassium	⁶ 1,000,000	NSC	NC	1,000,000
Silver	1,000	9,100	17	1,000
Sodium	61,000,000	NSC	NC	1,000,000
Vanadium	1,400	7,400	980	1,400
Zinc	61,000	560,000	6,000	61,000

 $^{^1}$ For all chemicals except the essential nutrients, the U.S. Environmental Protection Agency Region III Risk Based Concentration (RBC) Table for industrial soil (October 1998) has been used, unless otherwise noted. Screening values are based on a cancer risk of 1×10^{-6} or a hazard quotient of 1.0. Noncarcinogenic RBCs have been adjusted to reflect a target hazard quotient of 0.1.

Notes: $\mu g/kg = micrograms per kilogram$.

NSC = no screening criteria available.

DDD = dichlorodiphenyldichloroethane.

DDE = dichlorodiphenyldichloroethene.

DDT = dichlorodiphenyltrichloroethane.

mg/kg = milligrams per kilogram.

NC = not calculated, per FDEP, 1996.

² Florida Department of Environmental Protection (FDEP) Cleanup Target Levels, Chapter 62-777, Florida Administrative Code (FDEP, 1999).

³ The selected screening concentration for the human health risk assessment is the lowest value of the RBC and the Florida Cleanup Target Level. Only when an analyte was selected as a HHCPC in groundwater, then the Florida Soil Cleanup Target Level based on Leaching.

⁴ RBC value for pyrene is used as a surrogate.

⁵ RBC value is based on arsenic as a carcinogen.

⁶ Essential nutrient screening value (see General Information Report).

⁷ RBC and Florida Cleanup Target Level values are based on Chromium VI.

⁸ RBC is not available for lead; value is from Revised Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites (OSWER Directive 9355.4-12).

Table G-3 Screening Concentrations for Groundwater For Selection of Chemicals of Potential Concern

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Chemical	Risk-Based Screening Concentration ¹	Federal MCL ²	Florida Groundwater Cleanup Target Level ³	Selected Screening Concentration⁴
Volatile Organic Compounds (µg/L	!)			
1,2-Dichloroethane	0.12	. 5	. 3	0.21
1,2-Dichloroethene (total)	5.5	⁵70	⁵70	5.5
Benzene	0.36	5	1	0.36
Chloroform	0.15	⁶ 0.08	[5.7]	0.08
Ethylbenzene	. 130	700	30	130
Toluene	75	1,000	40	75
Trichloroethene	1.6	5	3	1.6
Xylenes (total)	1,200	10,000	20	1,200
Semivolatile Organic Compounds	(μg/ t)			
Naphthalene	150	NSC	[20]	20
Phenol	2,200	NSC	[10]	10
bis(2-Ethylhexyl)phthalate	4.8	6	6	4.8
Pesticides and PCBs (µg/1)				
4,4'-DDT	0.2	NSC	[0.1]	0.1
Inorganic Analytes (µg/ℓ)				
Aluminum	3,700	(50-200)	(200)	50
Antimony	1.5	6	6	1.5
Arsenic	⁷ 0.045	50	50	0.045
Barium	260	2,000	2,000	260
Beryllium	0.016	4	4	0.016
Cadmium	1.8	5	5	1.8
Calcium	⁸ 1,055,398	NSC	NSC	1,055,398
Chromium	⁹ 18	100	100	18
Cobalt	220	NSC	420	220
Copper	13,000	¹⁰ 1,300 (1,000)	(1,000)	1,000
Cyanide	¹¹ 73	200	200	73
Iron	1,100	(300)	(300)	300
Lead	NSC	¹² 15	15	15
Magnesium	⁸ 118,807	NSC	NSC	118,807
Manganese	84	(50)	(50)	50
Nickel	73	100	100	73
Potassium	⁸ 297,016	NSC	NSC	297,016

Table G-3 Continued) Screening Concentrations for Groundwater For Selection of Chemicals of Potential Concern

Color of Course Belleville Color

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Chemical	Risk-Based Screening Concentration ¹	Federal MCL ²	Florida Groundwater Cleanup Target Level Concentration ³	Selected Screening Concentration⁴
Inorganic Analytes (µg/1) (Continue	d)			
Sodium	⁸ 396,022	NSC	160,000	160,000
Vanadium	26	NSC	[49]	26
Zinc	1,100	(5,000)	(5,000)	1,100

¹ For all chemicals except the essential nutrients, the U.S. Environmental Protection Agency (USEPA) Region III RBC Table for tap water (October 1998) has been used. Screening values are based on a cancer risk of 1 × 10⁻⁶ and a hazard quotient of 1. Per USEPA Region IV Guidance (USEPA, 1995), the noncarcinogenic Risk Based Concentration (RBCs) have been adjusted to reflect a target hazard quotient of 0.1.

² Federal MCLs are taken from USEPA Drinking Water Regulations and Health Advisories from October 1996. Primary MCLs have no marks, Secondary MCLs are indicated by parentheses (), and Federal maximum contaminant level goals (MCLGs) are indicated by brackets []. The lowest of these nonzero values is presented.

Florida Department of Environmental Protection Cleanup Target Levels, Chapter 62-777, Florida Administrative Code (FDEP, 1999). Primary Standards have no marks, Secondary Standards are indicated by parentheses (), and other criteria (i.e., carcinogen, organoleptic, or a systemic toxicant) are indicated by brackets [].

⁴ The selected screening concentration for the human health risk assessment is the lowest value of the RBC, Federal MCL value, and Florida Cleanup Target Level values.

MCL and Florida Cleanup Target Level values are based on the cis-1,2-dichloroethene isomer.

⁶ 1994 Proposed rule for Disinfectants and Disinfection By-Products: Total for all THMs combined cannot exceed 0.08 level.

⁷ RBC value is based on arsenic as a carcinogen.

Essential nutrient screening value (see GIR Appendix C) (HLA, 1998).

9 RBC and Florida Cleanup Target Level based on Chromium VI.

¹⁰ Treatment technology action level for copper in drinking water distribution system (USEPA Drinking Water Standards and Health Advisories October 1996).

11 RBC value is based on hydrogen cyanide.

¹² Treatment technology action level for lead in drinking water (USEPA Drinking Water Standards and Health Advisories, October 1996).

Notes: MCL = maximum contaminant level.

PCB = polychlorinated biphenyl.

 $\mu g/\ell = micrograms per liter.$

DDT = dichlorodiphenyltrichloroethane.

NSC = not presented in available guidance.

Table G-4 Screening Concentrations for Surface Water for Selection of Chemicals of Potential Concern

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Chemical	Risk-Based Screening Concentration ¹	Region IV Water Quality Standards ²	Florida Surface Water Cleanup Target Levels ³	Selected Screening Concentration ⁴
Inorganic Analytes (µg/ℓ)				
Aluminum	3,700	NSC	13	13
Barium	260	2,000	NSC	2,000
Beryllium	0.016	NSC	0.13	0.13
Calcium	⁵ 1,055,398	NSC	NSC	1,055,398
Iron	1,100	300	1,000	300
Lead	⁶ 15	NSC	NSC	15
Magnesium	⁵118,807	NSC	NSC	118,807
Manganese	84	50	NSC	50
Potassium	⁵ 297,016	NSC	NSC	297,016
Sodium	⁵ 396,022	NSC	NSC	396,022
Zinc	1,100	NSC	NSC	1,100

¹ For all chemicals except the essential nutrients, the U.S. Environmental Protection Agency (USEPA) Region III RBC Table for tap water (October 22, 1997) has been used. Screening values are based on a cancer risk of 1 × 10⁻⁶ and a hazard quotient of 1. Per USEPA Region IV Guidance (USEPA, 1995), the noncarcinogenic Risk Based Concentrations (RBCs) have been adjusted to reflect a target hazard quotient of 0.1.

Notes: $\mu g/\ell = micrograms per liter$.

NSC = not screening concentration.

RBC = USEPA Region III Risk Based Concentration.

² Region IV Water Quality Standards for human health criteria (water and organism consumption), January 26, 1996.

³ Florida Surface Water Cleanup Target Levels (fresh water), Florida Department of Environmental Protection, 1999.

⁴ The selected screening concentration for the human health risk assessment is the lesser of the Region IV Water Quality Standard or Florida Surface Water Cleanup Target Levels. If no surface water quality standards are available then the Region III RBC for tap water was used.

⁵ Essential nutrient screening value (see GIR HLA, 1998).

⁶ Treatment technology action level for lead in drinking water (USEPA Drinking Water Standards and Health Advisories, May 1996).

9

Table G-5 Oral Dose-Response Data for Carcinogenic Effects

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

				wiiton, Florida			
Chemical	Weight of Evidence	Oral Slope Factor (mg/kg/day) (-1)	Source	Test Species	Exposure Route	Tumor Type	Study Source
Volatile Organic Compound	ls						
1,2-Dichloroethane	B2	9.1e-02	IRIS	Rat	Oral-gavage	Hemangiosarcomas	IRIS
1,2-Dichloroethene (total)	D.	ND					
Benzene	\mathbf{A}^{-}	2.9e-02	IRIS	Human	Occupational	Leukemia	IRIS
Chloroform	B2	6.1e-03	IRIS	Rat	Oral-drinking water	Kidney	IRIS
Trichloroethene	B2	1.1e-02	HEAST				HEAST
Semivolatile Organic Comp	ounds						
Benzo(a)anthracene	B2	7.3	(1)				
Benzo(a)pyrene	B2	7.3	IRIS	Mouse	Oral-diet	Forestomach	IRIS
Benzo(b)fluoranthene	B2	7.3	(1)				
Benzo(k)fluoranthene	B2	7.3	(1)				
Carbazole	B2	2.0e-02	HEAST	Mouse	Oral-diet	Liver	IRIS
Chrysene	B2	7.3	(1)				
Dibenz(a,h)anthracene	B2	7.3	(1)				
Indeno (1,2,3-cd) pyrene	B2	7.3	(1)				
Pesticides and PCBs							
Dieldrin	B2	1.6e+01	IRIS	Mouse	Oral-diet	Liver	IRIS
See notes at end of table							

Table G-5 (Continued) Oral Dose-Response Data for Carcinogenic Effects

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Chemical	Weight of Evidence	Oral Slope Factor (mg/kg/day) (-1)	Source	Test Species	Exposure Route	Tumor Type	Study Source
Inorganic Analytes							
Aluminum	D	NE					
Antimony	D	NE				•	
Arsenic	Α	1.5e + 00	IRIS	Human	Oral-drinking water	Skin	IRIS
Barium	D	NE					
Beryllium							
Cadmium	D	NE					
Iron	D	NE					
Lead	D	NE					
Manganese	D	NE					

- 1) Relative potency factors (USEPA, 1993) have been applied to the ingestion slope factor for benzo(a)pyrene for all PAHs classified as A or B carcinogens.
- (2) The ingestion slope factor for PCBs.

Notes: Integrated Risk Information System (IRIS) on-line database search, current as of February 1998.

Health Effects Assessment Summary Tables (HEAST), current as of July 1997.

Weight of Evidence (route-specific):

A = Human carcinogen

B = Probable human carcinogen (B1 = limited human evidence; B2 = sufficient human evidence)

C = Possible human carcinogen

D = Not classifiable as to human carcinogenicity

mg/kg-day = milligrams per kilogram per day.

IRIS = Integrated Risk Information System.

HEAST = Health Effects Assessment Summary Tables.

PCB = polychlorinated biphenyl.

NE = not evaluated.

Table G-6 Inhalation Dose-Response Data for Carcinogenic Effects

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

		·		Milton, Flo	rida				
Chemical	Weight of Evidence	Inhalation Slope Factor (mg/kg/day)(-1)	Source	Inhalation Unit Risk (µg/m³)(-1)	Source	Test Species	Exposure Route	Tumor Type	Study Source
Volatile Organic Compou	ınds								
1,2-Dichloroethane	B2	9.1e-02	IRIS	2.6e-05	IRIS	Rat	Oral-gavage	Hemangiosacrcomas	
1,2-Dichlroethene (total)	D								
Benzene	Α	2.9e-02	IRIS	8.3e-06	IRIS	Human	Inhalation	Leukemia	IRIS
Chloroform	B2	8.1e-02	IRIS	2.3E-05	IRIS	Mouse	Oral-gavage	Liver	IRIS
Trichloroethene	D	NE		NE					
Semivolatile Organic Cor	npounds								
Benzo (a) anthracene	B2	3.1	Region 4, Guidance	0.88	Region 4, Guidance				
Benzo(a)pyrene	B2	3.1	Region 4, Guidance	0.88	Region 4, Guidance				
Benzo(b)fluoranthene	B2	3.1	Region 4, Guidance	0.88	Region 4, Guidance				
Benzo(k)fluoranthene	B2	3.1	Region 4, Guidance	0.88	Region 4, Guidance				
Carbazole	В	ND							IRIS
Chrysene	B2	3.1	Region 4, Guidance	0.88	Region 4, Guidance				
Dibenz(a,h)anthracene	B2	3.1	Region 4, Guidance	0.88	Region 4, Guidance				
Indeno(1,2,3-cd)pyrene	B2	3.1	Region 4, Guidance	0.88	Region 4, Guidance				
See notes at end of table									

Table G-6 (Continued) Inhalation Dose-Response Data for Carcinogenic Effects

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

				Wilton, Flori	iuu .				
Chemical	Weight of Evidence	Inhalation Slope Factor (mg/kg/day)(-1)	Source	Inhalation Unit Risk (µg/m³)(-1)	Source	Test Species	Exposure Route	Tumor Type	Study Source
Pesticides and PCBs									
Dieldrin	B2	NE		NE					
Inorganic Analytes									
Aluminum	D	NE		NE					
Antimony	D	NE							
Arsenic	Α	15.	IRIS	4.3e-03	IRIS	Human	Inhalation	Lung	IRIS
Barium	ND								
Beryllium	B2	8.4e+00	IRIS	2.4e-03	IRIS	Human	Inhalation	Lung	IRIS
Cadmium	A	4.1e+01	HEAST	1.2e-02	IRIS	Human	Inhalation	Lung	IRIS
Iron	D	NE		NE					
Lead	B2	ND	IRIS	ND	IRIS				
Manganese	D	NE ·		NE					

Notes: NE = Not Evaluated

Integrated Risk Information System (IRIS) on-line database search, current as of November 1997. Health Effects Assessment Summary Tables (HEAST), current as of November 1995.

Weight of Evidence (route-specific):

- A = Human carcinogen
- B = Probable human carcinogen (B1 = limited human evidence; B2 = sufficient human evidence)
- C = Possible human carcinogen
- D = Not classifiable as to human carcinogenicity

mg/kg-day = milligrams per kilogram per day. $(\mu g/m^3)^{-1}$ = micrograms per cubic meter to the minus 1.

IRIS = Integrated Risk Information System.

NE = not evaluated.

PCB = polychlorinated biphenyl.

HEAST = Health Effects Assessment Summary Tables.

Table G-7 Dermal Dose-Response Data for Carcinogenic Effects

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

Compound	Weight of Evidence	Oral Slope Factor (mg/kg-day)-1	Oral Absorption Efficiency	Source/ Reference	Dermal Slope Factor (mg/kg-day)-1
Volatile Organic Compounds					
1,2-Dichloroethane	B2	9.1e-02	100%	Reitz et al., 1980	9.1e-02
1,2-dichloroethene	D	NE			
[.] Benzene	Α	2.9e-02	(1)		2.9e-02
Chloroform	B2	6.1e-03	100%	Brown et al., 1974	6.1e-03
Trichloroethene	В	1.1e-02	100%	Prout et al., 1985	1.1e-02
Semivolatile Organic Compounds					
Benzo(a)anthracene	B2	7.3e+00	91%	(1)/(2)	8.0e + 00
Benzo(a)pyrene	B2	7.3e+00	91%	IRIS / Hecht et al., 1979	8.0e + 00
Benzo(b)fluoranthene	B2	7.3e+00	91%	(1)/(2)	8.0e + 00
Benzo(k)fluoranthene	B2	7.3e+00	91%	(1)/(2)	8.0e+00
Carbazole	B2	2.0e-02	50 %	USEPA, 1995	4.0e-02
Chrysene	B2	7.3e+00	91%	(1)/(2)	8.0e + 00
Dibenz (a,h) anthracene	B2	7.3e + 00	91%	(1)/(2)	8.0e + 00
ndeno (1,2,3-cd) pyrene	B2	7.3e+00	91%	(1)/(2)	8.0e + 00
Pesticides and PCBs					
Dieldrin -	B2	1.6e + 01	80%	3%	2.0e+01
norganic Analytes					
Numinum	D	NE	•		NE ·
Antimony	D	NE			
See notes at end of table		*			

Table G-7 (Continued) Dermal Dose-Response Data for Carcinogenic Effects

Remedial Investigation Report
Site 16, Open Disposal and Burning Area
Naval Air Station Whiting Field
Milton, Florida

Compound	Weight of Evidence	Oral Slope Factor (mg/kg-day)-1	Oral Absorption Efficiency	Source/ Reference	Dermal Slope Factor (mg/kg-day)-1
Inorganic Analytes (Continued)					
Arsenic	Α	1.5e+00	98%	Vahter, 1983	1.5e+00
Barium	D	NE			NE
Beryllium	B2	4.3e + 00	1%	Owen, 1990	4.3e+02
Cadmium	D	NE			
Iron	D	NE			NE
Lead	D	NE			NE
Manganese	D	NE			NE

- (1) Toxicity value of benzo(a)pyrene used as a surrogate.
- (2) The oral absorption efficiency of all PAHs is assumed to be identical to that of benzo(a)pyrene, based on structural analogy.
- (3) The ingestion slope factor for PCBs.

Notes: For documentation concerning oral slope factors, refer to Table 1.

Weight of Evidence (route-specific):

- A = Human carcinogen
- B = Probable human carcinogen (B1 = limited human evidence; B2 = sufficient human evidence)
- C = Possible human carcinogen
- D = Not classifiable as to human carcinogenicity.

mg/kg-day = milligrams per kilogram per day.

mg/kg-day = milligrams per kilogram per day.

% = percent.

NE = not evaluated.

IRIS = Integrated Risk Information System.

PCB = polychlorinated biphenyl.

Table G-8 Oral Dose-Response Data for Noncarcinogenic Effects

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

• ,					Milton, Florida	_				
	Chroni	С	Subchro	nic		Confidence		Test	Uncertainty	Study
Chemical	Oral RfD (mg/kg-day)	Source	Oral RfD (mg/kg-day)	Source	Study Type	Level	Critical Effect	Animal	Factor	Source
Volatile Organic Compou	nds_									
1,2-Dichloroethane	3.0e-01	NČEA	ND							
1,2-Dichloroethene (total)	9.0e-03	HEAST	9.0e-03	HEAST	Oral-drinking water	ND	Liver lesions	Rat	1,000	HEAST
Benzene	3.0e-04	IRIS	ND		Oral-gavage	Low	Increased liver and kidney weights	Rat	1,000 H,A,S	IRIS
Chloroform	1.0e-02	IRIS	1.0e-02		Oral-capsule	Medium	Fatty cyst formation in liver	Dog	1,000 H,A,S	IRIS
Trichloroethene	6.0e-03		ND							NCEA
Semivolatile Organic Con	pounds						•			
Benzo(a)anthracene	ND		ND							
Benzo(a)pyrene	ND		ND							
Benzo(b)fluoranthene	ND		ND							
Benzo(k)fluoranthene	ND		ND							
Carbazole	ND		ND							
Chrysene	ND		ND							
Dibenz(a,h)anthracene	ND		ND							
Indeno(1,2,3-cd)pyrene	ND		ND							
Pesticides and PCBs		*								
Dieldrin	2.0e-05	IRIS	5.0e-05	HEAST	Oral-capsule	Medium	Immunological and clinical effects	Monkey	300 H,A,S,L	IRIS
Inorganic Analytes										
Aluminum	1.0e + 00	(1)	ND							
Antimony	4.0e-04	IRIS	4.0e-04	HEAST	Oral-drinking water	Low	Reduced lifespan	Rat	1,000 H,A,L	IRIS

製造され

Table G-8 (Continued) Oral Dose-Response Data for Noncarcinogenic Effects

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

	Chroni	С	Subchro	nic		064		T4		044
Chemical	Oral RfD (mg/kg-day)	Source	Oral RfD (mg/kg-day)	Source	Study Type	Confidence Level	Critical Effect	Test Animal	Uncertainty Factor	Study Source
Inorganic Analytes (C	ontinued)									
Arsenic	3.0e-04	IRIS	3.0e-04	HEAST	Oral-drinking water	Medium	Hyperpigmentation, keratosis	Human	3 D	IRIS
Barium	7.0e-02	IRIS	7.0e-02	IRIS	Oral-drinking water	Medium	Increased blood pressure	Human	3 H	IRIS
Beryllium	5.0e-03	IRIS	5.0e-03	IRIS	Oral-drinking water	Rat	No effects observed	Rat	100 H, A	IRIS
Cadmium	1.0e-03	IRIS	ND		Oral-diet	Human	Proteinuria	Human	10 H	IRIS
Iron	3.0e-01	(1)	ND							
Lead	ND		ND				•	,		
Manganese	4.7e-02	IRIS	ND		Oral-diet	Medium	No effects observed	Human	1,1 M	IRIS

¹ This value was provided by the Environmental Criteria and Assessment Office (ECAO) of the USEPA in response to a specific request.

Notes: IRIS on-line database search, current as of November 1997.

HEAST, current as of November 1995.

Environmental Criteria and Assessment Office (ECAO) of the USEPA in response to a specific request.

Uncertainty factors:

H = Variation in human sensitivity

A = Animal to human extrapolation

S = Extrapolation from subchronic to chronic NOAEL

L = Extrapolation from LOAEL to NOAEL

D = Inadequate data

M = Modifying factor

RfD = reference dose.

HEAST = Health Effects Assessment Summary Tables.

mg/kg-day = milligrams per kilogram per day.

IRIS = Integrated Risk Information System.

NCEA = ?.

PCB = polychlorinated biphenyl.

ND = no data.

² Value for pyrene was used as surrogate for total petroleum hydrocarbons.

Table G-9 Inhalation Dose-Response Data for Noncarcinogenic Effects

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

				Milto	n, Florida					
	Chr	onic	Subc	hronic	Chindin	Confidence		Tool	Unandalah	Ca., d.,
Chemical	RfC (µg/m³)	Source	RfC (µg/m³)	Source	Study Type	Confidence Level	Critical Effect	Test Animal	Uncertainty Factor	Study Source
Volatile Organic Compound	ds									
1,2-Dichloroethane	ND		ND							
1,2-Dichloroethene (total)	ND		ND							
Benzene	ND		ND							
Chloroform	ND		ND							
Trichloroethene	ND		ND							
Semivolatile Organic Comp	ounds									
Benzo(a)anthracene	ND		ND							
Benzo(a)pyrene	ND		ND							
Benzo(b)fluoranthene	ND		ND .							
Benzo(k)fluoranthene	ND		ND							
Carbazole	ND		ND							
Chrysene	ND		ND							
Dibenz(a,h)anthracene	ND		ND							
Indeno(1,2,3-cd)pyrene	ND		ND							
Pesticides and PCBs										
Dieldrin	ND		ND							
See notes at end of table										

Table G-9 (Continued) Inhalation Dose-Response Data for Noncarcinogenic Effects

Remedial Investigation Report Site 16, Open Disposal and Burning Area Naval Air Station Whiting Field Milton, Florida

	Chr	onic	Subc	hronic	Ctualu	Confidence		Tool	l la a a maia ta ta	C4
Chemical	RfC (µg/m³)	Source	RfC (µg/m³)	Source	Study Type	Confidence Level	Critical Effect	Test Animal	Uncertainty Factor	Study Source
Inorganic Analytes								·		
Aluminum	ND		ND							
Antimony	ND		ND							
Arsenic	ND		ND							
Barium	ND		ND							
Beryllium	ND		ND							
Cadmium	ND		ND							
Iron	ND		ND							
Lead	ND		ND							
Manganese	ND		ND							

Notes: Integrated Risk Information System (IRIS) on-line database search, current as of November 1997.
Health Effects Assessment Summary Tables (HEAST), current as November 1995.

Uncertainty factors:

- A = Animal to human extrapolation
- H = Variation in human sensitivity
- S = Extrapolation from subchronic to chronic NOAEL
- L = Extrapolation from LOAEL to NOAEL
- D = inadequate data
- M = Modifying factor

RfC = reference concentration.

 $\mu g/m^3 = micrograms per cubic meter.$

ND = no data.

PCB = polychlorinated biphenyl.

Table G-10 Dermal Dose-Response Data for Noncarcinogenic Effects

Remedial Investigation Report Site 16 NAS, Whiting Field, Milton, Florida

Compound	Chronic Oral RfD (mg/kg-day)	Subchronic Oral RfD (mg/kg-day)	Oral Absorption Efficiency	Reference	Dermal Chronic RfD (mg/kg-day)	Dermal Subchronic RfD (mg/kg-day)
Volatile Organic Compound	<u>ls</u>					
1,2-Dichloroethane	3.0e-01	ND	100%	Reitz et al., 1980	3.0e-01	ND
1,2-Dichloroethene	9.0e-03	9.0e-03	100%	Putcha et al., 1986	9.0e-03	9.0e-03
Benzene	3.0e-04	ND	100%	ATSDR, 1993	3,0e-04	ND
Chloroform	1.0e-02	1.0e-02	100%	Brown et al., 1974	1.0e-02	1.0e-02
Trichloroethene	6.0e-03	ND	100%	Prout et al., 1985	6.0e-03	ND
Semivolatile Organic Comp	ounds					
Benzo(a)anthracene	ND	ND	91%	(1)	ND	ND
Benzo(a)pyrene	ND	ND	91%	Hecht et al., 1979	ND	ND
Benzo(b)fluoranthene	ND	ND	91%	(1)	ND	ND
Benzo(k)fluoranthene	ND	ND	91%	(1)	ND	ND
Carbazole	ND	ND			ND	ND
Chrysene	ND	ND	91%	(1)	ND	ND
Dibenz(a,h)anthracene	ND	ND	91%	(1)	NĐ	ND
Indeno(1,2,3-cd)pyrene	· ND	ND	91%	(1)	ND	ND
Pesticides and PCBs						
Dieldrin	5.0e-05	5.0e-05	50%		2.5e-05	2.5e-05
Inorganic Analytes						
Aluminum	1.0e + 00	ND	20%	(2)	2.0e-01	ND
Antimony	4.0e-04	4.0e-04	10%	ATSDR, 1991a	4.0e-05	4.0e-05
Arsenic	3.0e-04	3.0e-04	98%	Vahter, 1983	2.9e-04	2.9e-04
See notes at end of table						

Table G-10 (Continued) Dermal Dose-Response Data for Noncarcinogenic Effects

Remedial Investigation Report Site 16 NAS. Whiting Field, Milton, Florida

		1 11 10	, mileng riola, mileon	i, i ioriau		
Compound	Chronic Oral RfD (mg/kg-day)	Subchronic Oral RfD (mg/kg-day)	Oral Absorption Efficiency	Reference	Dermal Chronic RfD (mg/kg-day)	Dermal Subchronic RfD (mg/kg-day)
Inorganic Analytes (Continue	d)					
Barium	7.0e-02	7.0e-02	7%	ATSDR, 1991b	4.9e-03	4.9e-03
Beryllium	5.0e-03	5.0e-03	1%	Owen, 1990	5.0e-05	5.0e-05
Cadmium	5.0e-03	2.0e-02	11%	Ogawa, 1976	5.5e-04	2.2e-03
Iron	3.0e-01	ND	2%	Goyer, 1991	6.0e-03	ND
Lead	ND	ND				
Manganese	4.7e-02	ND	4%	ATSDR, 1991c	1.9e-03	ND

- (1) The oral absorption efficiency of all polynuclear aromatic hydrocarbons is assumed to be identical to that of benzo(a)pyrene, based on structural analogy.
- (2) Inorganics lacking specific information on absorption efficiency are assigned a default value of 20% (U.S. Environmental Protection Agency Region IV, 1993).

Agency for Toxic Substances and Disease Registry (ATSDR), 1991a. "Toxicological Profile for Antimony". Agency for Toxic Substances and Disease Registry, U.S. Public Health Service (Draft).

ATSDR, 1991b. "Toxicological Profile for Manganese". Agency for Toxic Substances and Disease Registry, U.S. Public Health Service (Draft).

ATSDR, 1991c. "Toxicological Profile for Barium". Agency for Toxic Substances and Disease Registry, U.S. Public Health Service (Draft).

ATSDR, 1993. "Toxicological Profile for Benzene". Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.

Brown, D.M., P.F. Langley, D. Smith, and D.C. Taylor. 1974. Metabolism of Chloroform. I. The Metabolism of ¹⁴C-Chloroform by Different Species. Xenobiotica 4: 151-163. Goyer, R.A., 1991. Toxic Effects of Metals. In: Cassarett and Doull's Toxicology: The Basic Science of Posions, 4th edition. Eds. M.O. Amdur, J. Doull and C.D. Klaassen. Pergamon Press, N.Y.

Hecht, S.S., W. Grabowski, and K. Groth. 1979. Analysis of Feces for B[a]P After Consumption of Charcoal-Broiled Beef by Rats and Humans. Food Cosmet. Toxicol. 17: 223-227.

Owen, T.S. 1990. Literature Derived Absorption Coefficients for 39 Chemicals via Oral and Inhalation Routes of Exposure. Regul. Toxicol. Pharmacol. 11: 237-252.

Ogata, M. and Y. Shimada. 1987. Differences in Urinary Monochlorobenzene Metabolities Between Rats and Humans. Int. Arch. Occup. Environ. Health 53: 51-57.

Putcha, L., J.V. Bruchner, and R. D'Soyza, 1986. Toxicokinetics and Bioavailability of Oral and Intravenous 1,1-Dichloroethylene. Fund. Appl. Toxicol. 6: 240-250.

Prout, M.S., W.M. Provan, and T. Green. 1985. Species Differences in Response to Trichloroethylene. Toxicol. Appl. Pharmacol. 79: 389-400.

Reitz, R.H., T.R. Fox, and J.Y. Domoradzski. 1980. Pharmacokinetics and Macromolecular Interactions of Ethylene Dichloride: Comparison of Oral and Inhalation Exposures. In: Ames, B.N., Infante, P. and Reitz, R. eds. Ethylene Dichloride: A Potential Health Risk? Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, pp. 135-148.

Vahter, M. 1983, Metabolism of Arsenic. In: Fowler, B.A., ed. Biological and Environmental Effect of Arsenic. NY: Elsevier. pp. 171-198.

Notes: For documentation concerning chronic and subchronic oral RfDs, refer to Table 3.

RfD = reference dose.

mg/kg-day = milligrams per kilogram per day.

ND = no data.

% = percent.

PCB = polychlorinated biphenyl.

TABLE G-11

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL ADULT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

							
PARAMETER	SYMBOL	VALUE	UNITS	SOURCE		•	
CONCENTRATION SOIL	cs	chemical-specific	chemical-specific		CANCER RISK =	INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-d	lay) ⁻¹
INGESTION RATE	IR	100	mg/day	USEPA, 1991	1		
FRACTION INGESTED	FI	100%	unitless	USEPA, 1995	HAZARD QUOTIENT =	INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)	
ADHERENCE FACTOR	AF	1	mg/cm²-event	USEPA, 1995	1		
ABSORPTION FRACTION	ABS _d	chemical specific	unitless	USEPA, 1995			
SURFACE AREA EXPOSED	SA	5,750		USEPA, 1992	ł		
DOSE ABSORBED PER EVENT	DAovens	chemical specific	mg/cm ² -event	USEPA, 1992			
CONVERSION FACTOR	CF	1.00E-06	kg/mg	inorganics			
	CF	1.00E-09	kg/ug	organics			
BODY WEIGHT	BW .	70	kg	USEPA, 1991	INTAKE-INGESTION	$= CS \times IR \times FI \times CF \times FF \times ED$	
EXPOSURE FREQUENCY	EF	45	days/year [1]	Assumption		BW x AT x 365 days/yr	
EXPOSURE DURATION	ED	20	years	Assumption		3	rigg:
AVERAGING TIME					INTAKE-DERMAL	= DAevent x SA x EF x ED	**
CANCER	AT	70	years	USEPA, 1991			45
NONCANCER	AT	20	years	Assumption			
[1] Units for exposure frequency are ever	nts/year in the calculation	on of the dermally absorbe	d dose.		Where:		ar.
USEPA, 1991. Human Health Evaluation	on Manual, Supplement	al Guidanœ: "Standard De	fault Exposure		DAevent =	AF x ABS _d x CF	
F CONTER District CONTER							April 1

Factors"; OSWER Directive 9285.6-03.

USEPA, 1992. Dermal Exposure Assessment: Principles and Applications; EPA/600/8-91/011B; 1/92.

USEPA, 1995. Supplemental Guidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

Note:

For noncarcinogenic effects: AT = ED

Popla

A Comment

TABLE 6-11

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL ADULT TRESPASSER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL CSF (mg/kg-day) ⁻¹	CANCER RISK INGESTION	DERMAL ABS [2]	INTAKE DERMAL (mg/kg-day)	DERMAL CSF [3] (mg/kg-day) ⁻¹	CANCER RISK DERMAL	TOTAL CANCER RISK
Benzo(a)anthracene [1]	0	36	ug/kg	1.8E-09	7.3E+00	1.3E-08	0.01	1.0E-09	8.0E+00	8.1E-09	2.1E-08
Benzo(a)pyrene	0		ug/kg	1.9E-08	7.3E+00	1.4E-07	0.01	1.1E-08	8.0E+00	8.6E-08	2.2E-07
Benzo(b)fluoranthene [1]	0		ug/kg	2.1E-09	7.3E+00	1.5E-08	0.01	1.2E-09	8.0E+00	9.5E-09	2.5E-08
Benzo(k)fluoranthene [1]	0		ug/kg ug/kg	2.1E-09 2.0E-10	7.3E+00	1.4E-09	0.01	1.1E-10	8.0E+00	9.0E-10	2.3E-09
	0										1
Carbazole	U		ug/kg	4.9E-09	2.0E-02	9.8E-11	0.01	2.8E-09	4.0E-02	1.1E-10	2.1E-10
Chrysene [1]	0	0.39	ug/kg	2.0E-11	7.3E+00	1.4E-10	0.01	1.1E-11	8.0E+00	9.0E-11	2.3E-10
Dibenz(a,h)anthracene [1]	0	240	ug/kg	1.2E-08	7.3E+00	8.8E-08	0.01	6.9E-09	2.0E+01	1.4E-07	2.3E-07
Indeno(1,2,3-cd)pyrene [1]	0	32	ug/kg	1.6E-09	7.3E+00	1.2E-08	0.01	9.3E-10	8.0E+00	7.4E-09	1.9E-08
Dieldrin	0	32	ug/kg	1.6E-09	1.6E+01	2.6E-08	0.01	9.3E-10	3.2E+01	3.0E-08	5.5E-08
Arsenic	I	3.8	mg/kg	1.9E-07	1.5E+00	2.9E-07	0.001	1.1E-08	1.5E+00	1.6E-08	3.0E-07
Lead	I	473	mg/kg	2.4E-05	ND		0.001	1.4E-06	ND		
			SUMMARY	CANCER RISK		6E-07				3E-07	9E-07

^[1] Cacinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995).

^[2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

^[3] Calculated from oral CSFs.

TABLE 6.12

INHALATION OF PARTICULATES - SURFACE SOIL ADULT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
			chemical-		
SOIL CONCENTRATION	С	chemical-specific	specific		CANCER RISK = INTAKE (mg/kg-day) x INHALATION CANCER SLOPE FACTOR (mg/kg-day)
PART. EMISSION FACTOR	PEF	1.24E+09	m³/kg	default [1]	
CONCENTRATION AIR	CA	chemical-specific	mg/m³		
INHALATION RATE	IR	0.833	m³/hour	USEPA, 1995	HAZARD QUOTIENT = INTAKE (mg/kg-day) / INHALATION REFERENCE DOSE (mg/kg-day)
BODY WEIGHT	BW	70	kg	USEPA, 1991	
EXPOSURE TIME	ET	4	hours/đay	Assumption	
EXPOSURE FREQUENCY	EF	45	days/year	Assumption	INTAKE = CAXIRXETXEFXED
EXPOSURE DURATION	ED	20	years	Assumption	BW x AT x 365 days/yr
CONVERSION FACTOR	CF	0.001	mg/ug	Organics only	
AVERAGING TIME					Where:
CANCER	AT	70	years	USEPA, 1991	CA = CxCFx(1/PBF)
NONCANCER	AT	20	years	USEPA, 1991	
[1] Florida Soil Clean-Up Goal Varial	ole. FDEP, 1995.				
USEPA, 1991. Human Health Evalua	ation Manual, Supplem	nental Guidance: "Standar	d Default Exp	osure	
Factors"; OSWER Directive 9285.6-0	3.				Note: For noncarcinogenic effects, AT = ED
USEPA, 1995. Supplemental Guidan	∞ to RAGS : Region l	V. Human Health Risk A	Assessment Bu	lletin No. 3.	1

TABLE G-12

INHALATION OF PARTICULATES - SURFACE SOIL ADULT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

	INORGANIC OR	SOIL		AIR	INTAKE	INHALATION	CANCER
COMPOUND	ORGANIC	CONCENTRATION	UNITS	CONCENTRATION	(mg/kg-day)	CSF	RISK
	I/O	[1]		(mg/m³)		(mg/kg-day) · I	<u> </u>
Benzo(a)anthracene	0	35	ug/kg	2.82E-11	4.7E-14	3.1E+00	1.5E-13
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	5.0E-13	3.1E+00	1.6E-12
Benzo(b)fluoranthene	0	41	ug/kg	3.31E-11	5.5E-14	3.1E+00	1.7E-13
Benzo(k)fluoranthene	О	3.9	ug/kg	3.15E-12	5.3E-15	3.1E+00	1.6E-14
Chrysene	0	0.39	ug/kg	3.15E-13	5.3E-16	3.1E+00	1.6E-15
Dibenz(a,h)anthracene	0	240	ug/kg	1.94E-10	3.2E-13	3.1E+00	1.0E-12
Indeno(1,2,3-cd)pyrene	. O	32	ug/kg	2.58E-11	4.3E-14	3.1E+00	1.3E-13
Dieldrin	I	32	mg/kg	2.58E-08	4.3E-11	1.6E+01	6.9E-10
Arsenic	I	3.8	mg/kg	3.06E-09	5.1E-12	1.5E+01	7.7E-11
Lead	I	473	mg/kg	3.81E-07	6.4E-10	ND	
			······································		SUMMARY C	ANCER RISK	8E-10

[1] Toxicity equivalent factors are applied to carcinogenic PAHs per USEPA Region IV Guidance (USEPA, 1995).

TABLE G-12.

INHALATION OF PARTICULATES - SURFACE SOIL ADULT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION RfD (mg/kg-day)	HAZARD QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	2.82E-10	1.7E-12	ND	
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	1.8E-12	ND	
Benzo(b)fluoranthene	0	410	ug/kg	3.31E-10	1.9E-12	ND	
Benzo(k)fluoranthene	0	390	ug/kg	3.15E-10	1.8E-12	ND	
Carbazole	0	97	ug/kg	7.82E-11	4.6E-13	ND	1
Chyrsene	0	390	ug/kg	3.15E-10	1.8E-12	ND	
Dibenz(a,h)anthracene	O	390	ug/kg	3.15E-10	1.8E-12	ND	
Indeno(1,2,3-cd)pyrene	О	240	ug/kg	1.94E-10	1.1E-12	ND	ŀ
Dieldrin	I	320	mg/kg	2.58E-07	1.5E-09	ND	
Aluminum	1	11300	mg/kg	9.11E-06	5.3E-08	ND	
Arsenic	I	3.8	mg/kg	3.06E-09	1.8E-11	ND	
Cadmium	I	2.1	mg/kg	1.69E-09	9.9E-12	ND	
Iron	I	13900	mg/kg	1.12E-05	6.6E-08	ND	
Lead	I	473	mg/kg	3.81E-07	2.2E-09	ND	
Manganese	I	296	mg/kg	2.39E-07	1.4E-09	1.4E-05	1.0E-04
		<u> </u>		SUMMARY HAZA	ARD INDEX		0.0001

TABLE 6-13

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL ADOLESCENT TRESPASSER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE
CONCENTRATION SOIL	CS	chemical-specific	chemical-specific	
INGESTION RATE	IR	100	mg/day	USEPA, 1991
FRACTION INGESTED	FI	100 %	unitless	Assumption
ADHERENCE FACTOR	AF	1	mg/cm²-event	USEPA, 1995
AGE-SPECIFIC SURFACE AREA	SA;	age-specific	cm²	USEPA, 1989
ABSORPTION FRACTION	ABS _a	chemical-specific	unitless	USEPA, 1995
CONVERSION FACTOR	CF	1.00E-06	kg/mg	Inorganics
	CF	1.00E-09	kg/mg	Organics
BODY WEIGHT	BW	45	kg	USEPA, 1995
AGE-SPECIFIC BODY WEIGHT	, BW _i	age-specific	kg	USEPA, 1989
EXPOSURE FREQUENCY	EF	45	days/year [1]	Assumption
EXPOSURE DURATION	ED	10	years	USEPA, 1995
AGE-SPECIFIC EXPOSURE DURATION	ED;	age-specific	years	Assumption
AGE-WEIGHTED SURFACE AREA [2]	SA _{scil/edj}	1013	cm²-year/kg	Per USEPA, 1992
DOSE ABSORBED PER EVENT	DA	chemical-specific	mg/cm²-event	Per USEPA, 1992
AVERAGING TIME				
CANCER	AT	70	years	USEPA, 1991
NONCANCER	AT	10	years	USEPA, 1995

[1] Units for exposure frequency are in events/year in the calculation of the dermally absorbed dose.

[2] In estimating the dermally obserbed dose for children age 7 through 16, the time-weighted, bodyweight normalized surface area exposed is calculated from surface area, exposure duration, and body weight for each of 10 age periods, age 7 through 16, per USEPA, 1992.

USEPA, 1989. Exposure Factors Handbook; EPA/600/8-89/043; May 1989.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Fectors"; OSWER Directive 9285.6-03.

USEPA, 1992. Dermal Exposure Assessment: Principles and Applications; BPA/600/8-91/011B; January 1992.

USEPA, 1995. Supplemental Guidance to RAGS: Region 4 Bulletins, Bulletin No. 3, November 1995.

EQUATIONS

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)⁻¹

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE-INGESTION = CS x IR x FI x CF x EF x ED

BW x AT x 365 days/yr

INTAKE_DERMAL = AT x 365 days/year) x SA_{sollindj}

Where:

 $SA_{coll/adj} = SUM (SA_i \times ED_i / BW_i)$ $DA_{coust} = CS \times AF \times ABS_d \times CF$

Note: For noncarcinogenic effects: AT = ED.

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL ADOLESCENT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC	SOIL CONCENTRATION	UNITS	INTAKE INGESTION	ORAL CSF	CANCER RISK INGESTION	DERMAL ABS [2]	INTAKE DERMAL	DERMAL CSF [3]	CANCER RISK DERMAL	TOTAL CANCER
	I/O	CONCENTRATION		(mg/kg-day)	(mg/kg-day) ⁻¹	INGESTION	ADS [2]	(mg/kg-day)	(mg/kg-day) ⁻¹	DERMAL	RISK
Benzo(a)anthracene [1]	0	35	ug/kg	1.4E-09	7,3E+00	1.0E-08	0.01	6.2E-10	8.0E+00	5.0E-09	1.5E-08
Benzo(a)pyrene	О	370	ug/kg	1.4E-08	7.3E+00	1.1E-07	0.01	6.6E-09	8.0E+00	5.3E-08	1.6E-07
Benzo(b)fluoranthene [1]	О	41	ug/kg	1.6E-09	7.3E+00	1.2E-08	0.01	7.3E-10	8.0E+00	5.9E-09	1.8E-08
Benzo(k)fluoranthene [1]	0	3.9	ug/kg	1.5E-10	7.3E+00	1.1E-09	0.01	7.0E-11	8.0E+00	5.6E-10	1.7E-09
Carbazole	o	97	ug/kg	3.8E-09	2.0E-02	7.6E-11	0.01	1.7E-09	4.0E-02	6.9E-11	1.5E-10
Chrysene [1]	О	0.39	ug/kg	1.5E-11	7.3E+00	1.1E-10	0.01	7.0E-12	8.0E+00	5.6E-11	1.7E-10
Dibenz(a,h)anthracene [1]	О	240	ug/kg	9.4E-09	7.3E+00	6.9E-08	0.01	4.3E-09	8.0E+00	3.4E-08	1.0E-07
Indeno(1,2,3-cd)pyrene [1]	О	32	ug/kg	1.3E-09	7.3E+00	9.1E-09	0.01	5.7E-10	8.0E+00	4.6E-09	1.4E-08
Dieldrin	0	32	ug/kg	1.3E-09	1.6E+01	2.0E-08	0.01	5.7E-10	3.2E+01	1.8E-08	3.8E-08
Arsenic	1	3.8	mg/kg	1.5E-07	1.5E+00	2.2E-07	0.001	6.8E-09	1.5E+00	1.0E-08	2.3E-07
Lead	I	473	mg/kg	1.9E-05	. ND		0.001	8.4E-07	ND		
				SUMMARY CANCER	RISK	4E-07				1E-07	6E-07

[1] Cacinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995).
[2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

[3] Calculated from oral CSFs.

TABLE 6-13

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL ADOLESCENT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL RfD (mg/kg-day)	HAZARD QUOTIENT INGESTION	DERMAL ABS [1]	INTAKE DERMAL (mg/kg-day)	DERMAL RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	9.6E-08	ND		0.01	4.4E-08	ND		l l
Benzo(a)pyrene	0	370	ug/kg	1.0E-07	ND		0.01	4.6E-08	ND		
Benzo(b)fluoranthene	0	410	ug/kg	1.1E-07	ND		0.01	5.1E-08	ND		1 1
Benzo(k)fluoranthene	0	390	ug/kg	1.1E-07	ND		0.01	4.9E-08	ND		1
Carbazole	О	200	ug/kg	5.5E-08	ND		0.01	2.5E-08	ND		i I
Chrysene	o	390	ug/kg	1.1E-07	ND		0.01	4.9E-08	ND		1
Dibenz(a,h)anthracene	o	240	ug/kg	6.6E-08	ND		0.01	3.0E-08	ND		1 . 1
Indeno(1,2,3-cd)pyrene	O	320	ug/kg	8.8E-08	ND		0.01	4.0E-08	ND		1 1
Dieldrin	О	32	ug/kg	8.8E-09	5.0E-05	1.8E-04	0.01	4.0E-09	2.5E-05	1.6E-04	3.4E-04
Aluminum	1	11300	mg/kg	3.1E-03	1.0E+00	3.1E-03	0.001	1.4E-04	2.0E-01	7.1E-04	3.8E-03
Arsenic	1	3.8	mg/kg	1.0E-06	3.0E-04	3.5E-03	0.001	4.7E-08	2.9E-04	1.6E-04	3.6E-03
Cadmium	I	2.1	mg/kg	5.8E-07	1.0E-03	5.8E-04	0.001	2.6E-08	1.0E-05	2.6E-03	3.2E-03
Iron	1	13900	mg/kg	3.8E-03	3.0E-01	1.3E-02	0.001	1.7E-04	6.0E-03	2.9E-02	4.2E-02
Lead	1	473	mg/kg	1.3E-04	ND		0.001	5.9E-06	ND		
Manganese	1		mg/kg	8.1E-05	4.7E-02	1.7E-03	0.001	3.7E-06	1.9E-03	1.9E-03	3.7E-03
			S	UMMARY HAZARD INDEX		0.02				0.03	0.06

[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

[2] Calculated from oral RfDs.

TABLE 6-14

INHALATION OF PARTICULATES - SURFACE SOIL ADOLESCENT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE		
			chemical-			
SOIL CONCENTRATION	C	chemical-specific	specific			
PART. EMISSION FACTOR	PEF	1.24E+09	m³/kg	default [1]	CANCER RISK = INTAKE (mg/kg-day) x INHALATION CANCER SLOPE FACTOR (mg/kg-day) ¹	
CONCENTRATION AIR	CA	chemical-specific	mg/m³			
INHALATION RATE	IR IR	0.625	m³/hour	USEPA, 1995	HAZARD QUOTIENT = INTAKE (mg/kg-day) / INHALATION REFERENCE DOSE (mg/kg-day)	
BODY WEIGHT	BW	45	kg	USEPA, 1995		
EXPOSURE TIME	ET	4	hours/day	Assumption		
EXPOSURE FREQUENCY	EF	45	days/year	Assumption	INTAKE = CAXIRXETXEFXED	
EXPOSURE DURATION	ED	10	years	USEPA, 1995	BW x AT x 365 days/yr	
CONVERSION FACTOR	CF	0.001	mg/ug	Organics only		
AVERAGING TIME					Where:	
CANCER	AT	70	years	USEPA, 1991	$CA = C \times CF \times (1/PEF)$	- Gazer
NONCANCER	AT	10	years	USEPA, 1995		
[1] Florida Soil Clean-Up Goal Varia	ble. FDEP, 1995.					003
USEPA, 1991. Human Health Evalu	ation Manual, Supple	emental Guidance: "Stand	ard Default Ex	posure		SMIC
Factors"; OSWER Directive 9285.6-	03.				Note: For noncarcinogenic effects: AT = ED	A Service
USEPA 1995. Supplemental Guidan	ce to RAGS. Region	4 Bulletins, Bulletin No.	3. November 1	995.		

TABLE 6414

INHALATION OF PARTICULATES - SURFACE SOIL ADOLESCENT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

	INORGANIC OR	SOIL		AIR	INTAKE	INHALATION	CANCER
COMPOUND	ORGANIC	CONCENTRATION	UNITS	CONCENTRATION	(mg/kg-day)	CSF	RISK
	I/O	[1]		(mg/m³)		(mg/kg-day)^-1	<u></u>
Benzo(a)anthracene	0	35	ug/kg	2.82E-11	2.8E-14	3.1E+00	8.6E-14
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	2.9E-13	3.1E+00	9.1E-13
Benzo(b)fluoranthene	0	41	ug/kg	3.31E-11	3.2E-14	3.1E+00	1.0E-13
Benzo(k)fluoranthene	0	3.9	ug/kg	3.15E-12	3.1E-15	3.1E+00	9.5E-15
Chrysene	0	0.39	ug/kg	3.15E-13	3.1E-16	3.1E+00	9.5E-16
Dibenz(a,h)anthracene	0	240	ug/kg	1.94E-10	1.9E-13	3.1E+00	5.9E-13
Indeno(1,2,3-cd)pyrene	0	32	ug/kg	2.58E-11	2.5E-14	3.1E+00	7.8E-14
Dieldrin	I	32	mg/kg	2.58E-08	2.5E-11	1.6E+01	4.0E-10
Arsenic	I	3.8	mg/kg	3.06E-09	3.0E-12	1.5E+01	4.5E-11
Lead	I	473	mg/kg	3.81E-07	3.7E-10	ND	
*					SUMMARY C	ANCER RISK	5E-10
[1] Toxicity equivalent factors a	re applied to carcinogenic	PAHs per USEPA Regi	on IV Guidanc	e (USEPA, 1995).			

Harding Lawson Associates SS_INH1.xls 1/5/99

TABLE 6-14

INHALATION OF PARTICULATES - SURFACE SOIL ADOLESCENT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION RfD (mg/kg-day)	HAZARD QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	2.82E-10	1.9E-12	ND	ľ
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	2.0E-12	ND	
Benzo(b)fluoranthene	0	410	ug/kg	3.31E-10	2.3E-12	ND	
Benzo(k)fluoranthene	0	390	ug/kg	3.15E-10	2.2E-12	ND	
Carbazole	0	97	ug/kg	7.82E-11	5.4E-13	ND	
Chyrsene	0	390	ug/kg	3.15E-10	2.2E-12	ND	
Dibenz(a,h)anthracene	0	390	ug/kg	3.15E-10	2.2E-12	ND	
Indeno(1,2,3-cd)pyrene	0	240	ug/kg	1.94E-10	1.3E-12	ND	
Dieldrin	I	320	mg/kg	2.58E-07	1.8E-09	ND]
Aluminum	1 1	11300	mg/kg	9.11 E-0 6	6.2E-08	ND	
Arsenic	I I	3.8	mg/kg	3.06E-09	2.1E-11	ND	
Cadmium	I	2.1	mg/kg	1.69E-09	1.2E-11	ND	
Iron		13900	mg/kg	1.12E-05	7.7E-08	ND	
Lead	I	473	mg/kg	3.81E-07	2.6E-09	ND]
Manganese	I	296	mg/kg	2.39E-07	1.6E-09	1.4E-05	1.2E-04
				SUMMARY HAZA	ARD INDEX		0.0001

TABLE GAS

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL ADULT RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE
CONCENTRATION SOIL	CS	chemical-specific	chemical-specific	
INGESTION RATE	IR I	100	mg/day	USEPA, 1995
FRACTION INGESTED	Fi	100%	unitless	USEPA, 1995
ADHERENCE FACTOR	AF	1	mg/cm²-event	USEPA, 1995
ABSORPTION FRACTION	ABS _d	chemical-specific	unitless	USEPA, 1995
SURFACE AREA EXPOSED	SA	5,750	cm²	USEPA, 1992
Dose absorbed per event	DA _{vvest}	chemical-specific	mg/cm²-event	USEPA, 1992
CONVERSION FACTOR	CF	1.00E-09	kg/ug	Organic conversion
CONVERSION FACTOR	CF	1.00E-06	kg/mg	Inorganic conversion
BODY WEIGHT	BW	70	kg	USEPA, 1991
EXPOSURE FREQUENCY	EF	350	days/year [1]	Assumption
EXPOSURE DURATION	ED	24	years	USEPA, 1995
AVERAGING TIME	1			}
CANCER	AT	70	years	USEPA, 1991
NONCANCER	AT	24	years	USEPA, 1995

[1] Units for exposure frequency are events/year in the calculation of the dermally absorbed dose.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors";

OSWER Directive 9285.6-03.

USEPA, 1992. Dermal Exposure Assessment: Principles and Applications; EPA/600/8-91/011B; January 1992.

USEPA, 1995. Supplemental Guidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOTE FACTOR (mg/kg-day)⁻¹

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE_{TINGESTION} = CS x IR x Fl x CF x EF x ED

BW x AT x 365 days/yr

 $\frac{\text{INTAKE}_{\text{DERMAL}} = \frac{\text{DA}_{\text{event}} \times \text{SA} \times \text{EF} \times \text{ED}}{\text{BW} \times \text{AT} \times 365 \text{ days/yr}}$

Where:

 $DA_{event} = CS \times AF \times ABS_d \times CF$

Note:

For noncarcinogenic effects, AT = ED.

TABLE 5-15

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL ADULT RESIDENT
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

CARCINOGENIC EFFECTS

	INORGANIC OR	SOIL	UNITS	INTAKE	ORAL	CANCER RISK	DERMAL	INTAKE	DERMAL	CANCER RISK	TOTAL
COMPOUND	ORGANIC	CONCENTRATION		INGESTION	CSF .	INGESTION	ABS [2]	DERMAL	CSF [3]	DERMAL	CANCER
	1/0			(mg/kg-day)	(mg/kg-day) ⁻¹			(mg/kg-day)	(mg/kg-day) 1		RISK
Benzo(a)anthracene [1]	0	35	ug/kg	1.6E-08	7.3E+00	1.2E-07	0.01	9.5E-09	8.0E+00	7.6E-08	2.0E-07
Benzo(2)pyrene	0	370	ug/kg	1.7E-07	7.3E+00	1.3E-06	0.01	1.0E-07	8.0E+00	8.0E-07	2.1E-06
Benzo(b)fluoranthene [1]	0	41	ug/kg	1.9E-08	7.3E+00	1.4E-07	0.01	1.1E-08	8.0E+00	8.9E-08	2.3E-07
Benzo(k)fluoranthene [1]	0	3.9	ug/kg	1.8E-09	7.3E+00	1.3E-08	0.01	1.1E-09	8.0E+00	8.4E-09	2.2E-08
Carbazole	0	97	ug/kg	4.6E-08	2.0E-02	9.1E-10	0.01	2.6E-08	4.0E-02	1.0E-09	2.0E-09
Chrysene [1]	0	0.39	ug/kg	1.8E-10	7.3E+00	1.3E-09	0.01	1.1E-10	8.0E+00	8.4E-10	2.2E-09
Dibenz(a,h)anthracene [1]	0	240	ug/kg	1.1E-07	7.3E+00	8.2E-07	0.01	6.5E-08	8.0E+00	5.2E-07	1.3E-06
Indeno(1,2,3-cd)pyrene [1]	0	32	ug/kg	1.5E-08	7.3E+00	1.1E-07	0.01	8.6E-09	8.0E+00	6.9E-08	1.8E-07
Dieldrin	0	32	ug/kg	1.5E-08	1.6E+01	2.4E-07	0.01	8.6E-09	3.2E+01	2.8E-07	5.2E-07
Arsenic	I	3.8	mg/kg	1.8E-06	1.5E+00	2.7E-06	0.001	1.0E-07	1.5E+00	1.5E-07	2.8E-06
Lead	I	473	mg/kg	2.2E-04	ND		0.001	1.3E-05	ND		
			SUMMARY C	ANCER RISK		5E-06				2E-06	7E-06

[1] Cacinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995).

[2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

[3] Calculated from oral CSFs.

TABLE GIS

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL ADULT RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL RM (mg/kg-day)	HAZARD QUOTIENT INGESTION	DERMAL ABS [1]	INTAKE DERMAL (mg/kg-day)	DERMAL RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	4.8E-07	ND		0.01	2.8E-07	ND		
Benzo(a)pyrene	0	370	ug/kg	5.1E-07	ND		0.01	2.9E-07	ND		
Benzo(b)fluoranthene	0	410	ug/kg	5.6E-07	ND		0.01	3.2E-07	ND		
Benzo(k)fluoranthene	0	390	ug/kg	5.3E-07	ND		0.01	3.1E-07	ND		
Carbazole	0	200	ug/kg	2.7E-07	ND		0.01	1.6E-07	ND		
Chrysene	0	390	ug/kg	5.3E-07	ND		0.01	3.1E-07	ND		
Dibenz(a,h)anthracene	0	240	ug/kg	3.3E-07	ND		0.01	1.9 E-07	ND		
Indeno(1,2,3-cd)pyrene	0	320	ug/kg	4.4E-07	ND		0.01	2.5E-07	ND		
Dieldrin	0	32	ug/kg	4.4E-08	5.0E-05	8.8E-04	0.01	2.5E-08	2.5E-05	1.0E-03	1.9E-03
Aluminum	I	11300	mg/kg	1.5E-02	1.0E+00	1.5E-02	0.001	8.9E-04	2.0E-01	4.5E-03	2.0E-02
Arsenic	I	3.8	mg/kg	5.2E-06	3.0E-04	1.7E-02	0.001	3.0E-07	2.9E-04	1.0E-03	1.8E-02
Cadmium	1 1	2.1	mg/kg	2.9E-06	1.0E-03	2.9E-03	0.001	1.7E-07	1.0E-05	1.7E-02	1.9E-02
Iron	I	13900	mg/kg	1.9E-02	3.0E-01	6.3E-02	0.001	1.1E-03	6.0E-03	1.8E-01	2.5E-01
Lead	I	473	mg/kg	6.5E-04	ND		0.001	3.7E-05	ND		
Manganese	I	296	mg/kg	4.1E-04	4.7E-02	8.6E-03	0.001	2.3E-05	1.9E-03	1.2E-02	2.1E-02
			SUMMARY H	AZARD INDEX		0.001				0.001	0.002

^[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November, 1995).
[2] Calculated from oral RfDs.

TABLE 6-16

INHALATION OF PARTICULATES - SURFACE SOIL ADULT RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
			chemical-	I	1
SOIL CONCENTRATION	С	chemical-specific	specific		CANCER RISK = INTAKE (mg/kg-day) x INHALATION CANCER SLOPE FACTOR (mg/kg-day).1
PART. EMISSION FACTOR	PEF	1.24E+09	m³/kg	default [1]	
CONCENTRATION AIR	CA	chemical-specific	mg/m³		HAZARD QUOTIENT = INTAKE (mg/kg-day) / INHALATION REFERENCE DOSE (mg/kg-day)
INHALATION RATE	IR	0.833	m¹/hour	USEPA, 1995	
BODY WEIGHT	BW	70	kg	USEPA, 1991	
EXPOSURE TIME	ET	16	hours/day	Assumption	
EXPOSURE FREQUENCY	EF	350	days/year	USEPA, 1995	INTAKE = CAXIRXETXEFXED
EXPOSURE DURATION	ED	24	years	USEPA, 1995	BW x AT x 365 days/yr
CONVERSION FACTOR	CF	0.001	mg/ug	Organics only	
AVERAGING TIME				1	Where:
CANCER	AT	70	years	USEPA, 1991	$CA = C \times CF \times (I/PEF)$
NONCANCER	ΑT	24	years	USEPA, 1995	270
[1] Florida Soil Clean-Up Goal Variable	FDEP, 1995.				Note:
USEPA, 1991. Human Health Evaluati	ion Manual, Suppleme	ental Guidance: "Standard	i Default Expe	sure	Note:
Factors*; OSWER Directive 9285.6-03	•				For noncarcinogenic effects: AT = ED
USEPA, 1995. Supplemental Guidance	to RAGS : Region I	V, Human Health Risk A	ssessment Bull	letin No. 3.	

TABLE G-46

INHALATION OF PARTICULATES - SURFACE SOIL ADULT RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION [1]	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INITALATION CSF (mg/kg-day)-1	CANCER RISK
Benzo(a)anthracene	0	35	ug/kg	2.82E-11	1.8E-12	3.1E+00	5.5E-12
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	1.9E-11	3.1E+00	5.8E-11
Benzo(b)fluoranthene	0	41	ug/kg	3.31E-11	2.1E-12	3.1E+00	6.4E-12
Benzo(k)fluoranthene	0	3.9	ug/kg	3.15E-12	2.0E-13	3.1E+00	6.1E-13
Chrysene	0	0.39	ug/kg	3.15E-13	2.0E-14	3.1E+00	6.1E-14
Dibenz(a,h)anthracene	О	240	ug/kg	1.94E-10	1.2E-11	3.1E+00	3.8E-11
Indeno(1,2,3-cd)pyrene	О	32	ug/kg	2.58E-11	1.6E-12	3.1E+00	5.0E-12
Dieldrin	0	32	ug/kg	2.58E-11	1.6E-12	1.6E+01	2.6E-11
Arsenic	1	3.8	mg/kg	3.06E-09	1.9E-10	1.5E+01	2.9E-09
Lead	I	473	mg/kg	3.81E-07	2.4E-08	ND	
				SUMMARY CAN	CER RISK		3E-09
[1] Toxicity equivalent factors are	applied to carcinogenic P	AHs per USEPA Region	IV Guidance	(USEPA, 1995).			

Harding Lawson Associates SS_INH1 xls 1/5/99 INHALATION OF PARTICULATES - SURFACE SOIL ADULT RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC 1/O	SOIL CONCENTRATION	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION RfD (mg/kg-day)	HAZARD QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	2.82E-10	5.2E-11	ND	
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	5.4E-11	ND	
Benzo(b)fluoranthene	0	410	ug/kg	3.31E-10	6.0E-11	ND	
Benzo(k)fluoranthene	0	390	ug/kg	3.15E-10	5.7E-11	ND	
Carbazole	0	200	ug/kg	1.61E-10	2.9E-11	ND	ļ
Chyrsene	О	390	ug/kg	3.15E-10	5.7E-11	ND	
Dibenz(a,h)anthracene	0	240	ug/kg	1.94E-10	3.5E-11	ND	
Indeno(1,2,3-cd)pyrene	0	320	ug/kg	2.58E-10	4.7E-11	ND	Į.
Dieldrin	0	32 :	ug/kg	2.58E-11	4.7E-12	ND	
Aluminum	1 1	11300	mg/kg	9.11E-06	1.7E-06	ND	
Arsenic	1	3.8	mg/kg	3.06E-09	5.6E-10	ND	
Cadmium	1		mg/kg	1.69E-09	3.1E-10	ND	
Iron	1		mg/kg	1.12E-05	2.0E-06	ND	
Lead	1	473	mg/kg	3.81E-07	7.0E-08	ND	
Manganese	1	296	mg/kg	2.39E-07	4.4E-08	1.4E-05	3.1E-03
				SUMMARY HAZA	ARD INDEX		0.003

TABLE SHT

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL CHILD RESIDENT
NAS WIIITING FIELD
MILTON, FLORIDA
SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE
CONCENTRATION SOIL	CS	chemical-specific	chemical-specific	
INGESTION RATE	IR	200	mg/day	USEPA, 1995
FRACTION INGESTED	FI	100%	unitless	USEPA, 1995
ADHERENCE FACTOR	AF	1	mg/cm²-event	USEPA, 1995
AGE-SPECIFIC SURFACE AREA	SA	age-specific	c m²	USEPA, 1989
ABSORPTION FRACTION	ABS	chemical-specific	unitless	USEPA, 1995
CONVERSION FACTOR	CF	1.00E-06	kg/mg	Inorganic conversion
CONVERSION FACTOR	CF	1.00E-09	kg/ug	Organic conversion
BODY WEIGHT	BW	15	kg	USEPA, 1991
AGE-SPECIFIC BODY WEIGHT	BW	age-specific	kg	USEPA, 1989
EXPOSURE FREQUENCY	, EF	3.50	days/year [1]	USEPA, 1995
EXPOSURE DURATION	ED	6	years	USEPA, 1995
AGE-SPECIFIC EXPOSURE DURATION	ED	age-specific	years	Assumption
AGE-WEIGHTED SURFACE AREA [2]	SA _{roit/adj}	766	cm²-year/kg	USEPA, 1992
DOSE ABSORBED PER EVENT	DA	chemical-specific	mg/cm²-event	USEPA, 1992
AVERAGING TIME	1			1
CANCER	AT	70	years	USEPA, 1991
NONCANCER	AT	6	усагв	USEPA, 1995

[1] Units for exposure frequency are in events/year in the calculation of the dermally absorbed dose.

[2] In estimating the dermally absorbed dose for children age! through 6, the time-weighted, bodyweight normalized surface area exposed is calculated from surface area, exposure duration, and body weight for each of 6 age periods, age 1 through 6, per USEPA, 1992.

USEPA, 1989. Exposure Factors Handbook; EPA/600/8-89/043; May 1989.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors"; OSWER Directive 9285.6-03.

USEPA, 1992. Dermal Exposure Assessment: Principles and Applications; EPA/600/8-91/011B; January 1992.

USEPA, 1995. Supplemental Guidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)11

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE-INGESTION = CS x IR x FI x CF x EF x ED BW x AT x 365 days/yr

INTAKE-DERMAL = (DAccent x EF / AT x 365 days/year) x SAcollidad

Where

 $SA_{mil/ndj} = SUM (SA x ED / BW)$

 $DA_{rest} = CS \times AF \times ABS \times CF$

Note:

For noncarcinogenic effects, AT = ED.

Harding Lawson Associates SS_ING1.xls 1/5/99

TABLE GI7

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL. CHILD RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

	INORGANIC OR	SOIL	UNITS	INTAKE	ORAL	CANCER RISK	DERMAL	INTAKE	DERMAL.	CANCER RISK	TOTAL
COMPOUND	ORGANIC	CONCENTRATION		INGESTION	CSF	INGESTION	ABS [2]	DERMAL	CSF [3]	DERMAL	CANCER
	1/0		<u> </u>	(mg/kg-day)	(mg/kg-day) 1			(mg/kg-day)	(mg/kg-day) ⁻¹		RISK
Benzo(a)anthracene [1]	0	35	ug/kg	3.8E-08	7.3E+00	2.8E-07	0.01	3.7E-09	8.0E+00	2.9E-08	3.1E-07
Benzo(a)pyrene	O	370	ug/kg	4.1E-07	7.3E+00	3.0E-06	0.01	3.9E-08	8.0E+00	3.1E-07	3.3E-06
Benzo(b)fluoranthene [1]	0	41	ug/kg	4.5E-08	7.3E+00	3.3E-07	0.01	4.3E-09	8.0E+00	3.4E-08	3.6E-07
Benzo(k)fluoranthene [1]	0	3.9	ug/kg	4 3E-09	7.3E+00	3.1E-08	0.01	4.1E-10	8.0E+00	3.3E-09	3.4E-08
Carbazole	O	97	ug/kg	1.1E-07	2.0F-02	2.1E-09	0.01	1.0E-08	4.0E-02	4.1E-10	2.5E-09
Chrysene [1]	0	0.39	ug/kg	4.3E-10	7.3E+00	3.1E-09	0.01	4.1E-11	8.0E+00	3.3E-10	3.4E-09
Dibenz(a,h)anthracene [1]	0	240	ug/kg	2.6E-07	7.3E+00	1.9E-06	0.01	2.5E-08	8.0E+00	2.0E-07	2.1E-06
Indeno(1,2,3-cd)pyrene [1]	О	32	ug/kg	3.5E-08	7.3E+00	2.6E-07	0.01	3.4E-09	8.0E+00	2.7E-08	2.8E-07
Dieldrin	0	32	ug/kg	3.5E-08	1.6E+01	5.6E-07	0.01	3.4E-09	3.2E+01	1.1E-07	6.7E-07
Arsenic	1	3.8	mg/kg	4.2E-06	1.5E+00	6.2E-06	0.001	4.0E-08	1.5E+00	6.0E-08	6.3E-06.
Lead		473	mg/kg	5.2E-04	ND ND		0.001	5.0E-06	ND		
				SUMMARY CANCER RI	SK	1E-05				8E-07	1E-05

[1] Cacinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995).
[2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995)
[3] Calculated from oral CSFs.

TABLE SIT

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL CHILD RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

	INORGANIC OR	sou,	UNITS	INTAKE	ORAL.	HAZARD	DERMAL.	INTAKE	DERMAL	HAZARD	TOTAL
COMPOUND	ORGANIC	CONCENTRATION		INGESTION	RM	QUOTIENT	ABS [1]	DERMAL	R(T) [2]	QUOTIENT	HAZARD
	1/0			(mg/kg-day)	(mg/kg-day)	INGESTION		(mg/kg-day)	(mg/kg-day)	DERMAL	QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	4.5E-06	ND		0.01	4.3E-07	ND		
Benzo(a)pyrene	0	370	ug/kg	4.7E-06	ND		0.01	4.5E-07	ND		
Benzo(b)fluoranthene	0	410	ug/kg	5.2E-06	ND		0.01	5.0E-07	ND		
Benzo(k)fluoranthene	0	390	ug/kg	5.0E-06	ND		0.01	4.8E-07	ND		1
Carbazole	0	200	ug/kg	2.6E-06	ND		0.01	2.4E-07	ND		
Chrysene	0	390	ug/kg	5.0E-06	ND		0.01	4.8E-07	ND		ļ
Dibenz(a,h)anthracene	0	240	ug/kg	3.1E-06	ND		0.01	2.9E-07	ND		
Indeno(1,2,3-cd)pyrene	0	320	ug/kg	4.1E-06	ND		0.01	3.9E-07	ND		
Dieldrin	0	32	ug/kg	4.1E-07	5.0E-05	8.2E-03	10.0	3.9E-08	2.5E-05	1.6E-03	9.7E-03
Aluminum	1	11300	mg/kg	1.4E-01	1.0E+00	1.4E-01	0.001	1.4E-03	2.0E-01	6.9E-03	1.5E-01
Arsenic	1	3.8	mg/kg	4.9E-05	3.0E-04	1.6E-01	0.001	4.7E-07	2.9E-04	1.6E-03	1.6E-01
Cadmium	1	2.1	mg/kg	2.7E-05	1.0E-03	2.7E-02	0.001	2.6E-07	1.0E-05	2.6E-02	5.3E-02
Iron	1	13900	mg/kg	1.8E-01	3.0E-01	5.9E-01	0.001	1.7E-03	6.0F-03	2.8E-01	8.8E-01
Lead	, I	473	mg/kg	6.0E-03	ND		0.001	5.8E-05	ND		
Manganese	1	296	mg/kg	3.8E-03	4.7E-02	8.1E-02	0.001	3.6E-05	1.9E-03	1.9E-02	1.0E-01
				SUMMARY HAZARD INDEX	··	1				0.3	1

[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995). [2] Calculated from oral RfDs.

Harding Lawson Associates SS_ING1.xis 1/5/99

TABLE G-18

INHALATION OF PARTICULATES - SURFACE SOIL CHILD RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE		
			chemical-			
SOIL CONCENTRATION	С	chemical-specific	specific		CANCER RISK = INTAKE (mg/kg-day) x INHALATION CANCER SLOPE FACTOR (mg/kg-day) ⁻¹	•
PART. EMISSION FACTOR	PEF	1.24E + 09	m³/kg	default [1]		
CONCENTRATION IN AIR	CA	chemical-specific	mg/m³			
INHALATION RATE	IR	0.625	m³/hour	USEPA, 1995	HAZARD QUOTIENT = INTAKE (mg/kg-day) / INHALATION REFERENCE DOSE (mg/kg-day)	
BODY WEIGHT	BW	15	kg	USEPA, 1991		
EXPOSURE TIME	ET	24	hours/day	Assumption		
EXPOSURE FREQUENCY	EF	350	days/year	USEPA, 1991	INTAKE = CAXIRXET X EF X ED	
EXPOSURE DURATION	`ED	6	years	USEPA, 1991	BW x AT x 365 cksys/yr	
CONVERSION FACTOR	CF	0.001	mg/ug	Organics only		
AVERAGING TIME				ļ	Where:	: 24
CANCER	ΑT	70	years	USEPA, 1991	$CA = C \times CF \times (1/PEF)$: 84
NONCANCER	AT	6	years	USEPA, 1991		
[1] Florida Soil Clean-Up Goal Van	riable. FDEP, 199	5.				***
USEPA, 1991. Human Health Eva	luation Manual, S	upplemental Guidance	"Standard I	Default Exposure	Note:	***
Factors"; OSWER Directive 9285.6	6-03.				For noncarcinogenic effects: AT = ED	
USEPA, 1995. Supplemental Guidance	to RAGS: Region 4	Bulletins, Bulletin No. 3	, November 1	995.		2480

TABLE 618

INHALATION OF PARTICULATES - SURFACE SOIL CHILD RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION [1]	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (ing/kg-day)	INHALATION CSF (mg/kg-day)-1	CANCER RISK
Benzo(a)anthracene	0	35	ug/kg	2.82E-11	2.3E-12	3.1E+00	7.2E-12
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	2.5E-11	3.1E+00	7.6E-11
Benzo(b)fluoranthene	0	41	ug/kg	3.31E-11	2.7E-12	3.1E+00	8.4E-12
Benzo(k)fluoranthene	0	3.9	ug/kg	3.15E-12	2.6E-13	3.1E+00	8.0E-13
Chrysene	0	0.39	ug/kg	3.15E-13	2.6E-14	3.1E+00	8.0E-14
Dibenz(a,h)anthracene	0	240	ug/kg	1.94E-10	1.6E-11	3.1E+00	4.9E-11
Indeno(1,2,3-cd)pyrene	0	32	ug/kg	2.58E-11	2.1E-12	3.1E+00	6.6E-12
Dieldrin	1	32	mg/kg	2.58E-08	2.1E-09	1.6E+01	3.4E-08
Arsenic	1	3.8	mg/kg	3.06E-09	2.5E-10	1.5E+01	3.8E-09
Lead	14. 1 .	473	mg/kg	3.81E-07	3.1E-08	ND	
				SUMMARY CAN	CER RISK		4E-08

Harding Lawson Associates SS_INH1.xls 1/5/99 TABLE G 18

INHALATION OF PARTICULATES - SURFACE SOIL CHILD RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION RfD (mg/kg-day)	HAZARD QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	2.82E-10	2.7E-10	ND	ļ
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	2.9E-10	ND	
Benzo(b)fluoranthene	0	410	ug/kg	3.31E-10	3.2E-10	ND	
Benzo(k)fluoranthene	0	390	ug/kg	3.15E-10	3.0E-10	ND	
Carbazole ·	0	97	ug/kg	7.82E-11	7.5E-11	ND	
Chyrsene	О	390	ug/kg	3.15E-10	3.0E-10	ND	
Dibenz(a,h)anthracene	О	390	ug/kg	3.15E-10	3.0E-10	ND	
Indeno(1,2,3-cd)pyrene	О	240	ug/kg	1.94E-10	1.9E-10	NÐ	
Dieldrin	1	320	mg/kg	2.58E-07	2.5E-07	ND	
Aluminum	1	11300	mg/kg	9.11E-06	8.7E-06	ND	
Arsenic	I	3.8	mg/kg	3.06E-09	2.9E-09	ND	
Cadmium	I	2.1	mg/kg	1.69E-09	1.6E-09	ND	
Iron	I	13900	mg/kg	1.12E-05	1.1E-05	ND	
Lead	I	473	mg/kg	3.81E-07	3.7E-07	ND	
Manganese	I	296	mg/kg	2.39E-07	2.3E-07	1.4E-05	1.6E-02
	<u> </u>			SUMMARY HAZA	ARD INDEX		0.02

TABLE 517

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL SITE MAINTENANCE WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE
CONCENTRATION SOIL	CS	chemical-specific	chemical-specific	
INGESTION RATE	IR.	50	mg/day	USEPA, 1995
FRACTION INCESTED	FI	100%	unitless	Assumption
ADHERENCE FACTOR	AF	1	mg/cm2-event	USEPA, 1995
ABSORPTION FRACTION	ABS	chemical-specific	unitless	Assumption
SURFACE AREA EXPOSED	SA	5,750	cm²	USEPA, 1992
DOSE ABSORBED PER EVENT	DA	chemical-specific	mg/cm ² -event	USEPA, 1992
CONVERSION FACTOR	CF	1 00E-09	kg/ug	Organic conversion
CONVERSION FACTOR	CF	1 00E-06	kg/mg	Inorganic conversion
BODT WEIGHT	BW 1	70	kg	USEPA, 1991
EXPOSURE FREQUENCY	EF	30	days/year [1]	Assumption
EXPOSURE DURATION	ED	25	years	USEPA, 1995
AVERAGING TIME				
CANCER	TA	- 70	years	USEPA, 1991
NONCANCER	TA	25	years	USEPA, 1995

[1] Units for exposure frequency are events/year in the calculation of the dermally absorbed dose.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors",

OSWER Directive 9285.6-03.

USEPA, 1992. Dermal Exposure Assessment: Principles and Applications; EPA/600/8-91/011B; 1/92.

USEPA, 1995. Supplemental Guidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

CANCER RISK ≈ INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)⁻¹

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE-INGESTION = CS x IR x F1 x CF x EF x ED BW x AT x 365 days/yr

INTAKE DERMAL = DA word x SA x EF x ED BW x AT x 365 days/yr

Where:

 $DA_{creat} = CS \times AF \times ABS \times CF$

Note:

For noncarcinogenic effects, AT = ED

Harding Lawson Associates Selfoing als 1/5/99 TABLE G17

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL SITE MAINTENANCE WORKER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

CARCINOGENIC EFFECTS

	INORGANIC OR	SOIL	UNITS	INTAKE	ORAL	CANCER RISK	DERMAL	INTAKE	DERMAL	CANCER RISK	TOTAL
COMPOUND	ORGANIC	CONCENTRATION		INGESTION	CSF	INGESTION	ABS [2]	DERMAL	C81k [3]	DERMAL	CANCER
	1/0		<u> </u>	(mg/kg-day)	(mg/kg-day)		L	(mg/kg-day)	(mg/kg-day)		RISK
Benzo(s)anthracene [1]	0	35	ug/kg	7.3E-10	7.3E+00	5.4E-09	0.01	8.4E-10	8.0E+00	6.8E-09	1.2E-08
Benzo(a)pyrene	0	370	ug/kg	7.8E-09	7.3E+00	5.7E-08	0.01	8.9E-09	8.0E+00	7.1E-08	1.3E-07
Benzo(b)fluoranthene [1]	O	41	ug/kg	8.6E-10	7.3E+00	6.3E-09	0.01	9.9E-10	8.0E+00	7.9E-09	1 4E-08
Benzo(k)fluoranthene [1]	0	3.9	ug/kg	8.2E-11	7.3E+00	6.0E-10	0.01	9.4E-11	8.0E+00	7.5E-10	1.3E-09
Carbazole	0	97	ug/kg	2.0E-09	2.0E-02	4.1E-11	0.01	2.3E-09	4.0E-02	9.4E-11	1.3E-10
Chrysene [1]	0	0.39	ug/kg	8.2E-12	7.3E+00	6.0E-11	0.01	9.4E-12	8.0E+00	7.5E-11	1.3E-10
Dibenz(a,h)anthracene [1]	0	240	ug/kg	5.0E-09	7.3E+00	3.7E-08	0.01	5.8E-09	8.0E+00	4.6E-08	8.3E-08
Indeno(1,2,3-cd)pyrene [1]	0	32	ug/kg	6.7E-10	7.3E+00	4.9E- 0 9	0.01	7.7E-10	8.0E+00	6.2E-09	1.1E-08
Dieldrin	0	32	ug/kg	6.7E-10	1.6E+01	1.1E-08	0.01	7.7E-10	3.2E+01	2.5E-08	3.5E-08
Arsenic	l t	3.8	mg/kg	8.0E-08	1.5E + 00	1.2E-07	0.001	9.2E-09	1.5E+00	1.4E-08	1.3E-07
Lead	1	473	mg/kg	9.9E-06	ND		0.001	1.1E-06	ND		
			SUMMARY C	ANCER RISK		2E-07				2E-07	4E-07

^[1] Cacinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995).

Harding Lawson Associates Selfing dis 1/5/99

^[2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

^[3] Calculated from oral CSFs.

TABLE 6/9

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL SITE MAINTENANCE WORKER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC	901L CONCENTRATION	UNITS	INTAKE INGESTION	ORAL RID	HAZARD QUOTIENT	DERMAL ABS [1]	INTAKE DERMAL	DERMAL RID [2]	HAZARD QUOTIENT	TOTAL HAZARD
	1/0			(mg/kg-day)	(mg/kg-day)	INGESTION		(mg/kg-day)	(mg/kg-day)	DERMAL	QUOTIENT
			I								
Benzo(2)2nthracene	0	350	ug/kg	2.1E-08	ND		0.01	2.4E-08	ND		
Benzo(a)pyrene	0	370	ug/kg	2.2E-08	ND		0.01	2.5E-08	ND		'
Benzo(b)fluoranthene	0	410	ug/kg	2.4E-08	ND		0.01	2.8E-08	ND		
Benzo(k)fluoranthene	0	390	ug/kg	2.3E-08	ND		0.01	2.6E-08	ND		
Carbazole	0	97	ug/kg	5.7E-09	ND		0.01	6.5E-09	ND		
Chrysene	O	390	ug/kg	2.3E-08	ND		0.01	2.6E-08	ND		
Dibenz(a,h)anthracene	0	240	ug/kg	1.4E-08	ND	-	0.01	1.6E-08	ND		
Indeno(1,2,3-cd)pyrene	0	. 320	ug/kg	1.9E-08	ND		0.01	2.2E-08	ND:		
Dieldrin	0	32	ug/kg	1.9 E-0 9	5.0E-05	3.8E-05	0.01	2.2E-09	2.5E-05	8.6E-05	1.2E-04
Aluminum	I	11300	mg/kg	6.6E-04	1.0E+00	6.6E-04	0.001	7.6E-05	2.0E-01	3.8E-04	1.0E-03
Arsenic	1	3.8	mg/kg	2.2E-07	3.0E-04	7.4E-04	0.001	2.6E-08	2.9E-04	8.8E-05	8.3E-04
Cadmium	ı	2.1	mg/kg	1.2E-07	1.0E-03	1.2E-04	0.001	1.4E-08	1.0E-05	1.4E-03	1.5E-03
Iron	1	13900	mg/kg	8.2E-04	3.0E-01	2.7E-03	0.001	9.4E-05	6.0E-03	1.6E-02	1.8E-02
Lead	1 1	473	mg/kg	2.8E-05	ND		0.001	3.2E-06	ND		
Manganese	1	296	mg/kg	1.7E-05	4.7E-02	3.7E-04	0.001	2.0E-06	1.9E-03	1.1E-03	1.4E-03
			SUMMARY H	AZARD INDEX		0.005				0.02	0.02

^[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

Harding Lawson Associates Sel 6ing. xls 1/5/99

^[2] Calculated from oral RfDs.

TABLE G-20

INHALATION OF PARTICULATES - SURFACE SOIL.
SITE MAINTENANCE WORKER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
			chemical-		
SOIL CONCENTRATION	c	chemical-specific	specific		CANCER RISK = INTAKE (mg/kg-day) x INHALATION CANCER SLOPE FACTOR (mg/kg-day) 1
PART. EMISSION FACTOR	PEF	1.24E+09	m³/kg	default [1]	
CONCENTRATION AIR	CA	chemical-specific	mg/m³		
INHALATION RATE	IR	2.5	m ¹ /hour	USEPA, 1995	HAZARD QUOTIENT = INTAKE (mg/kg-day) / INHALATION REFERENCE DOSE (mg/kg-day)
BODY WEIGHT	BW	70	kg	USEPA, 1991	
EXPOSURE TIME	ET	8	hours/day	Assumption	
EXPOSURE FREQUENCY	EF	30	days/year	Assumption	INTAKE = CAXIRXETX EFX ED
EXPOSURE DURATION	ED	25	years	USEPA, 1995	BW x AT x 365 days/yr
CONVERSION FACTOR	CF	0.001	mg/ug	Organics only	
AVERAGING TIME	1			i	Where:
CANCER	AT	70	years	USEPA, 1991	$CA = C \times CF \times (I/PEF)$
NONCANCER	AT	25	years	USEPA, 1995	
[1] Florida Soil Clean-Up Goal Var	iable. FDEP, 1995.				<u> </u>
USEPA, 1991. Human Health Eva	luation Manual, Suppleme	ental Guidance:			
"Standard Default Exposure Fact	ors"; OSWER Directive 9	7285.6-03.			Note: For noncarcinogenic effects, AT = ED
USEPA, 1995. Supplemental Guid	ance to RAGS: Region 4	Bulletins, Bulletin No. 3, No	vember 1995.		

TABLE & 20

INHALATION OF PARTICULATES - SURFACE SOIL SITE MAINTENANCE WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION [1]	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION CSF (mg/kg-day)^-1	CANCER RISK
Benzo(a)anthracene	0	35	ug/kg	2.82E-11	2.4E-13	3.1E+00	7.3E-13
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	2.5E-12	3.1E+00	7.8E-12
Benzo(b)fluoranthene	0	41	ug/kg	3.31E-11	2.8E-13	3.1E+00	8.6E-13
Benzo(k)fluoranthene	0	3.9	ug/kg	3.15E-12	2.6E-14	3.1E+00	8.2E-14
Chrysene	0	0.39	ug/kg	3.15E-13	2.6E-15	3.1E+00	8.2E-15
Dibenz(a,h)anthracene	0	240	ug/kg	1.94E-10	1.6E-12	3.1E+00	5.0E-12
Indeno(1,2,3-cd)pyrene	0	32	ug/kg	2.58E-11	2.2E-13	3.1E+00	6.7E-13
Dieldrin		32	mg/kg	2.58E-08	2.2E-10	1.6E+01	3.5E-09
Arsenic	1 1	3.8	mg/kg	3.06E-09	2.6E-11	1.5E+01	3.9E-10
Lead	1	473	mg/kg	3.81E-07	3.2E-09	ND	
				SUMMARY CAN	CER RISK		4E-09
[1] Toxicity equivalent factor	s are applied to carcino	genic PAHs per USEP	A Region IV G	uidance (USEPA, 1995).			

Harding Lawson Associates SS_INH1.xls 1/5/99 TABLE 6-30

INHALATION OF PARTICULATES - SURFACE SOIL SITE MAINTENANCE WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION RfD (mg/kg-day)	HAZARD QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	2.82E-10	6.6E-12	ND	
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	7.0E-12	ND	
Benzo(h)fluoranthene	0	410	ug/kg	3.31E-10	7.8E-12	ND	
Benzo(k)fluoranthene	0	390	ug/kg	3.15E-10	7.4E-12	NĐ	ł
Carbazole	0	97	ug/kg	7.82E-11	1.8E-12	ND	
Chyrsene	0	390	ug/kg	3.15E-10	7.4E-12	ND	
Dibenz(a,h)anthracene	0	390	ug/kg	3.15E-10	7.4E-12	ND	ļ
Indeno(1,2,3-cd)pyrene	0	240	ug/kg	1.94E-10	4.5E-12	ND	
Dieldrin	1	320	mg/kg	2.58E-07	6.1E-09	ND	
Aluminum	1	11300	mg/kg	9.11E-06	2.1E-07	ND	
Arsenic	I	3.8	mg/kg	3.06E-09	7.2E-11	ND	
Cadmium	ı	2.1	mg/kg	1.69E-09	4.0E-11	ND	
Iron	1 1	13900	mg/kg	1.12E-05	2.6E-07	ND	
Lead	1 1	473	mg/kg	3.81E-07	9.0E-09	ND	
Manganese	I	296	mg/kg	2.39E-07	5.6E-09	1.4E-05	4.0E-04
				SUMMARY HAZA	ARD INDEX		0.0004

TABLE & 3.1

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL OCCUPATIONAL WORKER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

EXPOSURE PARAMETERS

NONCANCER

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE
CONCENTRATION SOIL	CS	chemical-specific	chemical-specific	
INGESTION RATE	IR IR	50	mg/day	USEPA, 1995
FRACTION INGESTED	Fl	100%	unitless	Assumption
ADHERENCE FACTOR	AF	. 1	mg/cm2-event	USEPA, 1992
ABSORPTION FRACTION	ABS	chemical specific	unitless	Assumption
SURFACE AREA EXPOSED	SA	2,300	cm²	USEPA, 1992
DOSE ABSORBED PER EVENT	DA _{even}	chemical-specific	mg/cm²-event	USEPA, 1995
CONVERSION FACTOR	CF	1.00E-09	kg/ug	Organic conversion
CONVERSION FACTOR	CF	1.00E-06	kg/mg	lnorganic conversion
BODY WEIGHT	BW	70	kg	USEPA, 1991
EXPOSURE FREQUENCY	EF	250	days/year [1]	USEPA, 1995
EXPOSURE DURATION	ED	25	years	USEPA, 1995
AVERAGING TIME				1
CANCER	AT	70	years	USEPA, 1991

[1] Units for exposure frequency are events/year in the calculation of the dermally absorbed dose.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors"; OSWER Directive 9285.6-03.

USEPA, 1992. Dermal Exposure Assessment: Principles and Applications; EPA/600/8-91/011B; 1/92.

USEPA, 1995. Supplemental Guidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

EQUATIONS

USEPA, 1995

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)¹

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE_{INGESTION} = CS x IR x FI x CF x EF x ED BW x AT x 365 days/yr

INTAKE DERMAL = DA wood x SA x EF x ED BW x AT x 365 days/yr

Where:

 $DA_{event} = CS \times AF \times ABS \times CF$

Note:

For noncarcinogenic effects, AT = ED

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL OCCUPATIONAL WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC 1/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL CSF (mg/kg-day) ⁻¹	CANCER RISK INGESTION	DERMAL ABS [2]	INTAKE DERMAL (mg/kg-day)	DERMAL CSF [3] (mg/kg-day) ⁻¹	CANCER RISK DERMAL	TOTAL CANCER RISK
Benzo(a)anthracene [1]	0	35	ug/kg	6.1E-09	7.3E+00	4.5E-08	0.01	2.8E-09	8.0E+00	2.3E-08	6.7E-08
Benzo(a)pyrene	o	370	ug/kg	6.5E-08	7.3E+00	4.7E-07	0.01	3.0E-08	8.0E+00	2.4E-07	7.1E-07
Benzo(h)fluoranthene [1]	0	41	ug/kg	7.2E-09	7.3E+00	5.2E-08	0.01	3.3E-09	8.0E+00	2.6E-08	7.9E-08
Benzo(k)fluoranthene [1]	0	3.9	ug/kg	6.8E-10	7.3E+00	5.0E-09	0.01	3.1E-10	8.0E+00	2.5E-09	7.5E-09
Carbazole	О	97	ug/kg	1.7E-08	2.0E-02	3.4E-10	0.01	7.8E-09	4.0E-02	3.1E-10	6.5E-10
Chrysene [1]	0	0.39	ug/kg	6.8E-11	7.3E+00	5.0E-10	0.01	3.1E-11	8.0E+00	2.5E-10	7.5E-10
Dibenz(a,h)anthracene [1]	0	240	ug/kg	4.2E-08	7.3E+00	3.1E-07	0.01	1.9E-08	8.0E+00	1.5E-07	4.6E-07
Indeno(1,2,3-cd)pyrene [1]	0	32	ug/kg	5.6E-09	7.3E+00	4.1E-08	0.01	2.6E-09	8.0E+00	2.1E-08	6.1E-08
Dieldrin	o	32	ug/kg	5.6E-09	1.6E+01	8.9E-08	0.01	2.6E-09	3.2E+01	8.2E-08	1.7E-07
Arsenic	1	3.8	mg/kg	6.6E-07	1.5E+00	1.0E-06	0.001	3.1E-08	1.5E+00	4.6E-08	1.0E-06
Lead	11	473	mg/kg	8.3E-05	ND		0.001	3.8E-06	ND		
			SUMMARY C	ANCER RISK		2E-06				6E-07	3E-06

Harding Lawson Associates Sel 6ing. xls 1/5/99

 ^[1] Cacinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995).
 [2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

^[3] Calculated from oral CSFs.

TABLE 6.1

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL OCCUPATIONAL WORKER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg⊲lay)	ORAL RfD (mg/kg-day)	HAZARÐ QUOTIENT INGESTION	DERMAL ABS [1]	INTAKE DERMAL (mg/kg-day)	DERMAL RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT
	}										
Benzo(a)anthracene	0 .	350	ug/kg	1.7E-07	ND		0.01	7.9E-08	ND		f
Benzo(a)pyrene	0	370	ug/kg	1.8E-07	ND		0.01	8.3E-08	ND		
Benzo(b)fluoranthene	0	410	ug/kg	2.0E-07	ND		0.01	9.2E-08	ND		i
Benzo(k)fluoranthene	o	390	ug/kg	1.9E-07	ND		0.01	8.8E-08	ND		
Carbazole	0	97	ug/kg	4.7E-08	ND		0.01	2.2E-08	ND		
Chrysene	0	390	ug/kg	1.9E-07	ND		0.01	8.8E-08	ND		
Dibenz(a,h)anthracene	0	240	ug/kg	1.2E-07	ND		0.01	5.4E-08	ND		
Indeno(1,2,3-cd)pyrene	0	320	ug/kg	1.6E-07	ND		10.0	7.2E-08	ND		} ·
Dieldrin	0	32	ug/kg	1.6E-08	5.0E-05	3.1E-04	0.01	7.2E-09	2.5E-05	2.9E-04	6.0E-04
Aluminum		11300	mg/kg	5.5E-03	1.0E+00	5.5E-03	0.001	2.5E-04	2.0E-01	1.3E-03	6.8E-03
Arsenic	I	3.8	mg/kg	1.9E-06	3.0E-04	6.2E-03	0.001	8.6E-08	2.9E-04	2.9E-04	6.5E-03
Cadmium	1	2.1	mg/kg	1.0E-06	1.0E-03	1.0E-03	0.001	4.7E-08	1.0E-05	4.7E-03	5.8E-03
fron	1	13900	mg/kg	6.8E-03	3.0E-01	2.3E-02	0.001	3.1E-04	6.0E-03	5.2E-02	7.5E-02
Lead	1		mg/kg	2.3E-04	ND		0.001	1.1E-05	ND		
Manganese	1	296	mg/kg	1.4E-04	4.7E-02	3.1E-03	0.001	6.7E-06	1.9E-03	3.5E-03	6.6E-03
				ARY HAZARD INDEX		0.04				0.06	0.1

^[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

Harding Lawson Associates Selfing.xls 1/5/99

^[2] Calculated from oral RfDs.

INHALATION OF PARTICULATES - SURFACE SOIL OCCUPATIONAL WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
			chemical-		<u> </u>
SOIL CONCENTRATION	c	chemical-specific	specific		CANCER RISK = INTAKE (mg/kg-day) x INHALATION CANCER SLOPE FACTOR (mg/kg-day) 1
PART. EMISSION PACTOR	PEF	1.24E+09	m³/kg	default [1]	
CONCENTRATION AIR	CA	chemical-specific	mg/m³		
INHALATION RATE	IR .	0.833	m³/hour	USEPA, 1995	HAZARD QUOTIENT = INTAKE (mg/kg-day) / INHALATION REFERENCE DOSE (mg/kg-day)
BODY WEIGHT	BW	70	kg	USEPA, 1991	
EXPOSURE TIME	ET	8	hours/day	Assumption	
EXPOSURE PREQUENCY	EF	250	days/year	Assumption	INTAKE = CAXIRXETXEFXED
EXPOSURE DURATION	ED	25	years	USEPA, 1995	BW x AT x 36S days/yr
CONVERSION FACTOR	CF	0.001	mg/ug	Organics only	
AVERAGING TIME					Where:
CANCER	AT	70	years	USEPA, 1991	$CA = C \times CF \times (1/PEF)$
NONCANCER	AT	25	years	USEPA, 1995	
[1] Florida Soil Clean-Up Goal Variable.	FDEP, 1995.				***
USEPA, 1991. Human Health Evaluation	•	dance:			
"Standard Default Exposure Factors"; C					Note: For noncarcinogenic effects, AT = ED.
USEPA, 1995. Supplemental Guidance to			1995.		•

TABLE G.12.

INHALATION OF PARTICULATES - SURFACE SOIL OCCUPATIONAL WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION [1]	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION CSF (mg/kg-day)^-1	CANCER RISK
Benzo(a)anthracene	О	35	ug/kg	2.82E-11	6.6E-13	3.1E+00	2.0E-12
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	6.9E-12	3.1E+00	2.2E-11
Benzo(b)fluoranthene	О	41	ug/kg	3.31E-11	7.7E-13	3.1E+00	2.4E-12
Benzo(k)fluoranthene	0	3.9	ug/kg	3.15E-12	7.3E-14	3.1E+00	2.3E-13
Chrysene	0	0.39	ug/kg	3.15E-13	7.3E-15	3.1E+00	2.3E-14
Dibenz(a,h)anthracene	О	240	ug/kg	1.94E-10	4.5E-12	3.1E+00	1.4E-11
Indeno(1,2,3-cd)pyrene	О	32	ug/kg	2.58E-11	6.0E-13	3.1E+00	1.9E-12
Dieldrin	I	32	mg/kg	2.58E-08	6.0E-10	1.6E+01	9.6E-09
Arsenic	1	3.8	mg/kg	3.06E-09	7.1E-11	1.5E+01	1.1E-09
Lead	I	473	mg/kg	3.81E-07	8.9E-09	ND	
				SUMMARY CAN	CER RISK		1E-08
[1] Toxicity equivalent factors are ap	plied to carcinogenic F	AHs per USEPA Region	IV Guidance	(USEPA, 1995).			

Harding Lawson Associates SS_INH1.xls 1/5/9!

TABLE 6.22.

INHALATION OF PARTICULATES - SURFACE SOIL OCCUPATIONAL WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

COMPOUND	INORGANIC OR ORGANIC 1/0	SOIL CONCENTRATION	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION Rfi) (mg/kg-day)	HAZARD QUOTIENT
Benzo(a)anthracene	. O	350	ug/kg	2.82E-10	1.8E-11	ND	
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	1.9E-11	ND	
Benzo(b)fluoranthene	0	410	ug/kg	3.31E-10	2.2E-11	ND	
Benzo(k)fluoranthene	0	390	ug/kg	3.15E-10	2.1E-11	ND	
Carbazole	. 0	97	ug/kg	7.82E-11	5.1E-12	ND	
Chyrsene	0	390	ug/kg	3.15E-10	2.1E-11	ND	
Dibenz(a,h)anthracene	0	390	ug/kg	3.15E-10	2.1E-11	ND	Ì
Indeno(1,2,3-cd)pyrene	0	240	ug/kg	1.94E-10	1.3E-11	ND	ł
Dieldrin	ı	320	mg/kg	2.58E-07	1.7E-08	ND	
Aluminum		11300	mg/kg	9.11E-06	5.9E-07	ND	
Arsenic	1	3.8	mg/kg	3.06E-09	2.0E-10	ND	Í
Cadmium	ı	2.1	mg/kg	1.69E-09	1.1E-10	ND	
Iron	1	13900	mg/kg	1.12E-05	7.3E-07	ND	
Lead	I	473	mg/kg	3.81E-07	2.5E-08	ND	-
Manganese	I	296	mg/kg	2.39E-07	1.6E-08	1.4E-05	1.1E-03
				SUMMARY HAZA	ARD INDEX		0.001

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL EXCAVATION WORKER
NAS WIITING FIELD
MILTON, FLORIDA
SITE 16

USEPA, 1995. Supplemental Guidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

EXPOSURE PARAMETERS

EQUATIONS

Note:

For noncarcinogenic effects, AT = ED

PARAMETER	SYMBOL	VALUE	UNITS	90URCE	
CONCENTRATION SOIL	CS	chemical-specific	chemical-specific		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day) ⁻¹
INGESTION RATE	IR IR	480	mg/day	USEPA, 1995	
FRACTION INGESTED	FI	100%	unitless	Assumption	HAZARI) QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
ADHERENCE FACTOR	AF	,	mg/cm²-event	USEPA, 1995	
ABSORPTION FRACTION	ABS	chemical-specific	unitless	USEPA, 1995	
SURFACE AREA EXPOSED	SA	5,750	cm²	USEPA, 1992	
DOSE ABSORBED PER EVENT	DA _{*****}	chemical-specific	mg/cm²-event	USEPA, 1992	
CONVERSION FACTOR	CF .	1 00E-09	kg/ug	Organic conversion	
CONVERSION FACTOR	CF	1.00E-06	kg/mg	Inorganic conversion	$INTAKE_{INGESTION} = CS \times IR \times FI \times CF \times EF \times ED$
вору weight	BW	70	kg	USEPA, 1991	BW x AT x 365 days/yr
EXPOSURE FREQUENCY	EF	30	days/year [1]	Assumption	
EXPOSURE DURATION	ED	1	years	USEPA, 1991	
AVERAGING TIME		1			INTAKE-DERMAL = DAevent x SA x EF x ED
CANCER	AT	70	years	USEPA, 1991	BW x AT x 365 days/yr
NONCANCER	AT	1	years	USEPA, 1991	
[1] Units for exposure frequency s	re events/year in the cal	culation of the dermally al	sorbed dose.		Where:
USEPA, 1991. Human Health Ev				Factors";	$DA_{event} = CS \times AF \times ABS \times CF$
OSWER Directive 9285.6-03.					
USEPA, 1992. Dermal Exposure	Assessment: Principles	and Applications; EPA 600)/8-91/011B; 1/92.		

Harding Lawson Associates SS_ING1.xls 1/5/99

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL EXCAVATION WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

COMPOUND	INORGANIC OR ORGANIC I/O	90IL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL CSF (mg/kg-day) ⁻¹	CANCER RISK INGESTION	DERMAL ABS [2]	INTAKE DERMAL (mg/kg-day)	DERMAL, CSF [3] (mg/kg-day) ⁻¹	CANCER RISK DERMAL	TOTAL CANCER RISK
Benzo(a)anthracene [1]	0	35	ug/kg	2.8E-10	7.3E+00	2.1E-09	0.01	3.4E-11	8.0E+00	2.7E-10	2.3E-09
Benzo(a)pyrene	0	370	ug/kg	3.0E-09	7.3E+00	2.2E-08	0.01	3.6E-10	8.0E+00	2.9E-09	2.5E-08
Benzo(h)fluoranthene [1]	0	41	ug/kg	3.3E-10	7.3E+00	2.4E-09	0.01	4.0E-11	8.0E+00	3.2E-10	2.7E-09
Benzo(k)fluoranthene [1]	0	3.9	ug/kg	3.1E-11	7.3E+00	2.3E-10	0.01	3.8E-12	8.0E+00	3.0E-11	2.6E-10
Carhazole	O	97	ug/kg	7.8E-10	2.0E-02	1.6E-11	0.01	9.4E-11	4.0E-02	3.7E-12	1.9E-11
Chrysene [1]	0	0.39	ug/kg	3.1E-12	7.3E+00	2.3E-11	0.01	3.8E-13	8.0E+00	3.0E-12	2.6E-11
Dibenz(a,h)anthracene [1]	0	240	ug/kg	1.9E-09	7.3E+00	1.4E-08	0.01	2.3E-10	8.0E+00	1.9E-09	1.6E-08
Indeno(1,2,3-cd)pyrene [1]	0	32	ug/kg	2.6E-10	7.3E+00	1.9E-09	0.01	3.1E-11	8.0E+00	2.5E-10	2.1E-09
Dieldrin	0	. 32	ug/kg	2.6E-10	1.6E+01	4.1E-09	0.01	3.1E-11	3.2E+01	9.9E-10	5.1E-09
Arsenic	1	3.8	mg/kg	3.1E-08	1.5E+00	4.6E-08	0.001	3.7E-10	1.5E+00	5.5E-10	4.6E-08
Lead	I	473	mg/kg	3.8E-06	ND		0.001	4.6E-08	ND		
			SUMMARY C	CANCER RISK		9E-08				7E-09	1E-07

^[1] Cacinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995)

^[2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

^[3] Calculated from oral CSFs.

TABLE GAS

DIRECT CONTACT WITH AND INCIDENTAL, INGESTION OF SURFACE SOIL EXCAVATION WORKER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

NONCARCINOGENIC EFFECTS

	INORGANIC OR	SOIL	UNITS	INTAKE	ORAL	HAZARD	DERMAL	INTAKE	DERMAL	HAZARD	TOTAL
COMPOUND	ORGANIC	CONCENTRATION		INGESTION	Rf() [1]	QUOTIENT	ABS [2]	DERMAL,	R r D [3]	QUOTIENT	HAZARD
	1/0			(mg/kg-day)	(mg/kg-day)	INGESTION		(nvg/kg-day)	(mg/kg-day)	DERMAL	QUOTEENT
Benzo(2)anthracene	0	350	ug/kg	2.0E-07	ND		0.01	2.4E-08	ND	,	
Benzo(a)pyrene	0	370	ug/kg	2.1E-07	ND		0.01	2.5E-08	ND		
Benzo(h)fluoranthene	0	410	ug/kg	2.3E-07	ND		0.01	2.8E-08	ND		
Benzo(k)fluoranthene	0	390	ug/kg	2.2E-07	ND		0.01	2.6E-08	ND		
Cartiazole	0	200	ug/kg	1.1E-07	ND		0.01	1.4E-08	ND		
Chrysene	0	390	ug/kg	2.2E-07	ND		0.01	2.6E-08	ND		
Dihenz(a,h)anthracene	0	240	ug/kg	1.4E-07	. ND		0.01	1.6E-08	ND		
Indeno(1,2,3-cd)pyrene	0	320	ug/kg	1.8E-07	ND		0.01	2.2E-08	ND		
Dieldrin	0	32	ug/kg	1.8E-08	5.0E-05	3.6E-04	0.01	2.2E-09	2.5E-05	8.6E-05	4.5E-04
Atuninum	1	11300	mg/kg	6.4E-03	1.0E+00	6.4E-03	0.001	7.6E-05	2.0E-01	3.8E-04	6.8E-03
Arsenic	1	3.8	mg/kg	2.1E-06	3.0E-04	7.1E-03	0.001	2.6E-08	2.9E-04	8.8E-05	7.2E-03
Cadmitum		2.1	mg/kg	1.2E-06	1.0E-03	1.2E-03	0.001	1.4E-08	1.0E-05	1.4E-03	2.6E-03
Iron	1	13900	mg/kg	7.8E-03	3.0E-01	2.6E-02	0.001	9.4E-05	6.0E-03	1.6E-02	4.2E-02
Lead	1	473	mg/kg	2.7E-04	ND		0.001	3.2E-06	ND		-
Manganese	1	296	mg/kg	1.7E-04	4.7E-02	3.5E-03	0.001	2.0E-06	1.9E-03	1.1E-03	4.6E-03
			SUMMARY H	AZARD INDEX		0.04				0.02	0.06

^[1] Subchronic Rfd values were used for the excavation worker due to short exposure scenario.

Harding Lawson Associates SS_ING1.xis 1/5/99

^[2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (USEPA, 1995).

^[3] Calculated from oral RfDs.

INHALATION OF PARTICULATES - SURFACE SOIL EXCAVATION WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
	T		chemical-	[
SOIL CONCENTRATION	C	chemical-specific	specific		CANCER RISK = INTAKE (mg/kg-day) x INHALATION CANCER SLOPE FACTOR (mg/kg-day) 1
PART. EMISSION FACTOR	PEF	1.24E+09	m³/kg	default [1]	
CONCENTRATION AIR	CA	chemical-specific	mg/m³	}	
INHALATION RATE	IR	2.5	m¹/hour	USEPA, 1995	'HAZARD QUOTIENT = INTAKE (mg/kg-day) / INHALATION REFERENCE DOSE (mg/kg-day)
BODY WEIGHT	BW	70	kg	USEPA, 1991	
EXPOSURE TIME	ET	8	hours/day	Assumption	
EXPOSURE FREQUENCY	EF	30	days/year	Assumption	INTAKE = CAxIRxETxEFxED
EXPOSURE DURATION.	· ED	. 1	years	Assumption	BW x AT x 365 days/yr
CONVERSION FACTOR	CF	0.001	mg/ug	Organics only	
AVERAGING TIME	1				Where:
CANCER	AT	70	years	USEPA, 1991	$CA = C \times CF \times (I/PEF)$
NONCANCER	AT	1	years	USEPA, 1991	
[1] Florida Soil Clean-Up Goal Variable.	FDEP, 1995.				Note: For nonearcinogens, AT ≈ ED.
USEPA, 1991. Human Health Evaluation	Manual, Supplemental Gu	idance:			
Standard Default Exposure Factors; OSW	ER Directive 9285.6 03.				
USEPA, 1995. Supplemental Guidance to	RAGS : Region IV, Huma	an Health Risk Assessment B	ulletin No. 3.		

TABLE 624

INHALATION OF PARTICULATES - SURFACE SOIL EXCAVATION WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION [1]	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION CSF (mg/kg-day)^-1	CANCER RISK
Benzo(a)anthracene	0	35	ug/kg	2.82E-11	9.5E-15	3.1E+00	2.9E-14
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	1.0E-13	3.1E+00	3.1E-13
Benzo(b)fluoranthene	0	41	ug/kg	3.31E-11	1.1E-14	3.1E+00	3.4E-14
Benzo(k)fluoranthene	0	3.9	ug/kg	3.15E-12	1.1E-15	3.1E+00	3.3E-15
Chrysene	О	0.39	ug/kg	3.15E-13	1.1E-16	3.1E+00	3.3E-16
Dibenz(a,h)anthracene	. 0	240	ug/kg	1.94E-10	6.5E-14	3.1E+00	2.0E-13
Indeno(1,2,3-cd)pyrene	0	32	ug/kg	2.58E-11	8.7E-15	3.1E+00	2.7E-14
Dieldrin	I	32	mg/kg	2.58E-08	8.7E-12	1.6E+01	1.4E-10
Arsenic	I	3.8	mg/kg	3.06E-09	1.0E-12	1.5E+01	1.5E-11
Lead	1	473	mg/kg	3.81E-07	1.3E-10	ND	
				SUMMARY CAN	CER RISK		2E-10

Harding Lawson Associates SS_INH1_xls 1/5/9(TABLE GRY

INHALATION OF PARTICULATES - SURFACE SOIL EXCAVATION WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION RfD (mg/kg-day)	HAZARD QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	2.82E-10	6.6E-12	ND	
Benzo(a)pyrene	0	370	ug/kg	2.98E-10	7.0E-12	ND	
Benzo(b)fluoranthene	0	410	ug/kg	3.31E-10	7.8E-12	ND	
Benzo(k)fluoranthene	0	390	ug/kg	3.15E-10	7.4E-12	ND	
Carbazole	О	97	ug/kg	7.82E-11	1.8E-12	ND	
Chyrsene	0	390	ug/kg	3.15E-10	7.4E-12	ND	
Dibenz(a,h)anthracene	0	390	ug/kg	3.15E-10	7.4E-12	ND	
Indeno(1,2,3-cd)pyrene	O	240	ug/kg	1.94E-10	4.5E-12	ND	
Dieldrin	I	320	mg/kg	2.58E-07	6.1E-09	ND	
Aluminum	I	11300	mg/kg	9.11E-06	2.1E-07	ND	
Arsenic	I	3.8	mg/kg	3.06E-09	7.2E-11	ND	
Cadmium	1	2.1	mg/kg	1.69E-09	4.0E-11	ND	
Iron	1	13900	mg/kg	1.12E-05	2.6E-07	ND	
Lead	1	473	mg/kg	3.81E-07	9.0E-09	ND	
Manganese	I	296	mg/kg	2.39E-07	5.6E-09	1.4E-05	4.0E-04
				SUMMARY HAZA	ARD INDEX		0.0004

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SUBSURFACE SOIL
EXCAVATION WORKER
NAS WHITING FIELD
MELTON, FLORIDA
SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE
CONCENTRATION SOIL	CS	chemical-specific	chemical specific	
INCESTION RATE	IR	480	mg/day	USEPA, 1995
FRACTION INGESTED	FI	· 1004	unitless	Assumption
ADHERENCE FACTOR	AF	1	mg/cm2-event	USEPA, 1995
ABSORPTION FRACTION	ABS	chemical-specific	unitless	USEPA, 1995
SURFACE AREA EXPOSED	SA	5,750	cm²	USEPA, 1992
DOSE ABSORBED PER EVENT	DA _{rvest}	chemical-specific	mg/cm²-event	USEPA, 1992
CONVERSION FACTOR	CF	1.00E-09	kg/ug	Organic conversion
CONVERSION FACTOR	CF .	1.00E-06	kg/mg	Inorganic conversion
BODY WEIGHT	BW	70	kg	USEPA, 1991
EXPOSURE FREQUENCY	EF	30	days/year [1]	Assumption
EXPOSURE DURATION	ED	1	years	USEPA, 1991
AVERAGING TIME				
CANCER	AT	70	y:ears	USEPA, 1991
NONCANCER	AT	1	years	USEPA, 1991

[1] Units for exposure frequency are events/year in the calculation of the dermally absorbed dose.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors";

OSWER Directive 9285.6-03.

USEPA, 1992. Dermal Exposure Assessment: Principles and Applications; EPA/600/8-91/011B; January 1992.

USEPA, 1995. Supplemental Guidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)¹

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE INGESTION = CS x IR x FI x CF x EF x ED

BW x AT x 365 days/yr

INTAKE DERMAL = DAevent x SA x EF x ED BW x AT x 365 days/yr

Where:

 $DA_{creat} = CS \times AF \times ABS \times CF$

Note: For noncarcinogenic effects, $\Delta T = ED$

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SUBSURFACE SOIL EXCAVATION WORKER
NAS WHITING FIELD
MELTON, FLORIDA
SITE 16

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (ng/kg-day)	ORAL CSP (mg/kg-day) ⁻¹	CANCER RISK INGESTION	DERMAL ARS (1)	INTAKE DERMAL (ing/kg-day)	DERMAL, CSF (2) (mg/kg-day) ⁻¹	CANCER RISK DERMAL	TOTAL CANCER RISK
Arsenic	ı	15.1	mg/kg	1.2E- 07	1,5E+00	1.8E-07	0.001	1.5E-09	1.5E+00	2.2E-09	1.8E-07
			SUMMARY C	ANCER RISK		2E-07				2E-09	2E-07

^[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

^[2] Calculated from oral CSFs.

NE = not evaluated.

TABLE @ 25

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SUBSURFACE SOIL EXCAVATION WORKER NAS WHITING FIELD MELTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC 1/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL RD (mg/kg-day)	HAZARD QUOTIENT INGESTION	DERMAL ABS [1]	INTAKE DERMAL (mg/kg-day)	DERMAL RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT
Arsenic Iron Lead] 	74800	mg/kg mg/kg mg/kg	8.5E-06 4.2E-02 4.3E-04	3.0E-04 3.0E-01 ND	2.8E-02 1.4E-01	0.001 0.001 0.001	1.0E-07 5.1E-04 5.2E-06		3.5E-04 8.4E-02	2.9E-02 2.2E-01
			SUMMARY H	AZARD INDEX		0.2				0.08	0.3

^[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995). [2] Calculated from oral RfDs.

Harding Lawson Associates Sb_ing1.xls 1/5/99

ND = no data available.

TABLE GAL

INHALATION OF PARTICULATES - SUBSURFACE SOIL EXCAVATION WORKER NAS WHITING FIELD MELTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
	T		chemical	 	=
SOIL CONCENTRATION	c	chemical-specific	specific	1	CANCER BISK IN INTAKE (water took a INHALI ATION CANCER SLORE EACTOR (water too)
	1			#DEE:	CANCER RISK = INTAKE (mg/kg-day) x INHALATION CANCER 81,0PE FACTOR (mg/kg-day) - f
PART, PAGSSION PACTOR	PEF	12000000	m³/kg	#REF!	
CONCENTRATION AIR	CA	chemical-specific	mg/m¹		
ENHALATION RATE	IR	2.5	• m½hour	USEPA, 1995	'HAZARD QUOTIENT = INTAKE (mg/kg-day) / INHALATION REFERENCE DOSE (mg/kg-day)
BODY WEIGHT	BW	70	kg	USEPA, 1991	
EXPOSURE TIME	ET	8	hours/day	Assumption	
EXPOSURE FREQUENCY	EF	30	days/year	Assumption	INTAKE = CA x IR x ET x EF x ED
EXPOSURE DURATION	ED	1	years	Assumption	BW x AT x 365 days/yr
CONVERSION FACTOR	CF	0.001	mg/ug	Organics only	
AVERAGING TIME			,		Where:
CANCER	AT	70	усага	USEPA, 1991	$CA = C \times CF \times (1/PEF)$
NONCANCER	AT	1	years	USEPA, 1991	· ·
[1] PEF has been derived in the PE	F Appendix to this report.				Note: For noncarcinogens, ΛT = ED.
USEPA, 1991. Human Health Eva	luation Manual, Suppleme	ntal Guidance:			1
Standard Default Exposure Factors	OSWER Directive 9285.	6-03.			
JSEPA, 1995. Supplemental Guid	ance to RAGS : Region I	, Human Health Risk Assess	ıment Bulletin N	lo. 3.	1

Harding Lawson Associates Sb_inh1.xls 1/5/99

INHALATION OF PARTICULATES - SUBSURFACE SOIL EXCAVATION WORKER NAS WHITING FIELD MELTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION CSF (mg/kg-day)^-1	CANCER RISK
Arsenic	1	15,1	mg/kg	1.26E-06	4.2E-10	1.5E+01	6.3E-09
			<u></u>	SUMMARY CAN	CER RISK		6E-09
NE = not evaluated.							

Harding Lawson Associates Sb_inh1.xls 1/5/99

INHALATION OF PARTICULATES - SUBSURFACE SOIL EXCAVATION WORKER
NAS WHITING FIELD
MELTON, FLORIDA
SITE 16

INORGANIC OR ORGANIC 1/0	SOIL CONCENTRATION	UNITS	AIR CONCENTRATION (mg/m³)	INTAKE (mg/kg-day)	INHALATION RfD (mg/kg-day)	HAZARD QUOTIENT
	15 1	ma/ka	1.26E.06	3 0E 08	MD	
	74800		6.23E-03	1.5E-04	ND	
ī.	766	mg/kg	6.38E-05	1.5E-06	ND	
			SUMMARY HAZA	ARD INDEX		0E+00
	ORGANIC	ORGANIC CONCENTRATION I	ORGANIC CONCENTRATION I/O I 15.1 mg/kg I 74800 mg/kg	ORGANIC CONCENTRATION CONCENTRATION (mg/m³) I 15.1 mg/kg 1.26E-06 I 74800 mg/kg 6.23E-03 I 766 mg/kg 6.38E-05	ORGANIC CONCENTRATION CONCENTRATION (mg/kg-day) I 15.1 mg/kg 1.26E-06 3.0E-08 I 74800 mg/kg 6.23E-03 1.5E-04 I 766 mg/kg 6.38E-05 1.5E-06	ORGANIC LONCENTRATION CONCENTRATION (mg/kg-day) RfD (mg/kg-day) I 15.1 mg/kg 1.26E-06 3.0E-08 ND 1 74800 mg/kg 6.23E-03 1.5E-04 ND

TABLE &27

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES) ADULT RESIDENT SITE II MILTON, FLORIDA

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE				
CONCENTRATION WATER	CW	chemical-specific	ug/liter		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)-1			
INGESTION RATE	IR .	2	liters/day	USEPA, 1995				
RODY WEIGHT	вw	70	kg	USEPA, 1991	HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)			
CONVERSION FACTOR	CF	0.001	mg/ug					
EXPOSURE FREQUENCY	EF	350	days/year	USEPA, 1995				
EXPOSURE DURATION	5 ED	24	years	USEPA, 1995	INTAKE = CW x IR x EF x ED x CF			
AVERAGING TIME	1			,	BW x AT x 365 days/year			
CANCER	ΑT	70	years	USEPA, 1991				
NONCANCER	AT	24	years	USEPA, 1991				
USEPA, 1991. Human Health Evaluat	ion Manual, Supplemental	Guidance:						
"Standard Default Exposure Factor	rs*; OSWER Directive 92	R5.6-03,			Note: For noncarcinogenic effects, AT = ED.			
USEPA, 1995. Region IV Supplement	al Gudance to RAGS, Bul	letin No. 3, November.						

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES) ADULT RESIDENT SITE 11 MILTON, FLORIDA

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	CANCER SLOPE FACTOR (mg/kg-day)^-1	CANCER RISK INGESTION
1,2-Dichlorethane	9.9	UG/LITER	9.3E-05	9 1E 02	8.5E-06
Benzene	180	UG/LITER	1.7E-03	2.9E-02	4.9E-05
Chloroform	1.	UG/LITER	9.4E-06	6.1E-03	5.7E-08
Trichlorethene	5.5	UG/LITER	5.2E 05	1.1E-02	5.7E-07
4,4-DDT	0.06	UG/LITER	5 6E-07	3.4E-01	1.9E-07
his(2-Ethylhexyl)phthalate	6.9	UG/LITER	6.5E-05	1.4E-02	9.1E-07
Arsenic	3.3	UG/LITER	3.1E-05	1.5E+00	4.6E-05
			TOTAL CANCER	RISK	1E-04

TABLE 627

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES) ADULT RESIDENT SITE 11 MILTON, FLORIDA

WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	REFERENCE IXOSE (mg/kg-day)	HAZARD QUOTIENT INGESTION
	tica trep	2.25.04	2.05.01	9.0E-04
		1 1		
i		1 1		2.8E-02
180	UG/LITER	4.9E-03	3.0E-04	1.6E+01
1	UG/LITER	2.7E-05	1.0E-02	2.7E-03
5.5	UG/LITER	1.5E-04	6.0E-03	2.5E-02
6.9	UG/LITER	1.9E-04	2.0E-02	9.5E-03
0.06	UG/LITER	1.6E-06	5.0E-04	3.3E-03
491	UG/LITER	1.3E-02	1.0E+00	1.3E-02
3.3	UG/LITER	9.0E-05	3.0E-04	3.0E-01
53.9	UG/LITER	1.5E-03	7.0E-02	2.1E-02
2.6	UG/LITER	7.1E-05	5.0E-04	1.4E-01
4570	UG/LITER	1.3E-01	3.0E-01	4.2E-01
188	UG/LITER	5.2E-03	4.7E-02	1.1E-01
		TOTAL HAZARD	INDEX	18
	9.9 9.1 180 1 5.5 6.9 0.06 491 3.3 53.9 2.6 4570	9.9 UG/LITER 9.1 UG/LITER 180 UG/LITER 1 UG/LITER 1 UG/LITER 0.06 UG/LITER 0.06 UG/LITER 491 UG/LITER 491 UG/LITER 3.3 UG/LITER 53.9 UG/LITER 100/LITER 100/LITER 100/LITER 100/LITER 100/LITER 100/LITER 100/LITER	9.9 UG/LITER 2.7E-04 9.1 UG/LITER 2.5E-04 180 UG/LITER 4.9E-03 1 UG/LITER 2.7E-05 5.5 UG/LITER 1.5E-04 6.9 UG/LITER 1.9E-04 0.06 UG/LITER 1.9E-04 0.06 UG/LITER 1.3E-02 3.3 UG/LITER 1.3E-02 3.3 UG/LITER 1.5E-03 2.6 UG/LITER 1.5E-03 2.6 UG/LITER 1.3E-01 188 UG/LITER 5.2E-03	1

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES) CHULD RESIDENT SITE 16 MILTON, FLORDIA

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION WATER	CW	chemical-specific	ug/liter		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)-1
INGESTION RATE	ir ir	1	liters/day	USEPA, 1995	•
BODY WEIGHT	aw	15	kg	USEPA, 1991	HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
CONVERSION FACTOR	CF	0.001	mg/ug		<u>.</u>
EXPOSURE FREQUENCY	EF	350	days/year	USEPA, 1995	
EXPOSURE DURATION	ED	6	years	USEPA, 1995	INTAKE = CWxIRxEFxEDxCF
AVERAGING TIME					BW x AT x 365 days/year
CANCER	AT	70	years	USEPA, 1991	
NONCANCER	TA	. 6	years	USEPA, 1991	
USEPA, 1991. Human Health Evaluation	Manual, Supplemental Guida	ance:			
"Standard Default Exposure Factors"	OSWER Directive 9285.6-0	3.			Note: For noncarcinogenic effects, AT = ED.
HEEDA LOOS Danies BU Samulamental (Cultura to DACC Differin K	la 2 Normalia			i

TABLE 625

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES)
CHILD RESIDENT
SITE 16
MILTON, FLORDIA

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	REFERENCE DOSE (mg/kg-day)	HAZARD QUOTIENT INGESTION
1,2-Dichloroethane	9.9	UG/LITER	6.3E-04	3.0E-01	2.1E-03
1,2-Dichloroethene	9.1	UG/LITER	5.8E-04	9.0E-03	6.5E-02
Benzene	180	UG/LITER	1.2E-02	3.0E-04	3.8E+01
Chloroform	1	UG/LITER	6.4E-05	1.0E-02	6.4E-03
l'richloroethene	5.5	UG/LITER	3.5E-04	6.0E-03	5.9E-02
bis(2-Ethylhexyl)phthalate	6.9	UG/LITER	4.4E-04	2.0E-02	2.2E-02
4,4-DDT	0.06	UG/LITER	3.8E-06	5.0E-04	7.7E-03
Aluminum	491	UG/LITER	3.1E-02	1.0E+00	3.1E-02
Arsenic	3.3	UG/LITER	2.1E-04	3.0E-04	7.0E-01
Barium	53.9	UG/LITER	3.4E-03	7.0E-02	4.9E-02
Cadmium	2.6	UG/LITER	1.7E-04	5.0E-04	3.3E-01
Iron	4570	UG/LITER	2.9E-01	3.0E-01	9.7E-01
Manganese	188	UG/LITER	1.2E-02	4.7E-02	2.6E-01
			TOTAL HAZAR	D INDEX	41

INHALATION EXPOSURE TO VOCS WHILE SHOWERING ADULT RESIDENT SITE 16 MILTON, FLORDIA

EXPOSURE PARAMETERS		***********		12	EQUATIONS
PARAMETER	SYMBOL.	VALUE	UNITS	SOURCE	
					CANCER RISK = AVG. CONC. (ug/m³) • CANCER UNIT RISK (ug/m³) · 1
CONCENTRATION SHOWER AIR	CA[I]	chemical	ug/m³	Modeled	
CONVERSION FACTOR 1	CF ₁	1.4	hours/day	USEPA, 1992	HAZARD QUOTIENT = AVG.CONC.(ug/m³)/REF. CONC. (ug/m³)
EXPOSURE TIME SHOWER	ET	70	hours/day	USEPA, 1991	
EXPOSURE FREQUENCY	EF	0,001	days/year		
EXPOSURE DURATION	ED	350	уолгя	USEPA, 1992	AVG. CONC. =CA ° EF ° ET ° ED
CONVERSION FACTOR 2	CF ₁	7	days/year	USEPA, 1992	AT * CF1 * CF2
AVERAGING TIME CANCER	AT		yenre		
AVERAGING TIME NONCANCER	AT	70	years	USEPA, 1991	
[1] Calculated via model by Foster and Chrostowski	, Air Pollution Control A	· 7		USEPA, 1991	
USEPA, 1991. Human Health Evaluation Manual,	Supplemental Guidance:				
"Standard Default Exposure Factors": OSWER	Directive 9285.6-03,				
USEPA, 1992. Region 6 Memorandum: Central T	endency and RME Expor	ure Parameters			

INHALATION EXPOSURE TO VOCS WHILE SHOWERING ADULT RESIDENT SITE 16 MILTON, FLORDIA

COMPOUND	VOLATILE OR NON-VOLATILE? V/NV	SHOWER AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION LIFETIME (ug/m³)	INHALATION CANCER UNIT RISK (ug/m ³) -1	CANCER RISK	
1.2-Dichloroethane	v	4.1E+01	1.1B-01	2.6E-05	2.9E-06	
Benzene	v	9.6E+02		8,3E-06	2.2E-05	
Chloroform	v	4.4E+00	1.2E-02	2.3E-05	2.8E-07	
Frichloroethene	v	2.4E+01	6.6E-02	2.0E-06	1.3F-07	
I,4-DDT	VИ	NA	NA	9.7E-05	NA	
Arsenic	NV	NA	NA NA	4.3E-03	NA	
Cadmium	NV	NA NA	NA	1.8E-03	NA	
		5	SUMMARY CANCER RI	SK	3E-05	

INHALATION EXPOSURE TO VOCs WRILE SHOWERING ADULT RESIDENT SITE 16 MILTON, FLORDIA

COMPOUND	VOLATILE OR NON-VOLATILE? V/NV	SHOWER AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION FOR TIME PERIOD (ug/m³)	CHRONIC INHALATION RIC [1] (ug/m³)	HAZARD QUOTIENT
1.2-Dichloroethane	V	4.1E+0t	3.3E-01	ND	
1,2-Dichloroethene (total)	V I	4.5E+01	3.6E-01	ND	
Benzene	v	9.6E+02	7,72+00	ND	
Chloroform	v	4.4E+00	3.5E-02	ND]
Trichloroethene	v	2.4E+01	1.9E-01	ND	
bis(2-Ethylhexyl)phthalate	NV	ND	NA	ND	
4,4-DDT	NV	ND	NA	ND	
Aluminom	NV	ND	NA	ND	
Arsenic	NV	ND	NA.	ND	
Barium	NV	ND ND	NA	5.06-04	
Cadmium	NV	ND	NA.	ND	
Iron	NV	ND	NA	ND	
Manganose	NV	ND	NA	5.0E-05	
		S	UMMARY HAZARD INDEX		0.0

^[1] RfC is the Reference Concentration published by USEPA.

ND = no data available.

NA = not applicable. The analyte is not volatile and has therefore not been evaluated via this volatilization model.

TABLE 6.30

CONCENTRATION OF VOCs WHILE SHOWERING ADULT RESIDENT SITE 16 MILTON, FLORDIA

EMPIRICAL CONSTANTS

CONSTANT	SYMBOL	VALUE	UNIT	SOURCE
Liquid-film mass transfer for CO ₂	K ₁ (CO ₂)	20	cm/hr	Calculated
Gas-film mass transfer for water	K _g (H ₂ O)	3000	cm/hr	Calculated
Molar gas constant x Temperature	RT	0.024	atm-m³/mole	
Reference temperature	T _i	293	к	
Temperature of shower water	Т,	318	к	Assumption
Viscosity of water at shower temperature	u,	0.6178	ср	Calculated
Viscosity of water at reference temperature	u ₁	0.65	ср	Calculated
Shower droplet free-fall time	t,	1.5	sec	Assumption
Droplet diameter	d	1	mm	Foster & Chrostowski, 1987
Flow rate in shower	FR	20	1/min	Assumption
Volume of shower area	sv	12	m³	Assumption
Air exchange rate	R	0.03	min ⁻¹	Calculated
Time in shower	D,	12	min	USEPA, 1989
Time at which concentration is being calculated	t	12	min	Assumption

Foster, S.A. and Chrostowski, P.C., 1987. Inhalation Exposures to Volatile Organic Contaminants in the Shower.

USEPA, 1989, Exposure Factors Handbook; EPA/600/8-89/043, May 1989.

All equations and definitions of terms are presented in the Appendix to this report, Calculation of Air Concentration Using the Shower Model.

TABLE G30

CONCENTRATION OF VOCs WHILE SHOWERING ADULT RESIDENT SITE 16 MILTON, FLORDIA INTERIM CORRECTIVE MEASURE

SHOWER CONCENTRATIONS

COMPOUND	C _w	MW	н	$\mathbf{k_{l}}$	k _g	K_{L}	\mathbf{K}_{al}	C_{wd}	S	C _(voc)
	(ug/l)	(g/mol)	(atm-m³/mol)	(cm/hr)	(cm/hr)	(cm/hr)	(cm/hr)	(μg/l)	(μg/m³-min)	$(\mu g/m^3)$
1,2-Dichloroethane	9.9	99.0	0.00098	1.3E+01	1.3E+03	1.1E+01	1.1E+01	2.4E+00	4.1E+00	4.1E+01
1,2-Dichloroethene (total)	9.1	97.0	0.00758	1.3E+01	1.3E+03	1.3E+01	1.4E+01	2.7E+00	4.5E+00	4.5E+01
Benzene	180	78.0	0.0056	1.5E+01	1.4E+03	1.4E+01	1.5E+01	5.7E+01	9.6E+01	9.6E+02
Chloroform	1	120.0	0.0037	1.2E+01	1.2E+03	1.1E+01	1.2E+01	2.6E-01	4.4E-01	4.4E+00
Trichloroethene	5.5	130.0	0.01	1.2E+01	1.1E+03	1.1E+01	1.2E+01	1.4E+00	2.4E+00	2.4E+01

 $C_w = Concentration in groundwater$

K_L = Mass transfer coefficient

MW = Molecular weight

K_{al} = Temperature correction of mass transfer coefficient

H = Henry's Law constant

 C_{wd} = Analyte concentration in water droplet

k₁ = Chemical-specific mass-transfer coefficient

S = Release rate of analyte to air

k. = Chemical-specific gas mass-transfer coefficient

 $C_{(voc)}$ = Analyte concentration in bathroom air at time t.

 $C_{(voc)} = (S/R) \times (e^{(RDs)}-1) \times e^{(-Rt)}$

TABLE (6-3)

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER ADULT TRESPASSER - WADING SITE 16 , MILTON, FLORIDA

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION WATER	CW	chemical specific	ug/liter		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day) '
INGESTION RATE [1]	- IR	0.026	liters/day	USEPA, 1995	
SURFACE AREA [2]	SA	5,750	cm²	USEPA, 1992	
EVENT FREQUENCY	EV	1	events/day	Assumption	HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
BODY WEIGHT	BW	70	kg	USEPA, 1991	
DOSE ABSORBED PER EVENT	DA _{rved}	chemical specific	mg/cm²-event	Culculated	
EXPOSURE TIME	ET	26	hours 'day	Assumption	
EXPOSURE FREQUENCY	EF	45	days/year	Assumption	INTAKE-INGESTION = CW x IR x EF x ED x CF1
EXPOSURE DURATION	ED	20	years	Assumption	BW x AT x 365 days/yr
DIFFUSION DEPTH PER EVENT	PC _{even}	chemical-specific	em/eveni	[3]	
AVERAGING TIME				ł	
CANCER	AT	70	years	USEPA, 1991	INTAKE-DERMAL = DA x EV. x EE x ED x SA
NONCANCER	AT	20	years	Assumption	AT x BW x 365 dayn/yr
CONVERSION FACTOR	CFI	.0.001	mg/ug	<u>'</u>	l
CONVERSION FACTOR	CF2	0.001	liter/cm³		
[1] Ingestion Rate = 0.026 l/day = 10 ml/	hour x 2.6 hours/day x 0.0	O1 I'mi			
[2] Surface area assumes lower legs, hands,	and feet are exposed.				Where:
[3] PCevent is calculated in the Dermal Guid	dance See Table C-35.				$DA_{max} = PC_{max} \times CW \times CF1 \times CF2$
					·
USEPA, 1991. Human Health Evaluation N			•	eters";	Note: For noncarcinogenic effects, AT = ED.
USEPA, 1992. Dermal Exposure Assessme					
USEPA, 1995. Supplemental Guidance to F	CAGS: Region 4 Bulletins	Bulletin No. 3, Noven	nber 1995.		

TABLE G31

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER ADULT TRESPASSER - WADING SITE 16 MILTON, FLORIDA

			SUMMARY CA	NCER RISK	1E-08				7E-07	7E-07
Beryllium	0.21	ug/L	2.7E-09	4.3E+00	1.2E-08	0.0026	1.6E-09	4.3E+02	6.8E-07	6.9E-07
COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL, CSF	CANCER RISK INGESTION	PCEVENT [1]	INTAKE DERMAL (mg/kg-day)	DERMAL CSF [2]	CANCER RISK DERMAL	TOTAL CANCER RISK

^[1] This chemical-specific value has been calculated in Table C-45.

^[2] This chemical-specific value is calculated in Table C-35.

NE = not evaluated.

TABLE & 31

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER ADULT TRESPASSER - WADING SITE 16 MILTON, FLORIDA

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	()RAL RfD (mg/kg-day)	HAZARD QUOTIENT INGESTION	PCEVENT[1] (cm/event)	INTAKE DERMAL (mg/kg-day)	DERMAL, RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT
Beryllium	0.21	ug/L	9.6E-09	5.0E-03	1.9E-06	0.0026	5.5E-09	5.0E-05	1.1E-04	1.1E-04
			SUMMARY HAZ	ARD INDEX	2E-06				1E-04	1E-04

This chemical-specific value has been calculated in Table C-35.
 Calculated from oral RfDs.
 ND = no data available.

TABLE (632

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER ADOLESCENT TRESPASSER - WADING SITE 16
MILTON, FLORIDA

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE
CONCENTRATION WATER	CW	chemical-specific	ug/liter	
INGESTION RATE [1]	iR	0.026	liters/day	USEPA, 1995
AGE-SPECIFIC SURFACE AREA (2)	SA	age-specific	cm²	USEPA, 1989
EVENT FREQUENCY	EV	1	events/day	Assumption
BODY WEIGHT	BW	45	kg	USEPA, 1995
DOSE ABSORBED PER EVENT	DA	chemical-specific	mg/cm²-event	Calculated
EXPOSURE FREQUENCY	EF	45	days/year	Assumption
EXPOSURE DURATION	ED	10	years	USEPA, 1995
AGE-WEIGHTED SURFACE AREA [3]	SAsw/adj	1013	cm²-yr/kg	Calculated per USEPA, 1992
DIFFUSION DEPTH PER EVENT [4]	PC,	chemical-specific	cm/event	Calculated per USEPA, 1992
AVERAGING TIME				
CANCER	AT	70	years	USEPA, 1991
NONCANCER	AT	10	years	USEPA, 1995
CONVERSION FACTOR	CF1	0.00)	mg/ug	
CONVERSION FACTOR	CF2	0.001	liter/cm³	

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day) ⁻¹

'HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE-INGESTION = CW x IR x EF x ED x CE1
BW x AT x 365 days/yr

INTAKE-DERMAL = DA_{mad} x EV x EF x SAmw/adj AT x 365 days/yr

Where.

SAsw/adj = Sum (SA z ED / RW) $DA_{cont} = PC_{cont} \times CW \times CF1 \times CF2$

Note: For noncarcinogenic effects, AT = ED.

[1] Ingestion Rate = 0.026 I/day = 10 ml/hour x 2.6 hours/day x 0.001 I/ml

[2] Surface area assumes lower legs, hands, and feet are exposed.

[3] PCevent is calculated in the Dermal Guidance See Table C-35.

USEPA, 1989. Exposure Factors Handbook; EPA/600/8-89/043; May 1989.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Parameters";

USEPA, 1992. Dermal Exposure Assessment: Principles and Applications; EPA/600/8-91/011B

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION	ORAL CSF	CANCER RISK	PCEVENT [1]	INTAKE DERMAL	DERMAL CSF [2]	CANCER RISK	TOTAL CANCER
		<u></u>	(mg/kg-day)		INGESTION		(mg/kg-day)		DERMAL	RISK
				1						
Beryllium	0.21	ug/L	2.1E-09	4.3E+00	9.2E-09	0.0026	9.7E-10	4.3E+02	4.2E-07	4.3E-07
	SUMMARY CANCER RISK			9E-09				4E-07	4E-07	

^[1] This chemical-specific value has been calculated in Table C-45.

^[2] This chemical-specific value is calculated in Table C-35.

ND = no data available.

TABLE G 32.

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER ADDILESCENT TRESPASSER - WADING SITE 16 MILTON, FLORIDA

NONCARCINOGENIC EFFECTS

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (ng/kg-day)	ORAL RfD (mg/kg-day)	HAZARD QUOTIENT INGESTION	PCEVENT [1] (cm/event)	INTAKE DERMAL (mg/kg-day)	DERMAL RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT
Berylfium	0.21	ug/L	1.5E-08	5.0E-03	3.0E-06	0.0026	6.8E-09	5.0E-05	1.4E-04	1.4E-04
			SUMMARY I	IAZARD INDEX	3E-06				1E-04	1E-04
[1] This chemical-specific value has been calculate	ed in Table C-35.									

Harding Lawson Associates 1/5/99

^[2] Calculated from oral RfDs. ND = no data available.

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER ADULT RESIDENT - WADING SITE 16 MILTON, FLORIDA

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE
CONCENTRATION WATER	CW	chemical-specific	ug /liter	
INGESTION RATE [1]	IR	0.026	liters/day	USEPA, 1995
SURFACE AREA [2]	SA	5,750	cm2	USEPA, 1989
EVENT FREQUENCY	EV	1	events/day	Assumption
BODY WEIGHT	BW	70	kg	USEPA, 1991
DOSE ABSORBED PER EVENT	DAevent .	chemical-specific	mg/cm2-event	Calculated
EXPOSURE TIME	ET	2.6	hours/day	Assumption
EXPOSURE FREQUENCY	EF	100	days/year	Assumption
EXPOSURE DURATION	ED	24	years	Assumption
DIFFUSION DEPTH PER EVENT	PCevent .	chemical-specific	cm/event	Calculated per USEPA, 1992 [3]
AVERAGING TIME				
CANCER	AT	70	уевгв	USEPA, 1991
NONCANCER	AT	24	years	USEPA, 1995
CONVERSION FACTOR	CFI	0.001	mg/ug	1
CONVERSION FACTOR	CF2	0.001	liter/cm3	l

[2] Surface area assumes lower legs, hands, and feet are exposed.

[3] PCevent is calculated in the Dermal Guidance Appendix to this report

USEPA, 1989. Exposure Factors Handbook; EPA/600/8-89/043; May 1989.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Parameters."

USEPA, 1992. Dermal Exposure Assessment: Principles and Applications; EPA/600/8-91/011B.

USEPA, 1995. Supplemental Guidance to RAGS: Region 4 Bulletins, Bulletin No. 3, November 1995.

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)-1

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE-INGESTION = CW x IR x EF x ED x CF1 BW x AT x 365 days/yr

INTAKE-DERMAL = Dacyent x EV x EF x ED x SA AT x BW x 365 days/yr

DAgrent = PCevent x CW x CF1 x CF2

For noncarcinogenic effects, AT = ED.

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER ADULT RESIDENT - WADING SITE 16 MILTON, FLORIDA

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL ('SF [1] (mg/kg-day)'-1	CANCER RISK INGESTION	PCEVENT[2] (cm/event)	INTAKE DERMAL (mg/kg-day)	DERMAL, CSF [1, 3] (mg/kg-day) -1	CANCER RISK DERMAL	TOTAL CANCER RISK
Beryllium	0.21	ug/L	3.3E-09	4.3E+00	1.4E-08	0.0026	1.9E-09	4.3E+02	8.2E-07	8.3E-07
			SUMMARY CA	ANCER RISK	1E-08				8E-07	8E-07

^[1] This chemical-specific value has been calculated in Table C-45.

^[2] This chemical-specific value is calculated in Table C-35.

^[3] Calculated from oral CSFs.

ND = no data available.

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER ADULT RESIDENT - WADING SITE 16 MILTON, FLORIDA

			SUMMARY H.	AZARD INDEX	2E-06				1E-04	1E-04
Beryllium	0.21	ug/L	9.6E-09	5.0E-03	1.9E-06	0.0026	5.5E-09	5.0E-05	1.1E-04	1.1E-04
COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL RTD (mg/kg-day)	HAZARD QUOTIENT INGESTION	PCEVENT[1] (cm/event)	INTAKE DERMAL (mg/kg-day)	DERMAL, RfD [2] (mg/kg-day) '-1	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT

^[1] This chemical-specific value has been calculated in Table C-35.

^[2] Calculated from oral RfDs.

ND = no data available.

TABLE G34

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER CHILD RESIDENT - WADING SITE 16
MILTON, FLORIDA

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION WATER	CW	chemical-specific	ug/liter		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day) 1
INGESTION RATE [1]	. tr	0.13	liters/day	USEPA, 1995	
AGE-SPECIFIC SURFACE AREA [2]	SA	age specific	cm²	USEPA, 1989	
EVENT FREQUENCY	EA	1	events/day	Assumption	'HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
BODY WEIGHT	BW	15	kg	USEPA, 1991	
DOSE ABSORBED PER EVENT	DA	chemical specific	mg/cm²-event	('alculated	
EXPOSURE FREQUENCY	EF	100	days/year	Assumption	INTAKE-INGESTION = CWxIRxEFxEDxCFI
EXPOSURE DURATION	ED	6	years	Assumption	BW x AT x 36S days/yr
AGE-WEIGIFTED SURFACE AREA [3]	SAsw/adj	766	cm ² -yr/kg	Calculated per USEPA, 1992	
DIFFUSION DEPTH PER EVENT [4]	PC	chemical-specific	om/event	Calculated per USEPA, 1992	
AVERAGING TIME	٠,				
CANCER	AT	70	years	USEPA, 1991	INTAKE-DERMAL = DAxEVxEExSAsw/adj
NONCANCER	AT	6	years	Assumption	AT x 365 days/yr
CONVERSION FACTOR	CFI	0.001	mg/ug	ŀ	
CONVERSION FACTOR	CF2	0.001	liter/cm3	l	
[1] Ingestion Rate = 0.13 I/day = 50 ml/hour x 2.6 hours/day x 0.001 l/ml.					Wheres
[2] Surface area assumes lower legs, hands, and feet are exposed.					SAsw/adj = Sum (SA x ED / BW)
[3] PCevent is calculated in the Dermal Guidance See Table C-35.					DA _{rrad} = PC _{rest} x CW x CF1 x CF2
USEPA, 1989. Exposure Factors Handbook; EPA/600/8-89/043; May 1989. USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Parameters"; USEPA, 1992. Dermal Exposure Assessment: Principles and Applications; EPA/600/8-91/011B					Note: For noncarcinogenic effects, AT = ED.

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER CHILD RESIDENT - WADING SITE 16 MILTON, FLORIDA

CARCINOGENIC EFFECTS

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION	ORAL CSF	CANCER RISK	PCEVENT [1]	INTAKE DERMAL	DERMAL ('SF [2]	CANCER RISK	TOTAL CANCER
			(mg/kg-day)		INGESTION		(mg/kg-day)		DERMAL	RISK
Beryllium	0.21	ug/L	4.3E-08	4.3E+00	1.8E-07	0.0026	1.6E-09	4.3E+02	7.0E-07	8.9E-07
	T. T. G. W.		SUMMARY C	CANCER RISK	2E-07				7E-07	915-07

[1] This chemical-specific value has been calculated in Table C-35.

[2] Calculated from oral CSFs.

ND = no data available.

TABLE : 634

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER CHILD RESIDENT - WADING SITE 16 MILTON, FLORIDA

NONCARCINOGENIC EFFECTS

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL R(I) (mg/kg-day)	HAZARD QUOTIENT INGESTION	PCEVENT [1] (cm/event)	INTAKE DERMAL (mg/kg-day)	DERMAL RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT
Beryllium	0.21	ug/L	5.0E-07	5.0E-03	1.0E-04	0.0026	1.9E-08	5.0E-05	3.8E-04	4.8E-04
		1.9 -	·	IAZARD INDEX	1E-04				4E-04	51E-04

^[1] This chemical-specific value has been calculated in Table C-35.
[2] Calculated from oral RfDs.

ND = no data available.

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) ADULT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	J	
CONCENTRATION SOIL	CS	chemical-specific	chemical specific		CANCER RISK =	INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day) ⁻¹
INGESTION RATE	IR	50	mg/day	USEPA, 1996		
FRACTION INGESTED	FI	100%	unitless	USEPA, 1995	HAZARD QUOTIENT =	INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
ADHERENCE FACTOR	AF	0.2	mg/cm2-event	USEPA, 1992		•
ABSORPTION FRACTION	ABS	chemical specific	unitless	USEPA, 1995		
SURFACE AREA EXPOSED	SA	. 5,000	cm²	USEPA, 1992		
DOSE ABSORBED PER EVENT	DAevens	chemical specific	mg/cm²-event	USEPA, 1992		
CONVERSION FACTOR	CF	1.00E-06	kg/mg	Inorganic conversion		
	CF	1.00E-09	kg/ug	Organic conversion		
BODY WEIGHT	BW	70	kg	USEPA, 1991	INTAKE-INGESTION	= CS x IR x Fl x CF x EF x ED
EXPOSURE FREQUENCY	EF	45	days/year [1]	USEPA, 1992		BW x AT x 365 days/yr
EXPOSURE DURATION	ED	7	years	USEPA, 1992		
AVERAGING TIME					INTAKE-dermal.	DAevent x SA x EF x ED
CANCER	AT	70	years	USEPA, 1991		BW x AT x 365 days/yr
NONCANCER	AT	7	years	USEPA, 1992		
USEPA, 1991. Human Health Evaluat	ion Manual, Supplement	al Guidance: "Standard De	fault Exposure Fact	ors*;	Where:	•
	**					AR ARC OR

OSWER Directive 9285.6-03.

USEPA, 1992. Region 6 Memorandum: Central Tendency and RME Exposure Parameters.

USEPA, 1995. Supplemental Guidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

USEPA, 1996. Exposure Factors Handbook, 1996.

DARROLL AF x ABS a X CF

Note:

For noncarcinogenic effects: AT = ED

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) ADULT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL CSF (mg/kg-day) ⁻¹	CANCER RISK INGESTION	DERMAL ABS [1]	INTAKE DERMAL (mg/kg-day)	DERMAL CSF [2] (mg/kg-day) ⁻¹	CANCER RISK DERMAL	TOTAL CANCER RISK
Benzo(a)anthracene [1]	0	35	ug/kg	3.1E-10	7.3E+00	2.3E-09	0.01	6.2E-11	8.0E+00	4.9E-10	2.7E-09
Benzo(a)pyrene	О	370	ug/kg	3 3E-09	7.3E+00	2.4E-08	0.01	6.5E-10	8.0E+00	5.2E-09	2.9E-08
Benzo(b)fluoranthene [1]	0	41	ug/kg	3.6E-10	7.3E+00	2.6E-09	0.01	7.2E-11	8.0E+00	5.8E-10	3.2E-09
Benzo(k)fluoranthene [1]	. 0	3.9	ug/kg	3.4E-11	7.3E+00	2.5E-10	0.01	6.9E-12	8.0E+00	5.5E-11	3.1E-10
Carbazole	0	97	ug/kg	8.5E-10	2.0E-02	1.7E-11	0.01	1.7E-10	4.0E-02	6.8E-12	2.4E-11
Chrysene [1]	0	0.39	ug/kg	3.4E-12	7.3E+00	2.5E-11	0.01	6.9E-13	8.0E+00	5.5E-12	3.1E-11
Dibenz(a,h)anthracene [1]	О	240	ug/kg	2.1E-09	7.3E+00	1.5E-08	0.01	4 2E-10	2.0E+01	8.5E-09	2.4E-08
Indeno(1,2,3-cd)pyrene [1]	0	· ·	ug/kg	2 8E 10	7.3E+00	2.1E-09	0.01	5.6E-11	8.0E+00	4.5E-10	2.5E-09
Dieldrin	О	32	ug/kg	2.8E 10	1.6E+01	4.5E·09	0.01	5.6E-11	3.2E+01	1.8E-09	6.3E-09
Arsenic	1 1	3.8	mg/kg	3.3E 08	1.5E+00	5.0E-08	0.001	6.7E-10	1.5E+00	1.0E-09	5.1E-08
Lead	1	473	mg/kg	4.2E-06	ND		0.001	8,3E-08	ND		
			SUMMARY	CANCER RISK		1E-07				2E-08	1E-07

Harding Lawson Associates Ss16avg.xls 1/5/99

 ^[1] Carcinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995).
 [2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

^[3] Calculated from oral CSFs.

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY)
ADULT TRESPASSER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

NONCARCINOGENIC EFFECTS

	INORGANIC OR	SOIL.	UNITS	INTAKE	ORAL	HAZARD	DERMAL.	INTAKE	DERMAL	HAZARD	TOTAL
COMPOUND	ORGANIC	CONCENTRATION		INGESTION	RM	QUOTIENT	ABS [1]	DERMAL	R(1) [2]	QUOTIENT	HAZARD
	1/0		<u> </u>	(mg/kg-day)	(mg/kg-day)	INGESTION		(mg/kg-day)	(mg/kg-day)	DERMAL	QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	3.1E-08	ND		0.01	6.2E-09	ND		
Benzo(a)pyrene	0	370	ug/kg	3.3E-08	ND		0.01	6.5E-09	ND		
Benzo(b)fluoranthene	0	410	ug/kg	3.6E-08	ND		0.01	7.2E-09	ND		
Benzo(k)fluoranthene	О	390	ug/kg	3 4E-08	ND		0.01	6.9E-09	ND	İ	
Carbazole	0	97	ug/kg	8.5E-09	שא		0.01	1.7E-09	ND	}	
Chrysene	0	390	ug/kg	3.4E-08	ND		10.0	6.9E-09	ND		
Dibenz(a,h)anthracene	О	240	ug/kg	2.1E-08	ND		0.01	4.2E-09	ND		
ndeno(1,2,3-cd)pyrene	0	320	ug/kg	2.8E-08	ND		10.0	5.6E-09	ND	}	
Heidrin	0	32	ug/kg	2.8E-09	5.0E-05	5.6E-05	0.01	5.6E-10	2.5E-05	2.3E-05	7.9E-05
Memlaum	1	11300	mg/kg	1.0E-03	1.0E+00	1.0E-03	0.001	2.0E-05	2.0E-01	1.0E-04	1 1E-03
Arsenic	1	3.8	mg/kg	3 3E-07	3.0E-04	1.1E-03	0.001	6.7E-09	2.9E-04	2.3E-05	1.1E 03
Zadınlum	1	2.1	mg/kg	1 8E-07	1.0E-03	1.8E-04	0.001	3.7E-09	1.0E-05	3.7E-04	5.5E-04
ron	1	13900	mg/kg	1.2E-03	3.0E-01	4.1E-03	0.001	2.4E-05	6.0E-03	4.1E-03	8.2E-03
.ead	1	. 473	ing/kg	4.2E-05	ND		0.001	8.3E-07	ND		
Manganese	I	296	mg/kg	2.6E-05	4.7E-02	5.5E-04	0.001	5.2E-07	1.9E-03	2.7E-04	8.3E-04
	A		SUMMAI	RY HAZARD INDEX		0.01				0.005	0.01

^[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

Harding Lawson Associates \$s16avg.xls 1/5/99

^[2] Calculated from oral RiDs.

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) ADOLESCENT TRESPASSER NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE
CONCENTRATION SOIL	C S	chemical specific	chemical-specifie	
INGESTION RATE	IR	50	mg/day	USEPA, 1996
FRACTION INGESTED	P P	1007	unitless	USEPA, 1995
ADHERENCE FACTOR	AF	0.2	mg/cm²-event	USEPA, 1992
AGE-SPECIFIC SURFACE AREA	SA,	age specific	cm²	USEPA, 1989
ABSORPTION FRACTION	ABS₄	chemical-specific	unitless	USEPA, 1995
CONVERSION FACTOR	CF	1.00E-06	kg/mg	Inorganic conversion
	CF	1.00E-09	kg/mg	Organic conversion
BODY WEIGHT	BW	45	kg	USEPA, 1991
AGE-SPECIFIC BODY WEIGHT	BW	age specific	kg	USEPA, 1989
EXPOSURE FREQUENCY	EF	45	days/year [1]	USEPA, 1996
EXPOSURE DURATION	ED	2	years	USEPA, 1992
AGE-SPECIFIC EXPOSURE DURATION	ED,	age-specific	years	Assumption
AGE-WEIGHTED SURFACE AREA [2]	SA _{resl'eds}	821	cm²-year/kg	GIR -Table C-5-5; USEPA, 19
DOSE ABSORBED PER EVENT	DA	chemical-specific	mg/cm²-event	USEPA, 1992
AVERAGING TIME	1			
CANCER	AT	70	years	USEPA, 1991
NONCANCER	AT	2	years	USEPA, 1992

[1] Units for exposure frequency are in events/year in the calculation of the derinally absorbed dose.

[2] In estimating the dermally absorbed dose for children age 7 through 16, the time-weighted, hodyweight normalized surface area exposed is

USEPA, 1989, Exposure Factors Handbook; EPA/600/8-89/043; May 1989.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors"; OSWER Directive 9285.6-03.

USEPA, 1992. Region 6 Memorandum: Central Tendency and RME Exposure Parameters.

USEPA, 1995. Supplemental Guidance to RAGS: Region 4 Bulletins, Bulletin No. 3, November 1995.

USEPA, 1996. Exposure Factors Handbook 1996.

EQUATIONS

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day) 1

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE-INCESTION = CS x IR x F1 x CF x EF x ED BW x AT x 365 days/yr

INTAKE DERMAL = AT x 365 days/year) x SAsoli/adj

Where:

 $SA_{od/adj} = SUM (SA_i \times ED_i / BW_i)$

 $DA_{cont} = CS \times AF \times ABS_d \times CF$

Note: For noncarcinogenic effects: AT = ED.

Harding Lawson Associates Ss | Gavg. xls 1/5/99

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY)
ADOLESCENT TRESPASSER
NAS WHITING FIELD
MILTON, FLORIDA
STIE 16

CARCINOGENIC EFFECTS

	INORGANIC OR	SOIL.	UNITS	INTAKE	ORAL	CANCER RISK	DERMAL	INTAKE	DERMAL	CANCER RISK	TOTAL
COMPOUND	ORGANIC	CONCENTRATION		INGESTION	CSF	INCESTION	ABS [1]	DERMAL	CSF [2]	DERMAL	CANCER
	1/0	<u> </u>	<u> </u>	(mg/kg-day)	(mg/kg-day) ⁻¹			(mg/kg-day)	(mg/kg-day) ⁻¹		RISK
Benzo(a)anthracene [1]	О	35	ug/kg	1.4E-10	7.3E+00	1.0E-09	0.01	1.0E-10	8.0E+00	8.1E-10	1.8E-09
Benzo(a)pyrene	0	370	ug/kg	1.4E-09	7.3E+00	1.1E-08	0.01	1.1E-09	8.0E+00	8.6E-09	1.9E-08
Benzo(b)fluoranthene [1]	o	41	ug/kg	1.6E-10	7.3E+00	1.2E-09	0.01	1.2E-10	8.0E+00	9.5E-10	2.1E-09
Benzo(k)fluoranthene [1]	O	3.9	ug/kg	1.5E-11	7.3E+00	1.1E-10	0.01	1.1E-11	8.0E+00	9.0E-11	2.0E-10
Carbazole	o	97	ug/kg	3.8E-10	2.0E-02	7.6E-12	0.01	2.8E-10	4.0E-02	1.1E-11	1.9E-11
Chrysene [1]	o	0.39	ug/kg	1.5E-12	7.3E+00	1.1E-11	0.01	1.1E-12	8.0E+00	9.0E-12	2.0E-11
Dibenz(a,h)anthracene [1]	О	240	ug/kg	9.4E-10	7.3E+00	6.9E-09	0.01	6.9E-10	8.0E+00	5.6E-09	1.2E-08
Indeno(1,2,3-cd)pyrene [1]	0	32	ug/kg	1.3E-10	7.3E+00	9.1E-10	0.01	9.3E-11	8.0E+00	7.4E-10	1.7E-09
Dieldrin	0	32	ug/kg	1.3E-10	1.6E+01	2.0E-09	0.01	9.3E-11	3.2E+01	3.0E-09	5.0E-09
Armenic	1	3.8	mg/kg	1.5E-08	1.5E+00	2.2E-08	0.001	1.1E-09	1.5E+00	1.6E-09	2.4E-08
Lead		473	mg/kg	1.9E-06	.ND		0.001	1.4E-07	ND		
				SUMMARY CANCER	RISK	4E-08				2E-08	7E-08

^[1] Carcinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995).

^[2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

^[3] Calculated from oral CSFs.

TABLE -936

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) ADOLESCENT TRESPASSER NAS WHITTING FIELD MILTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL RfD (mg/kg-day)	HAZARD QUOTIENT INGESTION	DERMAL, ABS [1]	INTAKE DERMAL (mg/kg-day)	DERMAI, RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL, HAZARD QUOTIENT
	_		,,	4.05.00			0.01	2.55.00			
Benzo(a)anthracene	0		ug/kg	4.8E-08	ND		0.01	3.5E-08	ND		•
Benzo(a)pyrene	0	370	ug/kg	5.1E-08	ND		0.01	3.7E-08	ND		}
Benzo(b)fluoranthene	0	410	ug/kg	5.6E-08	ND		0.01	4.1E-08	ND		
Benzo(k)fluoranthene	0	390	ug/kg	5.3E-08	ND		0.01	3.9E-08	ND		
Carbazole	0	97	ug/kg	1.3E-08	ND		0.01	9.8E-09	ND		
Chrysene	0	390	ug/kg	5.3E-08	ND		0.01	3.9E-08	ND.		
Dibenz(a,h)anthracene	O	240	ug/kg	, 3.3E-08	ND		0.01	2.4E-08	ND		
Indeno(1,2,3-cd)pyrene	0	320	ug/kg	4.4E-08	NĐ		0.01	3.2E-08	- ND		
Dieldrin	0	32	ug/kg	4.4E-09	5.0E-05	8.8E-05	0.01	3.2E-09	2.5E-05	1.3E-04	2.2E-04
Aluminum	1	11300	mg/kg	1.5E-03	1.0E+00	1.5E-03	0.001	1.1E-04	2.0E-01	5 7E-04	2.1E-03
Arsenic	1	3.8	mg/kg	5.2E-07	3.0E-04	1.7E-03	0.001	3.8E-08	2.9E-04	1.3E-04	1.9E-03
Cadmium	1	2.1	mg/kg	2.9E-07	1.0E-03	2.9E-04	0.001	2.1E-08	1.0E-05	2.1E-03	2.4E-03
Iron	ŧ	13900	mg/kg	1.9E-03	3.0E-01	6.3E-03	0.001	1.4E-04	6.0F-03	2.3E-02	3.0E-02
Lead ·	1	. 473	mg/kg	6.5E-05	ND		0.001	4.8E-06	ND		
Manganese	1	296	mg/kg	4.1E-05	4.7E-02	8.6E-04	0.001	3.0E-06	1.9E-03	1.6E-03	2.4E-03
			S	UMMARY HAZARD INDEX		0.01				0.03	0.04

[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995) [2] Calculated from oral RfDs.

Harding Lawson Associates Ssifavg.xls 1/5/99

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) ADULT RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE,
CONCENTRATION SOIL	CS	chemical-specific	hemical-specific	
INGESTION RATE	IR	50	mg/day	USEPA, 1996
FRACTION INGESTED	FI	1009	unitless	USEPA, 1995
ADHERENCE FACTOR	AF	0.2	mg/cm2-event	USEPA, 1992
ABSORPTION FRACTION	ABS₄	chemical-specific	unitless	USEPA, 1995
SURFACE AREA EXPOSED	SA	5,000	cm²	USEPA, 1992
DOSE ABSORBED PER EVENT	DA _{even}	chemical-specific	mg/cm²-event	USEPA, 1992
CONVERSION FACTOR	CF	1.00E 09	kg/ug	Organic conversion
CONVERSION FACTOR	CF	1.00E-06	kg/mg	Inorganic conversion
BODY WEIGHT	BW	70	kg	USEPA, 1991
EXPOSURE FREQUENCY	EF	350	days/year [1]	USEPA, 1992
EXPOSURE DURATION	ED	7	years	USEPA, 1992
AVERAGING TIME				
CANCER	AT	70	years	USEPA, 1991
NONCANCER	AT	7	years	USEPA, 1992

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors";

OSWER Directive 9285.6-03.

USEPA, 1992. Region 6 Memorandum: Central Tendency and RME Exposure Parameters.

USEPA, 1995. Supplemental Guidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

USEPA, 1996. Exposure Factors Handbook, 1996.

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)⁻¹

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE TINGESTION = CS x IR x FI x CF x EF x ED

BW x AT x 365 days/yr

 $INTAKE_{DERMAL} = DA_{event} \times SA \times EF \times ED$

BW x AT x 365 days/yr

Where:

 $DA_{crent} = CS \times AF \times ABS_d \times CF$

Note:

For noncarcinogenic effects, AT = ED.

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) ADULT RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

	INORGANIC OR	sott	UNITS	INTAKE	ORAL	CANCER RISK	DERMAL	INTAKE	DERMAL	CANCER RISK	TOTAL
COMPOUND	ORGANIC	CONCENTRATION		INGESTION	CSF	INGESTION	ABS [1]	DERMAL	(SF [2]	DERMAL	CANCER
	1/0			(mg/kg-day)	(mg/kg-day) '			(mg/kg-day)	(mg/kg-day) ⁻¹		RISK
Benzo(a)anthracene [1]	0	35	ug/kg	2.4E-09	7.3E+00	1.8E-08	0.01	4.8E-10	8.0E+00	3.8E-09	2.1E-08
Benzo(a)pyrene	0	370	ug/kg	2.5E-08	7.3E+00	1.9E-07	0.01	5.1E-09	8.0E+00	4.1E-08	2.3E-07
Benzo(b)fluoranthene [1]	О	41	ug/kg	2 8E-09	7.3E+00	2.1E-08	0.01	5.6E-10	8.0E+00	4.5E-09	2.5E-08
Benzo(k)fluoranthene [1]	0	3.9	ug/kg	2.7E-10	7.3E+00	2.0E-09	0.01	5.3E-11	8.0E+00	4.3E-10	2.4E-09
Carbazole	0	• 97	ug/kg	6.6E-09	2.0E-02	1.3E-10	0.01	1.3E-09	4.0E-02	5.3E-11	1.9E-10
Chrysene [1]	0	0.39	ug/kg	2.7E-11	7.3E+00	2.0E-10	0.01	5.3E-12	8.0E+00	4.3E-11	2.4E-10
Dibenz(2,h)anthracene [1]	0	240	ug/kg	1.6E-08	7.3E+00	1.2E-07	0.01	3.3E-09	8.0E+00	2.6E-08	1.5E-07
Indeno(1,2,3-cd)pyrene [1]	0	32	ug/kg	2.2E-09	7.3E+00	1.6E-08	0.01	4.4E-10	8.0E+00	3.5E-09	2.0E-08
Dieldrin	0	32	ug/kg	2.2E-09	1.6E+01	3.5E-08	0.01	4.4E-10	3.2E+01	1.4E-08	4.9E-08
Arsenic	1	3.8	mg/kg	2.6E-07	1.5E+00	3.9E-07	0.001	5.2E-09	1.5E+00	7.8E-09	4.0E-07
Lead	1	473	mg/kg	3.2E-05	ND		0.001	6.5E-07	ND		
			SUMMARY C	ANCER RISK		8E-07	***************************************			1E-07	9E-07

Harding Lawson Associates Selfavg.xis 1/5/99

^[1] Carcinogenic PAH concentrations are adjusted by their respective to vicity equivalent factors (USEPA, 1995).
[2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

^[3] Calculated from oral CSFs.

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) ADULT RESIDENT NAS WIRTING FIELD MILTON, FLORIDA SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL. CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL, RfD (mg/kg-day)	HAZARD QUOTIENT INGESTION	DERMAL ABS [1]	INTAKE DERMAL (mg/kg-day)	DERMAL, RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL, HAZARD QUOTIENT
n (1) 4	0	7.50		2.4E-07	ND		0.01	4.8E-08	ND		
Benzo(a)anthracene	1		ug/kg	1							
Benzo(2)pyrene	0	370	ug/kg	2.5E-07	ND		0.01	5 IE-08	ND		
Benzo(b)fluoranthene	0	410	ug/kg	2.8E-07	ND		0.01	5.6E-08	ND		
Benzo(k)fluoranthene	0	390	ug/kg	2.7E-07	ND		0.01	5.3E-08	ND		
Carbazole	0	97	ug/kg	6.6 E -08	ND		0.01	1.3E-08	ND		
Chrysene	0	390	ug/kg	2.7E-07	ND		0.01	5.3E-08	ND		
Dibenz(a,h)anthracene	0	240	ug/kg	1.6E-07	ND		0.01	3.3E-08	ND		
Indeno(1,2,3-cd)pyrene	0	320	ug/kg	2.2E-07	ND		0.01	4.4E-08	ND		
Dieldrin	0	32	ug/kg	2.2E-08	5.0E-05	4.4E-04	• 0.01	4.4E-09	2.5E-05	1.8E-04	6 1E-04
Aluminum	1 1	11300	mg/kg	7.7E-03	1.0E+00	7.7E-03	0.001	1.5E-04	2.0E-01	7.7E-04	8.5E-03
Arsenic	1 1		mg/kg	2.6E-06	3.0E-04	8.7E-03	0.001	5.2E-08	2.9E-04	1.8E-04	8.9E-03
Cadmium	1	2.1	mg/kg	1.4E-06	1.0E-03	1.4E-03	0.001	2.9E-08	1.0E-05	2.9E-03	4.3E-03
Iron	1 1	13900		9.5E-03	3.0E-01	3.2E-02	0.001	1 9E-04	6.0E-03	3.2E-02	6.3E-02
Lead	1 1		mg/kg	3.2E-04	ND		0.001	6.5E-06	ND		¥.3.
Manganese	1		mg/kg	2.0E-04	4.7E-02	4.3E-03	0.001	4.1E-06	1.9E-03	2.1E-03	6.4E-03
			SUMMARY H	AZARD INDEX		0.05				0.04	0.09

大学 医二种 医二种

[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November, 1995). [2] Calculated from oral RfDs.

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) CHILD RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE
CONCENTRATION SOIL	CS	chemical-specific	chemical-specific	
INGESTION RATE	IR IR	100	mg/day	USEPA, 1995
FRACTION INGESTED	FI	100 %	unitless	USEPA, 1995
ADHERENCE FACTOR	AF	0.2	mg/cm2-event	USEPA, 1995
AGE-SPECIFIC SURFACE AREA	SA	age-specific	cm²	USEPA, 1989
ABSORPTION FRACTION	ABS	chemical-specific	unitless	USEPA, 1995
CONVERSION FACTOR	CF	1 00E-06	kg/mg	Inorganic conversion
CONVERSION FACTOR	CF.	1 00E 09	kg/ug	Organic conversion
BODY WEIGHT	BW	. 15	kg	USEPA, 1991
AGE-SPECIFIC BODY WEIGHT	вw	age-specific	kg	USEPA, 1989
EXPOSURE FREQUENCY	'EF	150	days/year [1]	USEPA, 1995
EXPOSURE DURATION	ED	2	years	USEPA, 1995
AGE-SPECTFIC EXPOSURE DURATION	ED	age-specific	years	Assumption
AGE-WEIGHTED SURFACE AREA [2]	SA _{rodradi}	766	cm² year/kg	USEPA, 1992
DOSE ABSORBED PER EVENT	DA	chemical specific	mg/cm²-event	USEPA, 1992
AVERAGING TIME		1	1	
CANCER	AT	70	years	USEPA, 1991
NONCANCER	- AT	2	years	USEPA, 1995

[1] Air Force meterological data summary for Eglin AFB (close proximity to Milton) states that there is 0.01 inches of rain for

110 days per year. Exposure frequency assumes half of the rainy days require indoor restriction,

[2] In estimating the dermally absorbed dose for children age! through 6, the time weighted, bodyweight normalized surface area exposed is calculated from surface area, exposure duration, and body weight for each of 6 age periods, age 1 through 6, per USEPA, 1992. USEPA, 1989. Exposure Factors Handbook; EPA/600/8-89/043; May 1989.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors"; OSWER Directive 9285.6 03.

USEPA, 1995. Supplemental Cuidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

USEPA, 1996. Exposure Factors Handbook; 1996.

EQUATIONS

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)1

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE-INGESTION = CS x IR x F1 x CF x EF x ED BW x AT x 365 days/yr

INTAKE-DERMAL = (DA_{event} x EF / AT x 365 days/year) x SA_{soll/edj}

Where:

SA_{sollielj} = SUM (SA x EI) / BW)

 $DA_{event} = CS \times AF \times ABS \times CF$

Note:

For noncarcinogenic effects, AT = ED.

Harding Lawson Associates Sai Savg.xis 1/5/99

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) CHILD RESIDENT NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC 1/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL CSF (mg/kg-day) ⁻¹	CANCER RISK INGESTION	DERMAL ABS [1]	INTAKE DERMAL (mg/kg-day)	DERMAL CSF [2] (mg/kg-day) ⁻¹	CANCER RISK DERMAL	TOTAL CANCER RISK
Benzo(a)anthracene [1]	0	35	ug/kg	6.4E-09	7.3E+00	4.7E-08	0.01	7.3E-10	8.0E+00	5.9E-09	5.3E-08
Benzo(a)pyrene	О	370	ug/kg	6.8E-08	7.3E+00	4.9E-07	0.01	7.8E-09	8.0E+00	6.2E-08	5.6E-07
Benzo(b)fluoranthene [1]	О	41	ug/kg	7.5E-09	7.3E+00	5.5E-08	0.01	8.6E-10	8.0E+00	6.9E-09	6.2E-08
Benzo(k)fluoranthene [1]	O	3.9	ug/kg	7.1E-10	7.3E+00	5.2E-09	0.01	8.2E-11	8.0E+00	6.5E-10	5.9E-09
Carbazole	О	97	ug/kg	1.8E-08	2.0E-02	3.5E-10	0.01	2.0E-09	4.0E-02	8.1E-11	4.4E-10
Chrysene [1]	0	0.39	ug/kg	7.1E-11	7.3E+00	5.2E-10	0.01	8.2E-12	8.0E+00	6.5E-11	5.9E-10
Dibenz(a,h)anthracene [1]	o	240	ug/kg	4.4E ₁ 08	7.3E+00	3.2E-07	0.01	5.0E-09	8.0E+00	4.0E-08	3.6E-07
Indeno(1,2,3-cd)pyrene [1]	О	32	ug/kg	5.8E-09	7.3E+00	4.3E-08	0.01	6.7E-10	8.0E+00	5.4E-09	4.8E-08
Dieldrin	O	32	ug/kg	5.8E-09	1.6E+01	9.4E-08	0.01	6.7E-10	3.2E+01	2.1E-08	1.2E-07
Arsenic	t	3.8	mg/kg	6 9E-07	1.5E ± 00	1.0E-06	0.001	8.0E-09	1.5E+00	1.2E-08	1.1E-06
Lead	1	473	mg/kg	8.6E-05	ND		0.001	9.9E-07	ND		
				SUMMARY CANCER RI	SK	2E-06				215-07	2E-06

27.25

A. 16

^[1] Carcinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995).

^[2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

^[3] Calculated from oral CSFs.

TABLE 6-38

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) CHILD RESIDENT NAS WHITTING FIELD MILTON, FLORIDA STIE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	SOIL CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL RM (mg/kg-day)	HAZARD QUOTIENT INGESTION	DERMA), ABS [1]	INTAKE DERMAL (mg/kg-day)	DERMAL, RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	2.2E-06	ND		0.01	2.6E-07	ND		
Benzo(a)pyrene	0	370	ug/kg	2.4E-06	NÐ		0.01	2.7E-07	ND		!
Renzo(b)fluoranthene	0	410	ug/kg	2.6E-06	ND		0.01	3.0E-07	ND		
Renzo(k)fluoranthene	0	390	ug/kg	2.5E-06	ND	•	0.01	2.9E-07	ND		
Carbazole	0	97	ug/kg	6.2E-07	NÐ		0.01	7.1E-08	ND		
Chrysone	0	390	ug/kg	2.5E-06	NID		0.01	2.9E-07	ND		
Dibenz(a,h)anthracene	0	240	ug/kg	1.5E-06	ND		0.01	1.8E-07	ND		
Indeno(1,2,3-cd)pyrene	0	320	ug/kg	2.0E-06	ND		0.01	2.4E-07	ND		
Dieldrin .	0	32	ug/kg	2.0E-07	5.0E-05	4.1E-03	0.01	2.4E-08	2.5E-05	9.4E-04	5.0E-03
Aluminum	1 .	11300	mg/kg	7.2E-02	1,0E+00	7.2E-02	0.001	8.3E-04	2.0E-01	4.2E-03	7.6E-02
Armenic	ı	3.8	mg/kg	2.4E-05	3.0E-04	8.1E-02	0.001	2.8E-07	2.9E-04	9.6E-04	8.2E-02
Cadmium	ī	2.1	mg/kg	1.3E-05	1.0E-03	1.3E-02	0.001	1.5E-07	1.0E-05	1.5E-02	2.9E-02
tron	1	13900	mg/kg	8.9E-02	3.0F-01	3.0E-01	0.001	1.0E-03	6.0E-03	1.7E-01	4.7E-01
Lead	1	473	mg/kg	3.0E-03	ND		0.001	3.5E-05	ND		
Manganese	1	296	mg/kg	1.9E-03	4.7E-02	4.0E-02	0.001	2.2E-05	1.9E-03	1.1E-02	5.2E-02
				SUMMARY HAZARD INDEX		0.51	T	···		0.20	0.71

^[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).
[2] Calculated from oral RfDs.

Harding Lawson Associates Ss | Gavg.xls 1/5/99

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY)
OCCUPATIONAL WORKER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	80URCE
CONCENTRATION SOIL	CS	chemical-specific	chemical-specific	
INGESTION RATE	l R	50	mg/day	USEPA, 1996
FRACTION INGESTED	FI	100%	unitless	Assumption
ADHERENCE FACTOR	AF	0.2	mg/cm²-event	USEPA, 1992
ABSORPTION FRACTION	ABS	chemical-specific	unitless	Assumption
SURFACE AREA EXPOSED	SA	2,000	cm²	USEPA, 1996
HOSE ABSORBED PER EVENT	DA _{event}	chemical-specific	mg/cm²-event	USEPA, 1995
CONVERSION FACTOR	CF	1.00E-09	kg/ug	Organic conversion
CONVERSION FACTOR	CF	1.00E-06	kg/mg	Inorganic conversion
SODY WEIGHT	BW	70	kg	USEPA, 1991
EXPOSURE FREQUENCY	EF	250	days/year [1]	USEPA, 1992
EXPOSURE DURATION	ED	9	years	USEPA, 1992
VERAGING TIME				
CANCER	AT	70	years	USEPA, 1991
NONCANCER	AT	9	years	USEPA, 1992

[1] Units for exposure frequency are events/year in the calculation of the dermally absorbed dose.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors";

USEPA, 1992. Region 6 Memorandum: Central Tendency and RME Exposure Parameters.

USEPA, 1995. Supplemental Guidance to RAGS: Region IV, Human Health Risk Assessment Bulletin No. 3.

USEPA, 1996. Exposure Factors Handbook, 1996.

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)⁻¹

HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE_{INGESTION} = CS x IR x FI x CF x EF x ED BW x AT x 365 days/yr

INTAKE_{TDERMAL} = DA_{rrost} x SA x EF x ED BW x AT x 365 days/yr

Where:

 $DA_{ermt} = CS \times AF \times ABS \times CF$

Note:

For noncarcinogenic effects, AT = ED

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY) OCCUPATIONAL WORKER NAS WHITING FIELD MILTON, FLORIDA SITE 16

CARCINOGENIC EFFECTS

	INORGANIC OR	90H.	UNITS	INTAKE	ORAL.	CANCER RISK	DERMAL	INTAKE	DERMAL	CANCER RISK	TOTAL
COMPOUND	ORGANIC	CONCENTRATION		INGESTION	CSF	INGESTION	ABS [1]	DERMAL	CSF [2]	DERMAL	CANCER
	1/0		L	(mg/kg-day)	(mg/kg-day) ⁻¹			(mg/kg-day)	(mg/kg-day)		RISK
Benzo(a)anthracene [1]	0	35	ug/kg	2.2E-09	7.3E+00	1.6E-08	0.01	1.8E-10	8.0E+00	1.4E-09	1.7E-08
Benzo(a)pyrene	0	370	ug/kg	2.3E-08	7.3E+00	1.7E-07	0.01	1.9E-09	8.0E+00	1.5E-08	1.8E-07
Benzo(b)fluoranthene [1]	O	41	ug/kg	2.6E-09	7.3E+00	1.9E-08	0.01	2.1E-10	8.0E+00	1.7E-09	2.0E-08
Benzo(k)fluoranthene [1]	0	3.9	ug/kg	2.5E-10	7.3E+00	1.8E-09	0.01	2.0E-11	8.0E+00	1.6E-10	1.9E-09
Carbazole	О	97	ug/kg	6.1E-09	2.0E-02	1.2E-10	0.01	4.9E-10	4.0E-02	2.0E-11	1.4E-10
Chrysene [1]	0	0.39	ug/kg	2.5E-11	7.3E+00	1.8E-10	0.01	2.0E-12	8.0E+00	1.6E-11	1.9E-10
Dibenz(a,h)anthracene [1]	0	240	ug/kg	1.5E-08	7.3E+00	1.1E-07	0.01	1.2E-09	8.0E+00	9.7E-09	1.2E-07
Indeno(1,2,3-cd)pyrene [1]	0	32	ug/kg	2.0E-09	7,3E+00	1.5E-08	0.01	1.6E-10	8.0E+00	1.3E-09	1.6E-08
Dieldrin	0	32	ug/kg	2.0E-09	1.6E+01	3.2E-08	0.01	1.6E-10	3.2E+01	5.2E-09	3.7E-08
Arsenic	1	3,8	mg/kg	2.4E-07	1.5E ± 00	3.6E-07	0.001	1.9E-09	1.5E + 00	2.9E-09	3.6E-07
Lead	l l	473	mg/kg	3.0E-05	ND		0.001	2.4E-07	ND		
			SUMMARY O	CANCER RISK		7E-07				4E-08	8E-07

 ^[1] Carcinogenic PAH concentrations are adjusted by their respective toxicity equivalent factors (USEPA, 1995).
 [2] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

Harding Lawson Associates Selfavg xls 1/5/99

^[3] Calculated from oral CSFs.

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL (CENTRAL TENDENCY)
OCCUPATIONAL WORKER
NAS WHITING FIELD
MILTON, FLORIDA
SITE 16

NONCARCINOGENIC EFFECTS

COMPOUND	INORGANIC OR ORGANIC I/O	90IL CONCENTRATION	UNETS	INTAKE INGESTION (mg/kg-day)	ORAL RfD (mg/kg-day)	HAZARD QUOTIENT INGESTION	DERMAL ABS [1]	INTAKE DERMAL (mg/kg-day)	DERMAL RfD [2] (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT
Benzo(a)anthracene	0	350	ug/kg	1.7E-07	ND		0.01	1.4E-08	ND		
Benzo(a)pyrene	0	370	ug/kg	1.8E-07	ND		0.01	1.4E-08	ND		
Benzo(b)fluoranthene	О	410	ug/kg	2.0E-07	ND		0.01	1.6E-08	ND		
Benzo(k)fluoranthene	О	390	ug/kg	1.9E-07	ND ND		0.01	1.5E-08	ND		
Carbazole	o	97	ug/kg	4.7E-08	ND		0.01	3.8E-09	ND		
Chrysene	О	390	ug/kg	1.9E-07	ND ND		0.01	1.5E-08	ND		
Dihenz(a,h)anthracene	О	240	ug/kg	1.2E-07	ND		0.01	9.4E-09	ND		
Indeno(1,2,3-cd)pyrene	o	320	ug/kg	1.6E-07	ND		10.0	1.3E-08	ND		
Dieldrin	o	32	ug/kg	1.6E-08	5.0E-05	3.1E-04	0.01	1.3E-09	2.5E-05	5.0E-05	3.6E-04
Aluminum	1	11300	mg/kg	5.5E-03	1.0E+00	5.5E-03	0.001	4 4E-05	2.0E-01	2.2E-04	5.7E-03
Arsenic	1	3.8	mg/kg	1.9E-06	3.0E-04	6.2E-03	0.001	1.5E-08	2.9E-04	5.1E-05	6.2E-03
Cadmium	1	2.1	mg/kg	1.0E-06	1.0E-03	1.0E-03	0.001	8.2E-09	1.0E-05	8.2E-04	1.8E-03
Iron	1	13900	mg/kg	6.8E-03	3.0E-01	2.3E-02	0.001	5.4E-05	6.0E-03	9.1E-03	3.2E-02
Lead		473	mg/kg	2.3E-04	ND		0.001	1.9E-06	ND		
Manganese	1	296	mg/kg	1.4E-04	4.7E-02	3.1E-03	0.001	1.2E-06	1.9E-03	6.1E-04	3.7E-03
				ARY HAZARD INDEX		0.04				0.01	0.05

^[1] USEPA Region IV guidance specifies absorption factors of 1% for organics and 0.1% for inorganics (November 1995).

^[2] Calculated from oral RfDs.

TABLE 640

CONCENTRATION OF VOCs WHILE SHOWERING ADULT RESIDENT SITE 16 MILTON, FLORDIA

EMPIRICAL CONSTANTS

CONSTANT	SYMBOL	VALUE	UNIT	SOURCE
Liquid-film mass transfer for CO ₂	K _i (CO ₂)	20	cm/hr	Calculated
Gas-film mass transfer for water	K ₈ (H ₂ O)	3000	cm/hr	Calculated
Molar gas constant x Temperature	RT	0.024	atm-m³/mole	
Reference temperature	· T _t	293	к	
Temperature of shower water	. Т,	318	к	Assumption
Viscosity of water at shower temperature	u,	0.6178	ср	Calculated
Viscosity of water at reference temperature	u _i	0.65	ср	Calculated
Shower droplet free-fall time	t,	1.5	sec	Assumption
Droplet diameter	ď	1	mm	Foster & Chrostowski, 1987
Flow rate in shower	FR	20	l/min	Assumption
Volume of shower area	sv	12	m³	Assumption
Air exchange rate	R	0.03	min ⁻¹	Calculated
Time in shower	D,	12	min	USEPA, 1989
Time at which concentration is being calculated	t	12	min	Assumption

Foster, S.A. and Chrostowski, P.C., 1987. Inhalation Exposures to Volatile Organic Contaminants in the Shower.

USEPA, 1989, Exposure Factors Handbook; EPA/600/8-89/043, May 1989.

All equations and definitions of terms are presented in the Appendix to this report, Calculation of Air Concentration Using the Shower Model.

CONCENTRATION OF VOCs WHILE SHOWERING ADULT RESIDENT SITE 16 MILTON, FLORDIA INTERIM CORRECTIVE MEASURE

SHOWER CONCENTRATIONS

COMPOUND	C _w	MW	Н	k,	kg	$\mathbf{K}_{\mathbf{L}}$	K _{al}	C_{wd}	S	C _(voc)
	(ug/l)	(g/mol)	(atm-m³/mol)	(cm/hr)	(cm/hr)	(cm/hr)	(cm/hr)	(μg/l)	(μg/m³-min)	(μg/m³)
1,2-Dichloroethane	9.9	99.0	0.00098	1.3E+01	1.3E+03	1.1E+01	1.1E+01	2.4E+00	4.1E+00	4.1E+01
1,2-Dichloroethene (total)	9.1	97.0	0.00758	1.3E+01	1.3E+03	1.3E+01	1.4E+01	2.7E+00	4.5E+00	4.5E+01
Benzene	180	78.0	0.0056	1.5E+01	1.4E+03	1.4E+01	1.5E+01	5.7E+01	9.6E+01	9.6E+02
Chloroform	1	120.0	0.0037	_1.2E+01	1.2E+03	1.1E+01	1.2E+01	2.6E-01	4.4E-01	4.4E+00
Trichloroethene	5.5	130.0	0.01	1.2E+01	1.1E+03	1.1E+01	1.2E+01	1.4E+00	2.4E+00	2.4E+01

 $C_w = Concentration in groundwater$

K_L = Mass transfer coefficient

MW = Molecular weight

K_{al} = Temperature correction of mass transfer coefficient

H ≈ Henry's Law constant

 $C_{\rm wd}$ = Analyte concentration in water droplet

 $k_1 = Chemical-specific mass-transfer coefficient$

S = Release rate of analyte to air

 k_g = Chemical-specific gas mass-transfer coefficient

 $C_{(voc)}$ = Analyte concentration in bathroom air at time t.

$$C_{(voc)} = (S/R) \times (e^{(RDs)}-1) \times e^{(-Rt)}$$

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES) (CENTRAL TENDENCY) ADULT RESIDENT SITE 16 MILTON, FLORIDA

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION WATER	CW	chemical-specific	ug/liter		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)-1
INGESTION RATE	IR	1.4	liters/day	USEPA, 1992	,
BODY WEIGITT	BW	70	kg	USEPA, 1991	HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
CONVERSION FACTOR	CF	0.001	mg/ug	1	
EXPOSURE FREQUENCY	EF	350	days/year	USEPA, 1992	
EXPOSURE DURATION	ED	7	years	USEPA, 1992	INTAKE = CWxIRxEFxEDxCF
AVERAGING TIME					BW x AT x 365 days/year
CANCER	ĄŤ	. 70	years	USEPA, 1991	
NONCANCER	AT	7	years	USEPA, 1991	
USEPA, 1991. Human Health Evaluation	on Manual, Supplemental (Guidance:			
*Standard Default Exposure Factors	"; OSWER Directive 9285	5.6-03,			Note: For noncarcinogenic effects, AT = FD.
USEPA, 1992. Region 6 Memorandum	: Central Tendency and R	ME Exposure Parame	ters.		

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES) (CENTRAL TENDENCY) ADULT RESIDENT SITE 16 MILTON, FLORIDA

CARCINOGENIC EFFECTS

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	CANCER SLOPE FACTOR (mg/kg-day)^-1	CANCER RISK INGESTION
1,2-Dichlorethane	9.9	UG/LITER	1.9E-05	9.1E-02	1.7E-06
Benzene	180	UG/LITER	3.5E-04	2.9E-02	1.0E-05
Chloroform	1	UG/LITER	1.9E-06	6.1E-03	1.2E-08
Trichlorethene	5.5	UG/LITER	1.1E-05	1.1E-02	1.2E-07
4,4-DDT	0.06	UG/LITER	1.2E-07	3.4E-01	3.9E-08
bis(2-Ethylhexyl)phthalate	6.9	UG/LITER	1.3E-05	1.4E-02	1.9E-07
Arsenic	3.3	UG/LITER	6.3E-06	1.5E+00	9.5E-06
		<u> </u>	TOTAL CANCER	RISK	2E-05

TABLE G41

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES) (CENTRAL TENDENCY)
ADULT RESIDENT
SITE 16
MILTON, FLORIDA

NONCARCINOGENIC EFFECTS

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	REFERENCE DOSE (mg/kg-day)	HAZARD QUOTIENT INGESTION
1,2-Dichloroethane	9.9	UG/LITER	1.9E-04	3.0F-01	6.3E-04
1,2-Dichloroethene	ŧ	UG/LITER	1.7E-04	9.0E-03	1.9E-02
Benzene		UG/LITER	3.5E-03	3.0F-04	1.2E+01
Chloroform		UG/LITER	1.9E-05	1.0E-02	1.9E-03
Trichloroethene	ł	UG/LITER	1.1E-04	6.0E-03	1.8E-02
bis(2-F4hylhexyl)phthalate	6.9	UG/LITER	1.3E-04	2.0E-02	6.6E-03
4,4-DDT	0.06	UG/LITER	1.2E-06	5.0E-04	2.3E-03
Aluminum	491	UGAJTER	9.4E 03	1.0E+00	9.4E-03
Arsenic	3.3	UG/LITER	6.3E-05	3.0E-04	2.1E-01
Barium	53.9	UG/LITER	1.0E-03	7.0E-02	1.5E-02
Cadmium	2.6	UG/LITER	5.0E-05	5.0E-04	1.0E-01
Iron	4570	UG/LITER	8.8E-02	3.0E-01	2.9E-01
Manganese	188	UG/LITER	3.6E-03	4.7E-02	7.7E-02
			TOTAL HAZARD	INDEX	12
ND = no data available.					

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES) (CENTRAL TENDENCY) CHILD RESIDENT SITE 16
MILTON, FLORDIA

EXPOSURE PARAMETERS

PARAMETER	SYMBOL,	VALUE	UNITS	SOURCE	
CONCENTRATION WATER	CW	chemical-specific	ug/liter		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)-1
INGESTION RATE	IR	0.7	liters/day	USEPA, 1992	
BODY WEIGHT	BW	15	kg	USEPA, 1991	HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
CONVERSION FACTOR	CE	0.001	mg/ug		
EXPOSURE FREQUENCY	EF	350	days/year	USEPA, 1992	
EXPOSURE DURATION	ED	2	years	USEPA, 1992	INTAKE = CWxIRxEFxEDxCF
AVERAGING TIME					BW x AT x 365 days/year
CANCER	ΑT	70	years	USEPA, 1991	
NONCANCER	AT	2	years	USEPA, 1991	
USEPA, 1991. Human Health Evaluation N	Janual, Supplemental Guida	noe			
"Standard Default Exposure Factors"; (DSWER Directive 9285.6-03				Note: For noncarcinogenic effects, AT = ED.
USEPA, 1992. Region 6 Memorandum: C	entral Tendency and RME I	xposure Parameters.			

TABLE 642

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES) (CENTRAL TENDENCY) CHILD RESIDENT SITE 16
MILTON, FLORDIA

CARCINOGENIC EFFECTS

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	CANCER SLOPE FACTOR (mg/kg-day)^-1	CANCER RISK INGESTION
1,2-Dichlorethane	9,9	UG/LITER	1.3E-05	9.1E-02	1.2E-06
Benzene	•	UG/LITER	2.3E-04	2.9E-02	6.7E-06
Chloroform	1	UG/LITER	1.3E-06	6.1E-03	7.8E-09
Trichlorethene	5.5	UG/LITER	7.0E-06	1.1E-02	7.7E-08
4,4-DDT	0.06	UG/LITER	7.7E-08	3.4E-01	2.6E-08
bis(2-F£hylhexyl)phthalate	6.9	UG/LITER	8.8E-06	1.4E-02	1.2E-07
Arsenic	3.3	UG/LITER	4.2E-06	1.5E+00	6.3E-06
			TOTAL CANCE	R RISK	1E-05

INGESTION OF GROUNDWATER AS DRINKING WATER (UNFILTERED SAMPLES) (CENTRAL TENDENCY) CHILD RESIDENT SITE 16
MILTON, FLORDIA

NONCARCINOGENIC EFFECTS

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	REFERENCE DOSE (mg/kg-day)	HAZARD QUOTIENT INGESTION	
1,2-Dichloroethane	99	UG/LITER	4.4E-04	3.0E-01	1.5E-03	
1,2-Dichloroethene	9.1	UG/LITER	4.1E-04	9.0E-03	4.5E-02	
Benzene	180	UG/LITER	8.1E-03	3.0E-04	2.7E+01	
Chloroform	1	UG/LITER	4.5E-05	1.0E-02	4.5E-03	
Trichloroethene	5.5	UG/LITER	2.5E-04	6.0E-03	4.1E-02	
bis(2-Ethylhexyl)phthalate	6.9	UG/LITER	3.1E-04	2.0E-02	1.5E-02	
4,4-DDT	0.06	UG/LITER	2.7E-06	5.0E-04	5.4E-03	
Aluminum	491	UG/LITER	2.2E-02	1.0E+00	2.2E-02	
Arsenic	3.3	UG/LITER	1.5E-04	3.0E-04	4.9E-01	
Barium	53.9	UG/LITER	2.4E-03	7.0E-02	3.4E-02	
Cadmium	2.6	UG/LITER	1.2E-04	5.0E-04	2.3E-01	
Iron	4570	UG/LITER	2.0E-01	3.0E-01	6.8E-01	
Manganese	188	UG/LITER	8.4E-03	4.7E-02	1.8E-01	
			TOTAL HAZARI	D INDEX	29	

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER (CENTRAL TENDENCY) ADULT RESIDENT - WADING SITE 16 MILTON, FLORIDA

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION WATER	CW	chemical specific	ug/liter		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)-1
INGESTION RATE [1]	iR	0.026	liters/day	USEPA, 1995	
SURFACE AREA [2]	SA	5,750	cm2	USEPA, 1989	
EVENT FREQUENCY	EV	1	events/day	Assumption	HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
BODY WEIGHT	BW	70	kg	USEPA, 1991	
DOSE ABSORBED PER EVENT	DAevent	chemical-specific	mg/cm2-event	Calculated	
EXPOSURE TIME	ET	2.6	hours/day	Assumption	
EXPOSURE FREQUENCY	EF	45	days/year	Assumption	INTAKE-INGESTION = CW x IR x EF x ED x CF1
EXPOSURE DURATION	ED	7	years	USEPA, 1992a	BW x AT x 365 days/yr
DIFFUSION DEPTH PER EVENT	PCevent PCevent	chemical-specific	cm/event	Calculated per USBPA, 1992b [3]	
AVERAGING TIME					·
CANCER	AT	70	years	USEPA, 1991	INTAKE-DERMAL = DAcycut x EV, x EF x ED x SA
NONCANCER	AT	1]	years	USEPA, 1995	AT x BW x 365 days/yr
CONVERSION FACTOR	CF1	0.001	mg/ug		
CONVERSION FACTOR	CF2	0.001	liter/cm3	<u> </u>	
[1] Ingestion Rate = 0.026 1/day = 10 ml	/hour x 2.6 hours/day x 0	.001 1/ml			
[2] Surface area assumes lower legs, hands,	and feet are exposed.				Where:
[3] PCevent is calculated in the Dermal Gui	dance See Table C-35.			4	DAevent = PCevent x CW x CF1 x CF2
1					
USEPA, 1991. Human Health Evaluation !	Manual, Supplemental Gui	dansce: "Standard Defa	ult Exposure Paran	neters.*	Note: For noncarcinogenic effects, AT = ED.
USEPA, 1992a. Region 6 Memorandum:	•	*			
USEPA, 1992b. Dermal Exposure Assessn	• • • • • • • • • • • • • • • • • • • •				
USEPA, 1995. Supplemental Guidance to I	RAGS: Region 4 Bulletine	, Bulletin No. 3, Nove	mber 1995.		

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER (CENTRAL TENDENCY) ADULT RESIDENT - WADING SITE $16\,$

MILTON, FLORIDA

CARCINOGENIC EFFECTS

COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL CSF (mg/kg-day) '-1	CANCER RISK INGESTION	PCEVENT[1] (cm/event)	INTAKE DERMAL (mg/kg-day)	DERMAL CSF [2] (mg/kg-day)*-1	CANCER RISK DERMAL	TOTAL CANCER RISK
Beryllium	0.21	ug/L	9.6E-10	4.3E+00	4.1E-09	0.0026	5.5E-10	4.3E+02	2.4E-07	2.4E-07
			SUMMARY C	ANCER RISK	4E-09				2E-07	2E-07

^[1] This chemical-specific value has been calculated in Table C-35.

^[2] Calculated from oral CSFs.

ND = no data available.

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER (CENTRAL TENDENCY) ADULT RESIDENT - WADING SITE 16 MILTON, FLORIDA

NONCARCINOGENIC EFFECTS

			SUMMARY HA	ZARD INDEX	2E-06				1E-04	1E-04
Berylliun	0.21	ug/L	9.6E-09	5.0E-03	1.9E-06	0.0026	5.5E-09	5.0E-05	1.1E-04	1.1 E-04
COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (mg/kg-day)	ORAL RTD (mg/kg-day)	HAZARD QUOTIENT INGESTION	PCEVENT[1] (cm/event)	INTAKE DERMAL (mg/kg-day)	DERMAL RfD [2] (mg/kg-day)*-1	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT

^[1] This chemical-specific value has been calculated in Table C-35.
[2] Calculated from oral RfDs.

ND = no data available.

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER (CENTRAL TENDENCY)
CHILD RESIDENT - WADING
SITE 16
MILTON, FLORIDA

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION WATER	CW	chemical-specific	ug/liter		CANC
INGESTION RATE [1]	IR .	0.13	liters/day	USEPA, 1995	
AGE-SPECIFIC SURFACE AREA [2]	SA	age-specific	cm²	USEPA, 1989	
EVENT FREQUENCY	EV	1	events/day	Assumption	'HAZARD QI
BODY WEIGHT	BW	15	kg	USEPA, 1991	·
DOSE ABSORBED PER EVENT	DA	chemical-specific	mg/cm²-event	Calculated	
EXPOSURE FREQUENCY	EF	100	days/year	Assumption	INTAKE-ING
EXPOSURE DURATION	ED	2	years	USEPA, 1992a	
AGE-WEIGHTED SURFACE AREA [3]	SAsw/adj	766	cm²-yr/kg	Calculated per USEPA, 1992b	
DIFFUSION DEPTH PER EVENT [4]	PC	chemical-specific	em/event	Calculated per USEPA, 1992b	
AVERAGING TIME	İ			•	
CANCER	AT	70	years	USEPA, 1991	INTAKE-
NONCANCER	TA	2	years	USEPA, 1992a	
CONVERSION FACTOR	CFI	0.001	mg/ug	ļ	
CONVERSION FACTOR	CF2	0.001	liter/cm³		
[1] Ingestion Rate = 0.13 l/day = 50 ml/hour x	2.6 hours/day x 0.001 l/m				Wheres
121 Surface area assumes lower less hands and	feet are expresed				1

[2] Surface area assumes lower legs, hands, and feet are exposed.

[3] PCevent is calculated in the Dermal Guidance See Table C-35.

USEPA, 1989. Exposure Factors Handbook; EPA/600/8-89/043; May 1989.

USEPA, 1991. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Parameters";

USEPA, 1992a. Region 6 Memorandum: Central Tendency and RME Exposure Parameters.

USEPA, 1992b. Dermal Exposure Assessment: Principles and Applications; EPA/600/8-91/011B

CANCER RISK # INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day) 1

'HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)

INTAKE-INGESTION = CW x IR x EF x ED x CFi BW x AT x 365 days/yr

INTAKE-DERMAL = DA...... x EY x EF x \$Asw/adj AT x 365 days/yr

> $SA_{mw/adj} = Sum (SA \times ED / BW)$ $DA_{meal} = PC_{meal} \times CW \times CF1 \times CF2$

> > Note: For noncarcinogenic effects, AT = ED.

TABLE & 44 .

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER (CENTRAL TENDENCY) CHILD RESIDENT - WADING SITE 16
MILTON, FLORIDA

CARCINOGENIC EFFECTS

					DERMAL	RISK
-08 4.3E+00	6.1E-08	0.0026	1.6E-09	4.3E+02	7.0E-07	7.7E-07
RY CANCER RISK	6E-08				7E-07	8E-07
	RY CANCER RISK					

INGESTION OF AND DIRECT CONTACT WITH SURFACE WATER (CENTRAL TENDENCY) CHILD RESIDENT - WADING SITE 16 MILTON, FLORIDA

NONCARCINOGENIC EFFECTS

		<u></u>	SUMMARY HA	ZARD INDEX	1E-04		استنسا		1E-03	1E-03
Beryllium	0.21	ug/L	5.0E-07	5.0E-03	1.0E-04	0.0026	5.7E-08	5.0E-05	1.1E-03	1.2E-0
COMPOUND	WATER CONCENTRATION	UNITS	INTAKE INGESTION (ng/kg-day)	ORAL RfD (mg/kg-day)	HAZARD QUOTIENT INGESTION	PCEVENT [1] (cm/event)	INTAKE DERMAL (mg/kg-day)	DERMAL RfD (2) (mg/kg-day)	HAZARD QUOTIENT DERMAL	TOTAL HAZARD QUOTIENT

^[2] Calculated from oral RIDs.

ND = no data available.

HUMAN HEALTH TOXICITY PROFILES

1,4-Dichlorohenzene. 1,4-Dichlorohenzene has been used as mothballs, an insecticidal fumigant, a germicide, and a space deodorant. Human exposure to 1,4-dichlorohenzene has produced irritation to skin, throat, and eyes: prolonged exposure to high concentrations may cause weakness, dizziness, loss of weight, or liver injury. In several studies involving female rats and mice, no overt signs of toxicity were apparent at any exposure level. Non-tumor and tumor pathology did not indicate any treatment related effect of either species. An embryotoxicity and teratology study on rats did not demonstrate any signs of embryo- or phytotoxicity or teratogenicity at any exposure level (Loeser, 1983). In a series of mutagenicity tests, 1,4-dichlorobenzene did not produce a mutagenic response. (Loeser, 1983). Other exposure studies in rats have produced developmental abnormalities, phytotoxicity, and kidney tumors. Additional exposure studies in animals have produced histological changes in the lung, cirrhosis and necrosis of the liver, swelling of the tubular epithelium of the kidneys. 1,4-dichlorobenzene has been classified by the USEPA as a group C carcinogen, possibly carcinogenic to humans.

References:

Health Effects Summary Tables (HEAST), 1993. United States Environmental Protection Agency.

Loeser E, Litchfield MH; Food Chem Toxicol 21 (6): 825-32 (1983)

1.1-Dichloroethene. 1.1-Dichloroethene is a man-made chlorinated solvent that is used to make polyvinylidene chloride copolymers, which are used as flexible films for packaging all types of materials, including food.

Data on 1,1-dichloroethene exposure in humans are limited. However, available evidence suggests that 1,1-dichloroethene causes central nervous system depression and liver toxicity in humans. Toxicity data on laboratory animals confirm this evidence, and also indicate that 1,1-dichloroethene may produce adverse effects on the kidney, heart, and lung. Pharmacokinetic data from laboratory animals suggest that 1,1-dichloroethene is metabolized to toxic metabolites, and that these metabolites are responsible for the adverse effects. Therefore, organs with high biotransformation enzyme activity, such as the liver, kidney, and lungs, are likely to be adversely impacted. Limited evidence in animals suggests that 1,1-dichloroethene may be carcinogenic. Therefore, the USEPA has placed 1,1-dichloroethene in weight-of-evidence group C, possible human carcinogen.

References:

MADEP, 1992. "Risk Assessment Shortform Residential Exposure Scenario, Version 1.6"; Policy #WSC/ORS-142-92: Office of Research and Standards and the Bureau of Waste Site Cleanup, Boston, MA; September 1992.

Agency for Toxic Substances and Disease Registry (ATSDR), 1992. "Toxicological Profile for 1,1-Dichloroethene"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October 1992.

1,2-Dichloroethene. 1,2-Dichloroethene is a volatile organic compound which exists as cis- and trans-isomers. The commercially used material is usually a mixture of the two isomers. In the past, it was used as a general inhalation anesthetic. It is used most often as a solvent for dyes, perfume oils, waxes, resins, and plastics. It is also used as an intermediate in the synthesis of polymers.

1.2-Dichloroethene is absorbed by all routes of administration. Distribution is rapid and, due to its lipophilic nature, occurs to all organ systems. It is extensively metabolized to dichloroacetaldehyde and chloroacetic acids which are excreted primarily through urine.

Dermal contact to 1.2-dichloroethene may result in defatting of the skin and dermatitis. Exposure to airborne 1,2-dichloroethene causes irritation to eyes, mucous membranes and the upper respiratory tract. Systemically, the transisomer is believed to be more toxic than the cis-isomer. However, both have been reported to produce central nervous system depression and toxicity to liver and lungs. No data on the reproductive toxicity of 1,2-dichloroethene exists. Both isomers have tested negative for mutagenicity in vitro tests. Cancer effects have not been studied in humans or animals.

References:

Agency for Toxic Substances and Disease Registry (ATSDR), 1990. "Toxicological Profile for 1,2-Dichloroethene"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, February 1990.

Mycroft, F.J., Jones, J.R., and Olson, K.R. 1990. Environmental and Occupational Toxicology. In: Poisoning and Drug Overdose. Ed. K.R. Olson. Appleton & Lange, CT. p. 397.

Aluminum. Aluminum occurs naturally in the soil and makes up approximately 8 percent of the earths crust. Higher soil concentrations are associated with industries which burn coal and aluminum mining and smelting. Human exposures to aluminum may occur through ingestion of foods grown in soil that contains aluminum and use of antacids, antiperspirants, and other drug store items. Aluminum in antiperspirants can cause skin rashes in some people. Factory workers who inhale large amounts of aluminum dust may develop lung problems. Aluminum has caused lower birth weights in some animals. Studies have shown that aluminum accumulates in the brains of people with Alzheimer's disease. However, any causal link between aluminum exposure and this disease is yet to be demonstrated. Both human epidemiological studies and animal experiments strongly suggests that aluminum is not a carcinogen.

References:

Agency for Toxic Substances and Disease Registry (ATSDR), 1989. "Toxicological Profile for Aluminum"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October 1989.

Antimony. Antimony enters the environment during the mining and processing of its ores and other related metals. Small amounts of antimony are also released into the environment by incinerators and coal-burning power plants. Antimony will strongly adhere to soil which contains iron, manganese, or aluminum. Antimony was used for medicinal purposes to treat people infected with parasites. However, chronic exposure can cause eye, skin, and lung irritation, as well as heart problems, vomiting and diarrhea. The oral RfD was based on changes in glucose and cholesterol levels in an oral drinking water study in rats. Antimony has not been evaluated by the USEPA for evidence of human carcinogenic potential.

References

Agency for Toxic Substances and Disease Registry (ATSDR), 1991. "Toxicological Profile for Antimony"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, February 1991.

Integrated Risk Information System (IRIS), 1993. United States Environmental Protection Agency.

Arsenic. Arsenic had once used in pesticide formulations and has industrial uses in tanneries, as well as the glass and wine making industries. Toxicity depends on its chemical form. Arsenic is an irritant of the skin, mucous membranes, and gastrointestinal tract. Symptoms of acute toxicity include vomiting, diarrhea, convulsions, and a severe drop in blood pressure. Subchronic effects include hyperpigmentation, sensory-motor polyneuropathy, persistent headache, and lethargy. Chronic oral exposure has caused skin lesions, peripheral vascular disease, and peripheral neuropathy. The USEPA has classified arsenic as Group A, human carcinogen, based on increased incidence of skin and lung cancer in epidemiology studies.

References:

Agency for Toxic Substances and Disease Registry (ATSDR), 1992. "Toxicological Profile for Arsenic"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, February 1992.

Benzene is an organic solvent that is found in the environment from both natural processes from petroleum sources. Benzene is used in the synthesis of many industrial chemicals and pharmaceuticals, for the extraction of fats and oils, in the manufacture of explosives, in is a major component of petroleum based fuels such as gasoline.

Benzene is readily absorbed orally, moderately absorbed by inhalation, and poorly absorbed dermally. Its toxic actions are primarily a result of its metabolites, which are largely produced in the liver, and to some extent, in the bone marrow. Acute exposure to benzene has produced central nervous system depression in humans and animals. Chronic exposures have produced adverse liver effects and hematological toxicity, including aplastic anemia and leukemia. Available evidence does not suggest that benzene is teratogenic in humans or animals. There is sufficient evidence of benzene-induced carcinogenicity in humans via inhalation exposure, placing it in USEPA weight-of-evidence group A, human carcinogen.

References:

MADEP, 1992. "Risk Assessment Shortform Residential Exposure Scenario, Version 1.6"; Policy #WSC/ORS-

Bis(2-ethylhexyl)phthalate (DEHP). DEHP is used industrially as a plasticizer for resins and is found in many plastic materials as it makes them more flexible. It is also used in manufacturing organic pump fluids in electrical capacitors. Acute exposure to DEHP has produced eye and mucous membrane irritation, nausea, and diarrhea. Chronic exposure of laboratory animals to DEHP indicate that the target organs are the liver, causing morphological and biochemical changes, as well as the testes, producing damage to the seminiferous tubules. DEHP has produced developmental and reproductive effects in laboratory animals including spina bifida and reduced fertility. DEHP has been shown to cause a dose-related increase in liver tumors in mice and rats. Thus, the USEPA has designated DEHP as a B2, probable human carcinogen.

References:

ATSDR, 1991. Toxicological Profile for Di(2-ethylhexyl)phthalate. Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October, 1991.

<u>Chlorobenzene</u>. Chlorobenzene is used industrially as a solvent and in the manufacture of other chemicals. It is an intermediate in the manufacture of dyestuffs and pesticides. Acute exposures have caused irritation of the eyes, nose, and skin, as well as CNS depression accompanied by drowsiness, numbness, nausea, and vomiting. Evidence from animal studies indicate that exposure via ingestion or inhalation can produce severe kidney and liver effects. The USEPA has classified chlorobenzene in Group D, inadequate evidence of carcinogenicity.

References:

Clayton, George D. and Florence E. Clayton, editors, 1981. Patty's Industrial Hygiene and Toxicology, 3rd Revised Edition; John Wiley & Sons; New York.

Integrated Risk Information System (IRIS), 1993. United States Environmental Protection Agency.

DDT. DDT was one of the most highly used insecticides, and is now ubiquitous in the environment. It was used extensively in World War II to control lice (applied directly to human skin), and later used as an agricultural insecticide and as a public health tool to control insects which spread typhus and malaria. DDD and DDE were contained as impurities in DDT, and are also primary metabolites of DDT, and share similar toxicological properties. DDT, DDD, and DDE are highly persistent in the environment, and thus tend to bioconcentrate in the food chain. This, combined with its toxicological properties, has been attributed to the decline in population of several predatory bird species.

DDT is absorbed to a minor extent via inhalation and dermal routes, and to a large extent by the oral route. Exposure to humans is likely greatest through ingestion of mucous that was contaminated with DDT that had been inhaled. DDT is absorbed into the lymphatic system and distributed to fats throughout the body. In both humans and animals, DDT acts as a CNS stimulant by interfering with the movement of ions within neurons. DDT acts as an estrogenic compound in animals, and this has been attributed to numerous adverse reproductive effects observed in animals exposed to DDT. DDT also causes liver hypertrophy, hepatocyte degeneration, and induces the enzyme cytochrome P450, which can effect the metabolism of other xenobiotics. There is no conclusive evidence of DDT-induced carcinogenicity in humans. However, DDT has produced liver tumors in laboratory animals. DDD, DDE, and DDT have, therefore, been placed in USEPA's weight of evidence group B2, probable human carcinogen.

References:

Agency for Toxic Substances and Disease Registry (ATSDR), 1992. "Toxicological Profile for DDD, DDE, and DDT"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October 1992.

Iron. Iron is a metal which is required for a variety of physiological functions such as heme biosynthesis, oxidative phosphorylation and mixed-function oxidase-mediated metabolic reactions. Only divalent forms of iron are absorbed. As absorption occurs, divalent iron is biochemically converted to trivalent iron, the biologically active form. Under normal conditions, absorbed dietary iron is complexed to hemoglobin and transported to the liver for storage until needed for physiological reactions. The balance of iron is regulated only by the amount of dietary intake and the degree of intestinal absorption. Intestinal absorption tends to be low (2 - 15%) except during periods of increased iron need when absorption efficiency increases dramatically.

Acute iron toxicity has been well characterized following the accidental ingestion of iron-containing preparations

by children. Shortly after ingestion, the corrosive effects of iron cause vomiting and diarrhea, often bloody. Later signs include shock, metabolic acidosis, seizures, liver and/or kidney failure, coma, and death. Chronic iron overload manifests as disturbances in liver function, diabetes mellitus, and endocrine and cardiovascular effects. Inhalation of iron containing dust or fumes in occupational settings may result in deposition of iron particles in the lungs leading to interstitial fibrosis. Autopsies of hematite miners noted an increase in lung cancer. However, the etiology of the lung cancer may be related to factors other than iron exposure such as cigarette, silica or PAH exposures.

References:

Aisen, P., Cohen, G. and Kang, J.O., 1990. Iron Toxicosis. Int. Rev. Exp. Pathol. 31:1-46.

Goyer, R.A., 1991. Toxic Effects of Metals. In: Casarett and Doull's Toxicology: The Basic Science of Poisons, 3rd edition. Eds. C.D. Klaassen, M.O. Amdur and J. Doull. Macmillan Publishing Co. N.Y.

Manganese. Manganese is a naturally-occurring substance found in many types of rock. It does not generally occur in the environment as the pure metal, rather, it is found combined with other chemicals such as sulfur, oxygen, and chlorine. Manganese is mixed with iron to make various types of steel. Manganese is a component of some ceramics, pesticides, fertilizers, and in nutritional supplements. In small doses manganese is beneficial to human health. Manganese miners and steel workers exposed to elevated concentrations of manganese have evidenced mental and emotional disturbances, and slow and clumsy body movements. Target organs of manganese are the lung and CNS. When inhaled, manganese dust can also cause lung irritation. EPA has classified manganese as a Class D, not classifiable as to human carcinogenicity.

References:

Agency for Toxic Substances and Disease Registry (ATSDR), 1991. "Toxicological Profile for Manganese"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, February 1991.

Thallium. Thallium is a naturally-occurring soft metal that is a minor constituent in a variety of ores and is obtained as a by-product of the refining of iron, cadmium, and zinc. It is used as a catalyst, in certain alloys, jewelry, thermometers, semiconductors, dyes and pigments, and optical lenses. It has been used medically as a depilatory agent. Additionally, it is used as a rodenticide and insecticide. Thallium is efficiently absorbed from the gastrointestinal tract. Excretion occurs primarily through urine and feces. Following absorption, distribution occurs to kidney tissue to a large extent, with lesser distribution to thyroid, intestines, testes, pancreas, skin, bone, and spleen.

Thallium is one of the more toxic metals. Acute toxicity results in gastrointestinal irritation, shock, ascending paralysis, seizures, and psychic disturbances. Signs of subacute or chronic thallium poisoning include hair loss, nail dystrophy, cataracts, peripheral muscular weakness and atrophy, chorea, peripheral neuropathy, and kidney damage. Loss of vision have been related to industrial thallium exposures. No information is available which addresses the carcinogenic potential of thallium.

References:

Goyer, R.A., 1991. Toxic Effects of Metals. In: Casarett and Doull's Toxicology: The Basic Science of Poisons, 3rd edition. Eds. C.D. Klaassen, M.O. Amdur and J. Doull. Macmillan Publishing Co. N.Y.

Tweig, M., 1990. Thallium. In: Poisoning and Drug Overdose. Ed. K.R. Olson. Appleton & Lange, CT. pps. 276-7.

<u>Trichloroethene</u>. Trichloroethene is a man-made chlorinated solvent that is used extensively in industry as a metal degreasing agent. Trichloroethene is also used in dry cleaning and as a solvent in paints and adhesives.

Several human deaths and acute neurotoxic effects have been attributed to oral and inhalation exposure to trichloroethene. In animals, oral and inhalation exposure to trichloroethene have produce neurotoxic effects, including behavioral changes, and renal toxicity. Additionally, inhalation and oral exposures to trichloroethene in animals have produced lung, liver, and testicular cancers. Epidemiological data in humans is insufficient to conclude whether trichloroethene is a human carcinogen. However, studies on trichloroethene metabolism suggest that it is metabolized similarly

in humans and laboratory animals. Therefore, the USEPA has placed trichloroethene in weight-of-evidence group B2, probable human carcinogen.

References:

MADEP, 1992. "Risk Assessment Shortform Residential Exposure Scenario, Version 1.6"; Policy #WSC/ORS-142-92; Office of Research and Standards and the Bureau of Waste Site Cleanup, Boston, MA; September 1992.

APPENDIX H
ECOLOGICAL RISK DATA

Table H - 1
Summary of Bioaccumulation Data

Remedial investigation Report Site 16 Naval Air Station Whiting Field Milton, Florida

					ulation Factor [a]	
Analyte	Log K _{ow}	[b]	Invertebrate [c]	Plant [d]	Mammal [e]	Bird [
SEMIVOLATILES						
Benzo(a)anthracene	5.7	5.8	5.0E-02	3.4E-03	9.5E-01	NA
Benzo(a)pyrene	6.0	5.8	5.0E-02	3.4E-03	9.5E-01	NA
Benzo(b)fluoranthene	6.1	5.8	5.0E-02	3.4E-03	9.5E-01	NA
Benzo(k)fluoranthene	6.1	5.8	5.0E-02	3.4E-03	9.5E-01	NA
Benzo (g,h,i) perylene	6.51	5.8	5.0E-02	3.4E-03	9.5E-01	NA
Carbazole	3.76 [g]		5.0E-02	5.2E-02	1.5E-01	NA
Chrysene	5.7	5.8	5.0E-02	3.4E-03	9.5E-01	NA
Dibenzo(a,h)anthracene	6.5	5.8	5.0E-02	3.4E-03	9.5E-01	NA
bis(2-Ethylhexyl)phthalate	5.1		5.0E-02	8.7E-03	1.9E-01	NA
Fluoranthene	4.95	5.8	5.0E-02	3.4E-03	9.5E-01	NA
Indeno(1,2,3-cd)pyrene	6.6	5.8	5.0E-02	3.4E-03	9.5E-01	NA
Phenanthrene	4.5	5.8	5.0E-02	3.4E-03	9.5E-01	NA
Pyrene	5.3	5.8	5.0E-02	3.4E-03	9.5E-01	NA
PESTICIDES/PCBs						
4,4'-DDD	6		3.3E+00 [ab]	1.0E-02 [ac]	1.2E+00 [ad]	2.9E+00 [(ae
4,4'-DDE	5.7		1.7E+00 [ab]	1.0E-02 [ac]	1.2E+00 [ad]	2.9E+00 [(ae
4,4'-DDT	6.4		5.7E-01 [ab]	1.0E-02 [ac]	1.2E+00 [ad]	2.9E+00 [(ae
Aroclor-1254	7.1 [h]		5.8E+00 [i]	1.2E-01 [i]	3.8E+00 [j]	3.2E-01 [k]
Dieldrin	4.6		5.5E+00 [o]	1.7E-02	1.5E+00 [p]	4.4E-01 [q]
INORGANICS				•		
Aluminum	NA		7.5E-02 [r]	8.0E-04 [s]	7.5E-02 [t]	NA
Arsenic	NA		6.6E-03 [ag]	3.0E-01 [ah]	1.0E-01 [t]	6.0E-03
Barium	NA		7.5E-03 [r]	3.0E-02 [s]	7.5E-03 [t]	NA
Cadium	NA		1.1E+01 [u]	3.3E+01 [v]	2.1E+00 [t]	3.8E-01 [w]
Chromium	NA		1.6E-01 [ai]	1.5E-03 [s]	2.8E-01 [t]	2.8E-01

Remedial investigation Report
Site 16
Naval Air Station Whiting Field
Milton, Florida

	•		Bioaccumula	tion Factor [a]	
Analyte	Log K _{ow} [b]	Invertebrate [c]	Plant [d]	Mammal [e]	Bird [f]
Copper	NA	1.6E-01 [l]	7.8E-01 [x]	6.0E-01 [v]	NA
Lead	NA	7.8E-02 [y]	0.0E+00 [v]	1.5E-02 [t]	NA
Manganese	NA	2.0E-02 [r]	5.0E-02 [s]	2.0E-02 [t]	NA
Mercury	NA	6.80E-02 [z]	1.8E-01 [s]	1.0E-02 [aa]	2.3 [aa]
Silver	NA	1.5E-01 [r]	8.0E-02 [s]	1.5E-01 [t]	NA
Vanadium	NA	1.2E-01 [r]	1.1E-03 [s]	1.2E-01 [t]	NA
Zinc	NA	1.8E+00 [1]	6.1E-01 [x]	2.1E+00 [t]	NA

NOTES:

- [a] Units for bioaccumulation factors (BAFs) are mg/kg (fresh) tissue weight over mg/kg (dry) soil weight for invertebrates and plants.
 - The BAF units for small mammals and small birds are mg/kg (fresh) tissue weight over mg/kg (fresh) food weight.
- [b] Log K_{ow} values are from the Superfund Chemical Data Matrix (USEPA, 1993), unless otherwise noted. Average Log K_{ow} for classes of semivolatiles are presented in the second log K_{ow} column. When available, chemical class log K_{ow} averages are used instead of chemical specific log K_{ow} to calculate BAF values.
- [c] The value is an average BAF for semivolatiles measured in earthworms (Beyer, 1990), unless otherwise noted.

 Dry weight values were converted to wet weight assuming earthworm are 80% water (BAF_{weight} weight = BAF_{dry} weight/0.2).
- [d] Plant BAF were calculated using the following equation presented by Travis and Arms (1988) unless otherwise noted:

 log (Plant Bioaccumulation Factor)=1.588-0.578 (log K_{ow}). The calculated plant BAF value was converted from dry weight to wet weight by dividing the BAF by a factor of 0.2 (assuming 80% water content of plants) (BAF_{weight weight} = BAF_{dry weight} / 0.2).
- [e] Mammalian BAFs were calculated using the following equation from Travis and Arms (1988), unless otherwise noted: log BTF (biotransfer factor) = Log K_{ow} 7.6.

To convert from BTF to BAF, the calculated log BTF is first transformed to base 10 than multiplied by the average ingestion rates for nonlactating and lactating test animals (12 kg/day). BAFs are convert from dry to wet feed weight by divided the BAF by a factor of 0.2 (BAF_{wet weight} = BTF *12 mg/day/0.2). There is an uncertainty involved in using this equation for PAHs because the study

by Travis and Arms (1988) did not use PAHs in the regression analysis.

For semivolate analytes with Log K_{ow} less than 5 (log $K_{ow} < 5$) the BAF was assigned a minimal value of 0.15.

When no literature values for pesticides and PCBs were available, the BAF was calculated regardless of the Log Kow, due to the

Remedial investigation Report Site 16 Naval Air Station Whiting Field Milton, Florida

			Bioaccumul	ation Factor [a]		
Analyte	Log K _{ow} [b]	Invertebrate [c]	Plant [d]	Mammal [e]	Bird	[f]

tendency of these lipophylic compounds to bioaccumulate.

- [f] Bioaccumulation data are generally lacking for avians. Therefore, there is uncertainty associated with estimating body-dose for birds without considering what chemicals may bioacumulated in prey-item tissue.
- [g] Hansch and Leo (1976).
- [h] USEPA (1990) Basics of Pump-and-Treat Ground-Water Remediation Technology
- [i] Aroclor 1260 is used as a surrogate.
- [j] BAF calculated from discussion in Eisler (1986) stating that Aroclor 1254 residues in subcutaneous fat of adult minks were up to 38 times dietary levels. Converted to whole body concentrations assuming 10% lipid content.
- [k] BAF calculated from discussion in Eisler, 1986. Kestrels fed 33 mg PCB/kg diet for 62-69 days accumulated 107 mg PCB/kg lipid weight in muscle. Assuming muscle is 10% lipid content, the muscle concentration is estimated at 10.7 mg/kg.
- [1] BAF for earthworms from Diercxsens et al. (1985).
- [m] Arithmetic mean BAF for corn, leaves, carrots, beets, sugarbeets, radishes, and soybeans (tops, roots, and whole plants) from USEPA (1985c) and Webber et al. (1983).
- [n] Aroclor 1254 is used as a surrogate.
- [o] Geometric mean of reported BAFs for earthworms (Gish, 1970) converted from dry weight to wet weight assuming 80% water composition of earthworms.
- [p] BAF calculated from data presented by Potter et al (1974). Based on an average dieldrin concentration in cow muscle and fat of 0.17 mg/kg (dry weight) and a dieldrin concentration of 0.11 mg/kg in the diet (dry weight).
- [q] Jeffries and Davis (1968).
- [r] Prey-specific value is not available. The value shown is the small mammal BAF for this chemical.
- [s] Value from Baes et al. (1984) for leafy portions of plants multiplied by 0.2 to represent 80% water composition of plants.
- [t] Value derived from BTFs, presented in Baes et al. (1984) for uptake into cattle. BTF converted to BAF by multiplying by food ingestion rate of 50 kg/day wet weight.
- [u] Mean of values reported for Sorex araneus in MacFadyen (1980).
- [v] Mammal value for copper and plant value for cadmium from Levine et al. (1989). Lead does not accumulate in plant tissue; therefore, a BAF of zero was assigned.
- [w] Based on accumulation of cadmium in kidneys of European quail in Pimentel et al. (1984).
- [x] Median of values reported from Levine et al. (1989).
- [y] Geometric mean of BAF values (fresh weight/dry weights) for worms and woodlice (USEPA, 1985a). Fresh weight tissue concentrations calculated assuming 80% body water content.
- [z] Uptake value (fresh wt./dry wt.) for earthworms from USEPA (1985b) sludge document. Fresh weight tissue concentration calculated

Remedial investigation Report Site 16 Naval Air Station Whiting Field Milton, Florida

				Bioaccumul	ation Factor [a]		
Analyte	Log K _{ow}	[b]	Invertebrate [c]	Plant [d]	Mammal [e]	Bird	[f]

assuming 80% body water content.

- [aa] USEPA, 1985b.
- [ab] Geometric means of 4,4'-DDT (Davis (1968), Davis & Harrison (1966), Wheatley & Hardman (1968), Bailey (1970), Cramp & Olney (1967), Beyer & Gish (1980), 4,4'DDE {Davis (1968), Davis & Harrison (1966), Wheatley & Hardman (1968), Bailey (1970), Cramp & Olney (1967), etc.] reported for earthwaorms. Dry soil conc. Calculayed assuming 10% moisture content in sandy-loam soils.
- [ac] Geometric mean of 4,4'DDT & 4,4'-DDE BAFs (fresh wt/dry wt) reported for roots (carrot, potato), grains, and legumes derived from USEPA (1985b) converted from dry wt. To wet wt. Per values provided by Suter (1993).
- [ad] BAF for shrews & voles calculated using measured conc. Of DDT in stomach contant and in whole body (Forsyth & Petrle, 1984).
- [ae] Whole-body phesant BAF for 4,4'-DDT presented in SUEPA (1985b); derived from Kenaga (1973).
- [af] Amphipod to sediment mean biomagnification factor for total DDT in Lake Michigan and Lake Ontario (1991).
- [ag] Average of values of industrial soils fom Beyer & Cromatie (1987) multiplied by 0.2 to represent 90% water composition in earthworms.
- [ah] Average of BAF values reported from Wang et. Al (1984), Sheppard et al. (1985), and Merry et al. (1986).
- [ai] From Barnthouse (1988).

Notes:

Log Kow = Logarithm transformation of the octanol/water partitioning coefficient

NA = not available.

PCB's = polychlorinated biphenyls.

BAF = bioaccumulation factor

mg/kg = milligrams per kilogram.

BTF = biotransfer factor.

- > = greater than.
- < = less than.
- % = percent.

References:

Remedial investigation Report
Site 16
Naval Air Station Whiting Field
Milton, Florida

	Bioaccumulation Factor [a]										
Analyte	Log K _{ow}	[b]	Invertebrate [c]	Plant [d]	Mammal [e]		Bird	[f]			

- Baes, C.F. III, R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. "A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture."
 ORNL-5786. U.S. Department of Energy, Environmental Sciences Division Oak Ridge, Tennessee: Oak Ridge National Laboratory (September).
- Beyer, W.N. 1990. "Evaluating Soil Contamination." Biological Report No. 90(2). U.S. Department of the Interior, Fish and Wildlife Service. Washington, D.C.
- Diercxsens, P., D. deWeck, N. Borsinger, B. Rosset, and J. Tarradellas. 1985. "Earthworm Contamination by PCBs and Heavy Metals." Chemosphere 14:511-522.
- Eisler, R. 1986. "Polychlorinated Biphenyl Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review." Biological Report No. 85(91.7). U.S. Department of the Interior, Fish and Wildlife Service. Washington, D.C.
- Gish, C.D. 1970. "Organochlorine Insecticide Residues in Soils and Soil Invertebrates from Agricultural Lands." Pesticides Monit. Journal 3(71):[n.pp.].
- Hansch, C.H., and A. Leo. 1979. Substituent Constants for Correlation Analysis in Chemistry and Biology. New York: John Wiley & Sons, Inc.
- Jeffries, D.J., and B.N.K. Davis. 1968. "Dynamics of Dieldrin in Soil, Earthworms, and Song Thrushes." Journal of Wildlife Managagement 32:441-456.
- Levine, M.B., A.T. Hall, G.W. Barrett, and D.H. Taylor. 1989. "Heavy Metal Concentrations During Ten Years of Sludge Treatment to an Old-Field Community." Journal of Environ. Qual. 18:411-418.
- Maughan, J.T. 1993. Ecological Assessment of Hazardous Waste Sites. New York: Van Nostrand Reinhold.
- Pimentel, D.D., M.N. Culliney, G.S. Stoewsand, J.L. Anderson, C.A. Bache, W.H. Gutenmann, and D.J. Lisk. 1984. Cadmium in Japanese Quail Fed Earthworms Inhabiting a Golf Course. Nutr. Rep. Int. 30:475-481.
- Suter, G. W. 1993. "Ecological Risk Assessment." Chelsea Michigan: Lewis Publishers.
- Travis, C.C., and A.D. Arms. 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation." Environ. Sci. Tech. 22:271-274.
- U.S. Environmental Protection Agency (USEPA). 1985a. "Environmental Profiles and Hazard Indices for Constituents of Municipal Sludge: Lead." Office of Water Regulations and Standards. Washington, D.C.
- U.S. Environmental Protection Agency (USEPA). 1985b. "Environmental Profiles and Hazard Indices for Constituents of Municipal Sludge: Mercury." Office of Water Regulations and Standards. Washington, D.C.
- U.S. Environmental Protection Agency (USEPA). 1985c. "Environmental Profiles and Hazard Indices for Constituents of Municipal Sludge: Polychlorinated Biphenyls." Office of Water Regulations and Standards. Washington, D.C.
- U.S. Environmental Protection Agency (USEPA). 1990. "Basics of Pump-and-Treat Ground Water Remediation

Remedial investigation Report
Site 16
Naval Air Station Whiting Field
Milton, Florida

				Bioaccumula	ation Factor [a]	
Analyte	Log K _{ow}	[b]	Invertebrate [c]	Plant [d]	Mammal [e]	Bird [f]

Technology." EPA-600/8-90/003. Office of Research and Development. Washington, D.C.

U.S. Environmental Protection Agency (USEPA). 1993. Superfund Chemical Data Matrix (SCDM). Washington, D.C.

Wang, D.S., R.W. Weaver, and J.R. Melton. 1984. "Microbial Decomposition of Plant Tissue Contaminated with Arsenic and Mercury." Environ. Pollut. 43a:275-282.

Webber, M.D., H.D. Monteith, and D.G.M. Corneau. 1983. "Assessment of Heavy Metals and PCBs at Sludge Application Sites." J. WPCF. 55(2):187-195.

Remedial investigation Report Site 16 NAS Whiting Field Milton, Florida

				, , , , , , , , , , , , , , , , , , , ,					
					Lethal RTV		Sublethal RT	٧	
Analyte	Test	Test	Duration	Effect	mg/kg-BW-day		mg/kg-BW-da		References
	Species	Туре			Oral LD ₅₀ LOAEL	RTV LOA	EL NOAEL	RIV	<u> </u>
amiyolatile Organic Compounds			-						
enzo(a)anthracene	Rodents	Oral (chronic)	HR	Carcinogenicity			2 .		Eisler, R., 1987b
enzo(a)pyrene	Rat	Oral (chronic)	Pregnancy	Sterility in offspring			40		USEPA, 1984b
	Rat	Oral (chronic)	3.5 months	Reproductive			50		USEPA, 1984b
	Mouse	Oral	Multigenerational	Decreased fertility of F1 progeny;		3 10		10	MacKenzie, et al. 1981
			_	decreased F2 litter size.		L			
	Mouse	Oral (subchronic)	6 months	Mortality	120	12			USEPA, 1984c
enzo(b)fluoranthene Benzo(k)fluoranthene	Rodents	Oral (chronic)	NR	Carcinogenicity			40		Eisler, R., 1987b
enzo(g,h,i)perylene	Rodents	Oral (chronic)	NR	Carcinogenicity			99		Eisler, R., 1987b
arbazole	Rat	Oral LD ₅₀		Mortality	500	100			USEPA, 1986
hrysene	Rodents	Oral (chronic)	NR	Carcinogenicity			99		Eisler, R., 1987b
ibenz(a,h)anthracene	Rat	Oral (chronic)	3.5 months	Reproductive			50		USEPA, 1984c
s(2-Ethylhexyl)phthalate	Rat	Oral LD ₅₀	NR	Mortality	30,600				RTECS, 1993
	Rat	Oral	NR	Reproductive effects		7,	40		RTECS, 1993
	Rat	Oral	NR	Reproductive effects			35	3.5	RTECS, 1993
	Rat	Oral	NR	Reproductive effects		6,0	00		RTECS, 1993
	Rat	Oral	NR	Reproductive effects		17,2	00		RTECS, 1993
	Rat	Oral	NR	Reproductive effects		10,0	00		RTECS, 1993
	Rat	Oral	NR	Reproductive effects		9,7	66		RTECS, 1993
	Mouse	Oral LD ₅₀	NR	Mortality	30,000				RTECS, 1993
	Mouse	Oral	NR	Reproductive effects		78,8	80		RTECS, 1993
	Mouse	Oral	NR	Reproductive effects		4,2	00		RTECS, 1993
	Mouse	Oral	NR	Reproductive effects			50		RTECS, 1993
	Mouse	Oral	NR	Reproductive effects		1,0	00		RTECS, 1993
	Mouse	Oral	NR	Reproductive effects		2,0	40		RTECS, 1993
	Rabbit	Oral LD ₅₀	NR	Mortality	34,000				RTECS, 1993
	Guinea pig	Oral LD ₅₀	NR	Mortality	26,000				RTECS, 1993
	Guinea pig	Oral	NR	Reproductive effects		20,0	00		RTECS, 1993
	Mammal	Oral	NR .	Reproductive effects		20,0	00		RTECS, 1993
	Mammal	Oral	NR 🔍	Reproductive effects		509,0	00		RTECS, 1993
	Mouse	Oral LD ₅₀		Mortality	800	160			RTECS, 1993
	Mouse	Oral (subchronic)	13 weeks	Renal effects			25		RTECS, 1993
uoranthene	Rat	Oral LD ₅₀	NR	Mortality	2,000	400			RTECS, 1994
	Mouse	Oral (subchronic)	90 days	Nephropathy; clinical and			50 125		IRIS, 1993
				pathological effects					
ndeno(1,2,3-cd)pyrene	Rodents	Oral (chronic)	NR	Carcinogenicity			72		Eisler, R., 1987b

Table H - 2
Ingestion Toxicity Information for Wildlife

Remedial investigation Report Site 16 NAS Whiting Field

Milton, Florida

					Lethal I		E .	ethal RTV		_
Analyte	Test	Test	Duration	Effect	mg/kg-B\			g-BW-day	2	References
	Species	Туре			Oral LD ₅₀ LOA	EL RTV	LOAEL	NOAEL	RTV ²	
henanthrene	Mouse	Oral LD ₅₀	NR	Mortality	700	140	•			RTECS, 1994
	Mouse	Oral (subchronic)	6 months	Increased liver weight			120			IRIS, 1993
yrene	Rat	Oral LD ₅₀	NR	Mortality	2,700					RTECS, 1993
	Mouse	Oral LD ₅₀	NR	Mortality	800	160				RTECS, 1993
	Mouse	Oral (chronic)	13 weeks	Renal effects			125	75		IRIS, 1993
esticides/PCBs										
,4'-DDD	Rat	Oral LD-d50	NR	Mortality	800					RTECS, 1993
	Mouse	Oral LD-d50	NR	Mortality	700					RTECS, 1993
	Hampster	Oral LD-d50	NR	Mortality	>5,000					RTECS, 1993
	Mallard	Oral LD-d50	NR	Eggshell thinning			2.91			USEPA, 1993c
	Mallard	Oral LD-d50	NR	Reproductive: embryo mortality, cracked egg			0.58			USEPA, 1993c
	Kestrel	Oral LD-d50	NR	Eggshell thinning			0.39			USEPA, 1993c
,4'-DDE	Rat	Oral LD-d50	NR	Mortality	.87					RTECS, 1993
,4'-DDT	Rat	Oral LD-d50		Mortality	100					USEPA, 1985
	Rat	Oral	NR	Reproductive			112			RTECS, 1993
	Rat	Oral	NR	Reproductive			100			RTECS, 1993
	Rat	Oral	NR	Reproductive			430			RTECS, 1993
	Rat	Oral	NR	Reproductive			1890			RTECS, 1993
	Rat	Oral	NR	Reproductive			250			RTECS, 1993
	Rat	Oral	NR	Reproductive			50			RTECS, 1993
	Rat	Oral (chronic)	3 generations	Reproductive			0.2			IRIS, 1991
	Rat	Oral	2 years	Reproductive			2.5			USEPA, 1993c
	Mouse	Oral LD-d50	NR	Mortality	135					RTECS, 1993
	Mouse	Oral LD-d50		Mortality	200					USEPA, 1985d
	Mouse	Oral	NR	Reproductive			504			RTECS, 1993
	Mouse	Oral	NR	Reproductive			81			RTECS, 1993
	Mouse	Oral	NR	Reproductive			124			RTECS, 1993
	Mouse	Oral	NR	Reproductive			148			RTECS, 1993
	Rabbit	Oral LD-d50	NR	Mortality	250					RTECS, 1993
	Rabbit	Oral	NR	Reproductive			150			RTECS, 1993
	Guinea Pig	Oral LD-d50	NR	Mortality	150					RTECS, 1993
	Hamster	Oral LD-d50	NR	Mortality	> 5000					RTECS, 1993
	Dog	Oral LD-d50	NR	Mortality	150					RTECS, 1993
	Dog	Oral LD-d50	••••	Mortality	60					USEPA, 1985d
		Oral CD-050	NR	Reproductive	00		3540			RTECS, 1993
	Dog	Oral (chronic)	14 months	Stillbirth, delayed estrus, reduced libido			3540 12			ATSDR, 1992b
	Dog Monkey	Oral (chronic) Oral LD-d50	NR	Mortality	200		12			RTECS, 1993

Remedial investigation Report Site 16 NAS Whiting Field Milton, Florida

					Lethal R1		Sub	olethal RT\	/	
Analyte	Test	Test	Duration	Effect	mg/kg-BW-		mg/	/kg-BW-day		References
	Species	Туре			Oral LD ₅₀ LOAE	L RTV	LOAEL	NOAEL	RTV	1
	Chicken	Oral (subchronic)	10 weeks	Decreased repdoductive success; toxic syr	nptoms		91.4			USEPA, 1985d
	Rock Dove	Oral LD-d50		Mortality	4000	•				USFWS, 1984
	Black Duck	Oral (chronic)	2 years	Reduced eggshell thickness			0.14			Longcore & Stendel
	Mallard	Oral LD-d50		Mortality	2240					USFWS, 1984
	Mallard	Oral (subchronic)	96 days	Reduced eggshell thickness			2.8			Longcore & Stendel
	Mallard	Oral	NR	Eggshell thinning			1.16			USEPA, 1993c
	Mallard	Oral	NR	Eggshell thinning			2.91			USEPA, 1993c
	Mallard	Oral	2 years	Reproductive			1.45			USEPA, 1993c
	California quail	Oral LD-d50		Mortality	595					USFWS, 1984
	Japanese quail	Oral LD-d50		Mortality	841					USFWS, 1984
	Phesant	Oral LD-d50		Mortality	1334					USFWS, 1984
	Sandhill Crane	Oral LD-d50		Mortality	1200					USFWS, 1984
	Kestrel	Oral (chronic)	7 wk - 1 year	Reduced eggshell thickness			0.56			USEPA, 1985d
	Kestrel	Oral (chronic)	1 year	Reduced eggshell thickness			0.16			Wiemeyer, et al.
	Barn owl	Oral (chronic)	2 years	Reduced eggshell thickness			0.14			Longcore & Stendel
oclor 1254	Mouse	Oral	NR	Reproductive			1.53		0.153	USEPA, 1993b
	Chicken	Oral (chronic)	NR	Embryonic mortality			0.9			USEPA, 1976
	Rock dove	Oral (chronic)	NR	Parental incubation behavior			0.9		0.09	Peakall, D.B., et al., 19
•	American kestrel	Oral (chronic)	69 days	Reduced sperm concentration			9		0.9	Eisler, R., 1986,
	Mink	Oral dose	160 days	Reproductive			0.096		0.0096	USEPA, 1993b
	Mink	Oral	NR	Kit growth			0.15			USEPA, 1993b
	Mink	Oral	12.5 days	Reproductive			0.375			USEPA, 1993b
	Chicken	Oral	39 weeks	Egg production and fertility			2.44			USEPA, 1993b
	Chicken	Oral	NR	Egg production and hatchability			9.8			USEPA, 1993b
	Chicken	Maternal diet	NR	Chick growth			0.98			USEPA, 1993b
	Pheasant	Oral	16 weeks	Egg hatchability			1.8			USEPA, 1993b
eldrin	Mouse	Oral LD ₅₀	NR	Mortality	38	7.6				Allen, J.R., et al., 1979
	Mouse	Oral (chronic)	80 weeks	Body tremors	t		0.33			NCI, 1978
	Mouse	Oral (chronic)	2 year	Liver enlargement w/ histopathology			0.1			IRIS, 1993
	Mouse	Oral (chronic)	2 year	Hepatic cancer			1.3			ATSDR, 1992
	Rat	Oral (chronic)	2 year	Histologic changes			2			ATSDR, 1992
	Rat	Oral (chronic)	2 year	Liver lesions			0.05	0.005		IRIS, 1993
	Dog	Oral (chronic)	2 year	Increased liver weight; liver/body weight			0.05	0.005		IRIS, 1993
	Dog	Oral (chronic)	25 months	Hepatocyte degeneration			0.5			ATSDR, 1992
	Monkey	Oral (chronic)	120 days	Tremors and convulsions			0.1			Smith, R.M., et al., 197
	Mouse	Oral (subchronic)	4 weeks	Decreased pup survival		1	0.65	1	0.065	Virgo, B.B., et al., 197
	Rat	Oral LD ₅₀	NR	Mortality	46	1	2.22	İ		Allen, J.R., et al., 1979
	Guinea pig	Oral LD ₅₀	NR	Mortality	25	5				Allen, J.R., et al., 1979

Remedial investigation Report Site 16 NAS Whiting Field Milton, Florida

		1			i i	al RTV		blethal RTV		
Analyte	Test	Test	Duration	Effect		BW-day		/kg-BW-day		References
	Species	Туре			Oral LD ₅₀ Lo	DAEL RIV	LOAEL	NOAEL	RTV	1
	Rabbit	Oral LD ₅₀	NR	Mortality	45					Allen, J.R., et al., 1979
	House sparrow	Oral LD ₅₀	NR	Mortality	48					USFWS, 1984
	Chicken	Oral LD ₅₀	NR	Mortality	20					Allen, J.R., et al., 1979
	Rock dove	Oral LD ₅₀	NR	Mortality	27					Virgo, B.B., et al., 1979
	Gray partridge	Oral LD ₅₀	NR	Mortality	9					Virgo, B.B., et al., 1975
	Chukar	Oral LD ₅₀	NR	Mortality	25					Virgo, B.B., et al., 1975
	Japanese quail	Oral LD ₅₀	5 days	Mortality	4 6	1.2				Hill, E.F. et al., 1975
	Japanese quail	Oral LD ₅₀	NR	Mortality	70			•		Virgo, B.B., et al., 1975
	California quail	Oral LD ₅₀	NR	Mortality	9					Virgo, B.B., et al., 1975
	Bobwhite	Oral LD ₅₀	5 days	Mortality	4 3	6				Hill, E.F. et al., 1975
	Pheasant	Oral LD ₅₀	NR	Mortality	79					Virgo, B.B., et al., 1975
	Mallard	Oral LD ₅₀	5 days	Mortality	⁴ 12					Hill, E.F. et al., 1975
	Mallard	Oral LD ₅₀	5 days	Mortality	4 11					Hill, E.F. et al., 1975
	Mallard	Oral LD ₅₀	NR	Mortality	381					Virgo, B.B., et al., 1975
	Whistling duck	Oral LD ₅₀	NR	Mortality	100					Virgo, B.B., et al., 1975
	Canada goose	Oral LD ₅₀	NR	Mortality	141					Virgo, B.B., et al., 1975
	Goat	Oral LD ₅₀	NR	Mortality	100					Allen, J.R., et al., 1979
	Sheep	Oral LD ₅₀	NR	Mortality	50					Allen, J.R., et al., 1979
	Cattle	Oral LD ₅₀	NR	Mortality	60					Allen, J.R., et al., 1979
	Mule deer	Oral LD ₅₀	NR	Mortality	75					Allen, J.R., et al., 1979
	Cat	Oral LD ₅₀	NR .	Mortality	300					Allen, J.R., et al., 1979
	Dog	Oral LD ₅₀	NR	Mortality	65	13				Allen, J.R., et al., 1979
organic Analytes										
uminum	Mouse	Oral (chronic)	2-3 generations	Reduced body weight gain of newborns			° 425		425	NIOSH, 1985
	Rat	Oral (subchronic)	15 days	Reduced growth			100	-		Bernuzzi, V., et al., 198
	Rat	Oral LD ₅₀	NR	Mortality	3,700	740				Sax, N.I, 1984
senic	Rat	Oral	NR	Reproductive effects		0.61				RTECS, 1993
	Rat	Oral	NR	Reproductive effects		0.58				RTECS, 1993
	Rat	Oral LD-d50	NR	Mortality	763					RTECS, 1993
	Mouse	Oral LD-d50	NR	Mortality	145					RTECS, 1993
	Mallard	Oral LD-d50	NR	Mortality	323					Eisler, 1988
	Cowbird .	Oral LD-d50	NR	Mortality	18					Eisler, 1988
	Young chicken	Oral	11 days	Egg production				1		Hermeyer, 1971
	Dog	Oral (chronic)	56 days	Mortality		3.1				ATSDR, 1991
rium	Rat	Oral (chronic)	68 weeks	Renal ultrastructure changes			142			IRIS, 1993
	Rat	Oral (subchronic)	13 weeks	Renal effects			91			Dietz, D.D., et al., 1992
	Rat	Oral (acute)	10 days	Decreased ovarian weight		1	198	г	19.8	ATSDR, 1990a

Remedial investigation Report Site 16 NAS Whiting Field

Milton, Florida

	····· 1 ·····	1	1	Willion, Florida	1 16	thal RTV		Çı,	blethal RTV	,	Y
Analyte	Test	Test	Duration	Effect	1	kg-BW-da			/kg-BW-day		References
Allalyte	Species	Type	Duration	Lilect	Oral LD ₅₀		RTV 1	LOAEL	NOAEL	RTV 2	- Acidicileos
	Rat	Oral (subchronic)	13 weeks	20% population mortality		430	43	L	!	l	Dietz, D.D., et al., 1992
Cadmium	Rat	Oral	NR	Reproductive effects	'			155			RTECS, 1993
	Rat	Oral	NR	Reproductive effects				220			RTECS, 1993
	Rat	Oral	NR	Reproductive effects				21.5		2.15	RTECS, 1993
	Rat	Oral	NR	Reproductive effects				23			RTECS, 1993
	Rat	Oral LD ₅₀		Mortality	250						Eisler, R., 1985
	Rat	Oral LD ₅₀	NR	Mortality	225						RTECS, 1993
	Mouse	Oral LD ₅₀	NR	Mortality	890						RTECS, 1993
	Mouse	Oral	NR.	Reproductive effects				448			RTECS, 1993
	Mouse	Oral	NR	Reproductive effects				1,700			RTECS, 1993
	Guinea pig	Oral LD ₅₀	NR	Mortality	150		30				Eisler, R., 1985
	Mallard	Oral (subchronic)	90 days	Egg production suppressed	· · · · · · · · · · · · · · · · · · ·			10		1	Eisler, R., 1985
Chromium	Japanese quail	Oral LD ₅₀	5 days	Mortality	126				•		Hill & Camardese
	Rat	Oral (subchronic)	90 days	Histopathoogic & reproductive effects					1400		Ivankovic & Preuss
	Mouse	Oral (chronic)	7 weeks	Decreased spermatogenesis				3.5			ATSDR, 1993
	Black Duck	Oral (subchronic)	5 months	Reproductive effects					200		Outridge & Sche
	Rat	Oral LD ₅₀		Mortality	200						ATSDR, 1991
Copper	Rat	Single oral dose		Reproductive effects	91			152			RTECS, 1993
	Rat	Oral LD ₅₀	NR	Mortality	940	[188				Sax, N.I, 1984
	Mouse	Oral (chronic)	30 days	Decreased litter sizes with teratogenic effects				100	ĺ	10	Lecyk, M., 1980
Lead	Rat	Oral	NR	Reproductive effects				790			RTECS, 1993
	Rat	Oral	NR	Reproductive effects				1,140			RTECS, 1993
	Rat	Oral	NR	Reproductive effects				520			RTECS, 1993
	Rat	Oral	NR	Reproductive effects				1,100			RTECS, 1993
	Calf	Oral LD ₅₀	NR	Mortality	220			·			Eisler, R., 1988
	Rat	Oral (subchronic)	12-14 days	Decreased fetal body weight				2.5			McClain, R.M., et al., 1972
	Mouse	Oral	NR	Reproductive effects				1,120			RTECS, 1993
	Mouse	Oral	NR	Reproductive effects				6,300			RTECS, 1993
	Mouse	Oral	NR	Reproductive effects				300	, [30	RTECS, 1993
	Mouse	Oral	NR	Reproductive effects			i	4,800	ı		RTECS, 1993
	Domestic animal	Oral	NR	Reproductive effects				662			RTECS, 1993
	Mammal	Oral	NR	Reproductive effects				2,118			RTECS, 1993
	Kestrel	Diet	NR	Decreased egg laying fertility; decreased egg shell thickness					4.61	4.61	Eisler, R., 1988
	Kestrel nestlings	Oral	10 days	Reduced growth and brain weight; abnormal development				125			Eisler, R., 1988
•	Japanese quail	Oral LD ₅₀	5 days	Mortality	24,752						Hill, E.F., et al., 1986

Remedial investigation Report Site 16 NAS Whiting Field Milton, Florida

	-1-	1	1	Willion, Florida	1 1	hal RTV	C.,	blethal RTV	,	T
A l A	Tool	Tank	Duration	F#cot			1			References
Analyte	Test Species	Test Type	Duration	Effect	Oral LD ₅₀	g-BW-day LOΔELL RTV 1	LOAEL	/kg-BW-day	RTV ²	References
***	Rat	Oral (chronic)	2 constations	Developmental effects	30	207122	LOVILL	7		Kimmel, C.A., et al., 198
		Oral LD ₅₀	2 generations	•	200]	60		,		Sax, N.I, 1984
	Guinea pig		ND .	Mortality	300		6.25			Allen, J.R., et al., 1979
	Rock dove	Oral (chronic) Oral LD ₅₀	NR	Kidney pathology; learning deficiencies	075	75	6.25			Kendall, R.J., et al., 198
	Rock dove	•••	00.1	Mortality	375	75	440	1	- 44	ATSDR, 1990b
// Aanganese	Mouse	Oral (subchronic)	90 days	Delayed growth of testes	4.050		140		14	ATSDR, 1990b
	Mouse	Oral (chronic)	103 weeks	Mortality	4,050					ATSDR, 1990b
	Rat	Oral LD ₅₀	NR	Mortality	410	[<u></u> -]				
	Rat	Oral LD ₅₀	20 daγs	Mortality	225	45				ATSDR, 1990b
	Rat	Oral (subchronic)	20 days	Decreased litter weight during gestation				620		ATSDR, 1990b
	Rat	Oral (chronic)	103 weeks	Mortality	930					ATSDR, 1990b
	Guinea pig	Oral LD ₅₀	NR	Mortality	400					USEPA, 1984a
	Monkey	Oral (chronic)	18 months	Weakness, rigidity			25			ATSDR, 1990b
	Rodents/livestock	Oral (subchronic)	10 days - 2 mont	h Decreased growth rate			100			Cunningham, et al., 196
	Mouse	Oral (subchronic)	180 days	Mortality		2,300				Gianutsos, G., et al., 198
Mercury	Mouse	Oral LD ₅₀		Mortality	22	4.4				NIOSH, 1985
	Rock dove	Oral LD ₅₀		Mortality	22.8					Eisler, R., 1987a
	Chicken	Oral LD ₅₀		Mortality	20	4				Fimreite, N., 1979
	Corturnix	Oral LD ₅₀		Mortality	11					Eisler, R., 1987a
	Bobwhite quail	Oral LD ₅₀	5 days	Mortality	523					Hill, E.F. et al., 1975
	Ring-necked pheasa	Oral LD ₅₀		Mortality	11.5					Eisler, R., 1987a
	Mouse	Oral (subchronic)	50 days	Embryotoxicity and teratogenicity			0.9			Suzuki, T., 1979
	Mouse	Oral (subchronic)	Day 6-17 (gest)	Stillbirths and neonatal death			4			Suzuki, T., 1979
	Rat	Oral (chronic)	NR	Reduced fertility			0.5		0.05	Eisler, R., 1987a
organomercury	Rat	Oral (subchronic)	Day 6-14 (gest)	Retarded fetus growth			4			Suzuki, T., 1979
organomercury	Rat	Oral LD ₅₀		Mortality	18	3.6				NIOSH, 1985
organomercury	Pig	Oral (subchronic)	Pregnancy	High incidence of stillbirths	L		0.5		0.05	Eisler, R., 1987a
organomercury	Mule deer	Oral LD ₅₀		Mortality	17.9					Eisler, R., 1987a
organomercury	River otter	Oral LD ₅₀		Mortality	2					Eisler, R., 1987a
organomercury	Mink	Oral LD ₅₀		Mortality	1	0.2				Eisler, R., 1987a
organomercury	Gray partridge	Oral LD ₅₀		Mortality	17.6					Eisler, R., 1987a
methylmercury	Dog	Oral (subchronic)	Pregnancy	High incidence of stillbirths			0.1	ļ	0.01	Eisler, R., 1987a
methylmercury	Chukar	Oral LD ₅₀	29,	Mortality	26.9		L			Eisler, R., 1987a
methylmercury	Mallard	Oral	NR	Reproduction, behavior	20.0		0.064	ĺ	0.0064	USEPA, 1993c
, ,	Black duck	Oral (subchronic)	28 weeks	Reproduction inhibited			4 0.22	ı	3.0004	Eisler, R., 1987a
methylmercury	Fulvous whistling d		TO MAGEY?	•	37.8		0.22			Eisler, R., 1987a
methylmercury	Northern bobwhite			Mortality	23.8					Eisler, R., 1987a
methylmercury			20 4	Mortality	23.8				•	Eisler, R., 1987a
methylmercury	Gray pheasant	Oral (subchronic)	30 days	Reduced reproductive ability	40.5		0.64			
ethylmercury	House sparrow	Oral LD ₅₀		Mortality	12.6					Eisler, R., 1987a

Remedial investigation Report Site 16 NAS Whiting Field Milton, Florida

				Willon, Florida						
					Letha	IRTV	Su	blethal RT\	/	
Analyte	Test	Test	Duration	Effect	mg/kg-E		mg	ı/kg-BW-da		References
	Species	Туре			Oral LD ₅₀ LO	AEL RIV	LOAEL	NOAEL	RIV	1
ethylmercury	Bantam chicken	Oral LD ₅₀		Mortality	190					Fimreite, N., 1979
ethylmercury	Prairie chicken	Oral LD ₅₀		Mortality	11.5	2.3	•			Eisler, R., 1987a
ethylmercury	Japanese quail	Oral LD ₅₀		Mortality	14.4					Eisler, R., 1987a
Silver	Mouse	Intraperitoneal (act	ite)	Mortality	34	6.8				NIOSH, 1985
	Rat	Oral (chronic)	37 week	Weight gain			222.2			ATSDR, 1990d
	Mouse	Oral (chronic)	125 days	Hypoactivity			18.1			ATSDR, 1990d
Vanadium	Japanese quail	Oral LD ₅₀	5 days	Mortality	96	19.2				Hill, E.F., et al., 1986
	Mouse	Gavage LD ₅₀	One time	Mortality	31	6.2				ATSDR, 1990e
	Rat	Oral (subchronic)	2 months	Hypertension			15			Susic, D., et al., 1986
	Rat	Oral (subchronic)	35 days	Development effects				8.4	8.4	Domingo, J.L., et al., 1986
	Chicken	Oral (subchronic)	6 weeks	Decrease in egglaying			° 11		1.1	Berg, L.R., et al., 1963
Zinc	Rat	Oral LD ₅₀		Mortality	2,510	502				RTECS, 1993
	Rat	Oral	Gestation	Fetal resorptions in 4 to 20%			200		20	Schlicker, S.A., et al., 1968
	Ferret	Oral	3-1-3 days	of population Mortality and gastrointestinal effects		390				Straube, E.F., et al., 1980
		Oral (subchronic)	NR	Kidney toxicity		390	160			Llobet, J.M. et al., 1988
	Rat	Oral (subclifdfile)	INIT	Kidney toxicity			100			2020, 0.1111 00 011, 1000
Total Recoverable Petroleum	Hydrocarbons									
TRPH	NA	NA	NA	NA						

the sublethal RTV value is calculated by appling a ten-fold application factor to the sublethal LOAEL.

Selected lethal RTVs are boxed. The lethal RTVs correspond to the NOAEL when available. When an NOAEL is not available,

are lacking for other PAHs. The sublethal RTV is equal to the LOAEL value because the toxicity test is multi-generational in duration.

Ingestion rates for the chicken from NRC, 1984.

Notes: mg/kg = milligrams per kilogram.

RTV = reference toxicity value.

BW = Body weight.

 LD_{50} = dose resulting in 50% mortality in test population.

LOAEL = lowest observed adverse effect level.

NOAEL = no observed adverse effect level.

then the RTV value is calculated by appling a ten-fold application factor to the LOAEL or a five-fold application factor to the Oral LD50.

² Selected sublethal RTVs are boxed. The sublethal RTV corresponds to the NOAEL when available. When an NOAEL is not available,

Value for benzo(a)pyrene chosen as a surrogate for all PAHs. Chemical-specific toxicity studies for ecologically significant endpoints

Converted to dose per kilogram body weight by multiplying the reported value by ingestion rate and dividing by body weight. Body weights for birds obtained from Dunning, 1984. Ingestion rates were calculated using the following regression equation (for all birds) from USEPA , 1993a): Food Ingestion (kg/day) = 0.00582 * Body Weight 0.651 (kg).

Sublethal RTV for aluminum is equal to the LOAEL value because the toxicity test is multi-generational in duration.

Converted from 30 ppm to 11 mg/kg BW-day using standard default parameters USEPA, 1988.

Remedial investigation Report Site 16 NAS Whiting Field Milton, Florida

					Lethal RTV	Sublethal RTV	
Analyte	Test	Test	Duration	Effect	mg/kg-BW-day	mg/kg-BW-day	References
	Species	Туре			Oral LD ₅₀ LOAEL RTV	LOAEL NOAEL RTV	

NR = not reported.

PCBs = polychlorinated biphenyls.

PAH = polynuclear aromatic hydrocarbons.

LC 20 10 = lethal concentration for 20% or 10% of the population.

> = greater than.

% = percent.

gest = gestation.

References:

ATSDR, 1987, "Toxicological Profile for Selected PCBs," Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October.

ATSDR, 1990a, "Toxicological Profile for Barium," Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.

ATSDR, 1990b, "Toxicological Profile for Manganese," Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October.

ATSDR, 1990c, "Toxicological Profile for Naphthalene and 2-Methylnaphthalene," Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, February.

ATSDR, 1990d, "Toxicological Profile for Silver," Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.

ATSDR, 1990e, "Toxicological Profile-for Vanadium," Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.

ATSDR, 1992, "Toxicological Profile for Aldrin/Dieldrin," Agency for Toxic Substances and Disease Registry; U.S. Public Health Service.

Allen, J.R., et al., 1979, "Comparative Toxicology of Chlorinated Compounds on Mammalian Species," Pharmac. Ther., Vol. 7, pp. 513-549.

Berg, L.R., G.E. Bearse, and L.H. Merrill, 1963, "Vanadium Toxicity in Laying Hens," Poultry Science, Vol. 42, pp. 1407-1411.

Bernuzzi, V., D. Desor, and P.R. Lehr, 1989, "Effects of Postnatal Aluminum Lactate Exposure on Neuromotor Maturation in Rats," Bulletin of Environmental Contamination and Toxicology, Vol. 42, pp. 451-5.

Cunningham, G.N., M.B. Wise, and E.R. Barrick, 1966, "Effect of High Dietary Levels of Manganese on the Performance and Blood Constituents of Calves," Journal of Animal Science, Vol. 25, p. 532.

Dietz, D.D., M.R. Elwell, W.E. Davis, and E.F. Meirhenry, 1992, "Subchronic Toxicity of Barium Chloride Dihydrate Administered to Rats and Mice in the Drinking Water," Fundamentals of Applied Toxicology, Vol. 19, pp. 527-537.

Domingo, J.L., J.L. Paternain, J.M. Llobet, and J. Corbella, 1986, "Effects of Vanadium on Reproduction, Gestation, Parturition, and Lactation in Rats Upon Oral Administration," Life Sciences, Vol. 39, pp. 819-824.

Dunning, J.B., 1984, Body Weights of 686 Species of North American Birds, Monograph No. 1, Cave Creek, Arizona: Western Bird Banding Association, May.

Eisler, R., 1985, "Cadmium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review," U.S. Fish and Wildlife Service Biological Report, Vol. 85, No.1.2.

Eisler, R., 1986, "Polychlorinated Biphenyl Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review," U.S. Fish and Wildlife Service Biological Report, Vol. 85, No. 1.7.

Eisler, R., 1987a, "Mercury Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review," U.S. Fish and Wildlife Service Biological Report, Vol. 85, No. 1.10.

Eisler, R., 1987b, "Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review," U.S. Fish and Wildlife Service Biological Report, Vol. 85, No. 1.10.

Eisler, R., 1988, "Lead Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review." U.S. Fish and Wildlife Service Biological Report, Vol. 85, No. 1.14.

Fimreite, N., 1979, "Accumulation and Effects of Mercury on Birds," in The Biogeochemistry of Mercury in the Environment, J.O. Nriagu, ed., New York: Elsevier/North Holland Biomedical Press, pp. 601-626.

Gianutsos, G., and M.T. Murray, 1982, "Alterations in Brain Dopamine and GABA following Inorganic or Organic Manganese Administration," Neurotoxicology, Vol. 3, pp. 75-81, 1982.

Table H - 2

Ingestion Toxicity Information for Wildlife

Remedial investigation Report Site 16 NAS Whiting Field

Milton, Florida

					Lethal RTV	Sublethal RTV	
Analyte	Test	Test	Duration	Effect	mg/kg-BW-day	mg/kg-BW-day	References
	Species	Туре			Oral LD ₅₀ LOAEL RIV	LOAEL NOAEL RTV	

Hill, E.F. et al., 1975, "Lethal Dietary Toxicities of Environmental Pollutants to Birds," Special Scientific Report, Wildlife No. 191,

U.S. Fish and Wildlife Service, Washington, D.C.

Hill, E.F., and M.B. Camardese, 1986, "Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Cotumix," Technical Report No. 2, U.S. Fish and Wildlife Service, Washington, D.C.

Integrated Risk Information System (IRIS), 1988-1993, "Volumes I and II. Chemical Files," U.S. Environmental Protection Agency, Washington, D.C.

Kendall, R.J., and P.F. Scanlon, 1985, "Histology and Ultrastructure of Kidney Tissue from Ringed Turtle Doves that Ingested Lead," Journal of Environ, Pathol. Toxicol, Oncol. Vol. 6, pp. 85-96.

Kimmel, C.A., L.D. Grant, C.S. Sloan, and B.C. Gladen, 1980, "Chronic Low-Level Lead Toxicity on the Rat," Toxicol. Appl. Pharmacol. Vol. 56, pp. 28-41.

Lecyk, M., 1980, "Toxicity of Cupric Sulfate in Mice Embryonic Development," Zool. Pol. Vol. 28, No. 2, pp. 101-105.

Llobet, J.M. et al., 1988, "Subchronic Oral Toxicity of Zinc in Rats," Bulletin of Environmental Contamination and Toxicology, Vol. 41, pp. 36-43.

McClain, R.M., and B.A. Becker, 1972, "Effects of Organo-Lead Compounds on Rat Embryonic and Fetal Development," Toxicology and Applied Pharmacology, Vol. 21, pp. 265-274

MacKenzie, K.M., and D.M. Angevine, 1981, "Infertility in Mice Exposed InVetro to Benzo(a)pyrene," Biological Report, Vol. 24, pp 183-191.

National Cancer Institute, 1978, "Bioassays of Aldrin and Dieldrin for Possible Carcinogenicity," Publication No. 78-821, Bethesda, Maryland: National Institutes of Health,

National Cancer Institute, Division of Cancer Cause and Prevention, Carcinogenesis Program, U.S. Department of Health, Education, and Welfare.

National Institute for Occupational Safety and Health (NIOSH), 1985, "Registry of Toxic Effects of Chemical Substances," NIOSH Publication No. 86-103,

U.S. Department of Health and Human Services, Washington, D.C.

National Research Council (NRC), 1984, Nutrient Requirements of Poultry, Subcommittee on Poultry, Washington, D.C.: National Academy Press.

Newell, A.J., D.W. Johnson, and L.K. Allen, 1987, "Niagara River Blota Contamination Project: Fish Flesh Criteria for Piscivorous Wildlife,"

Technical Report 87-3, Division of Fish and Wildlife, Washington, D.C.

Peakall, D.B., and M.C. Peakall, 1973, "Effect of Polychlorinated Biphenyl on the Reproduction of Artificially Incubated Dove Eggs," Journal of Applied Ecology, Vol. 10, pp. 863-868.

Registry of Toxic Effects of Chemical Substances (RTECS), 1993-1995, On-line database search.

Sax, N.I., 1984, Dangerous Properties of Industrial Material, 6th edition, New York: Van Nostrand Reinhold Company.

Schlicker, S.A., and D.H. Cox, 1968, "Maternal Dietary Zinc, and Development and Zinc, Iron, Copper Content of the Rat Fetus," Journal of Nutrition, Vol. 95, pp. 287-294.

Smith, R.M., W.L. Cunningham, Jr., and G.A. Van Gelder, 1976, "Dieldrin Toxicity and Successive Discrimination Reversal in Squirrel Monkeys, Saimiri sciureus," Journal of Toxicol. Environ. Health, Vol. 1, p. 747.

Straube, E.F., N.H. Schuster, and A.J. Sinclair, 1980, "Zinc Toxicity in the Ferret," Journal of Comp. Pathol., Vol. 90, pp. 355-361.

Susic. D., and D. Kentera, 1986, "Effect of Chronic Vanadate Administration on Pulmonary Circulation in the Rat," Respiration, Vol. 49, pp. 68-72.

Suzuki, T., 1979, "Dose-effect and Dose-response Relationships of Mercury and Its Derivatives," in The Biogeochemistry of Mercury in the Environment, J.O. Nriagu, ed., New York:

Elsevier/North Holland Biomedical Press, pp. 399-431.

U.S. Environmental Protection Agency (USEPA), 1976, National Conference on Polychlorinated Biphenyls, Conference Proceedings, EPA-560/6-75-004, Office of Toxic Substances, Washington, D.C., p. 471.

USEPA, 1984a, "Health Effects Assessment for Chloride," Environmental Criteria and Assessment Office, Cincinnati, Ohio, September,

USEPA, 1984b, "Health Effects Assessment for Benzo(a)pyrene," Office of Emergency and Remedial Response, Washington, D.C., September,

USEPA, 1984c, "Health Effects Assessment for Chlorobenzene," Office of Emergency and Remedial Response, Washington, D.C., September.

USEPA, 1985, "Environmental Profiles and Hazard Indices for Constituents of Municipal Studge: Polychlorinated Biphenyls," Office of Water Regulations and Standards, Washington, D.C.

USEPA, 1986, "Health and Environmental Effects Profile for Carbazole," Environmental Criteria and Assessment Office, Washington, D.C., April.

USEPA, 1988, "Recommendations for and Documtation of Biological Values for use in Risk Assessment" PB 88-179874, EPA-600/6-87-008, Washington, D.C.

USEPA, 1993a, Wildlife Exposure Factors Handbook; Vol. I and II: Office of Research and Development; EPA/600/R-93/187a, b: Washington D.C.: December, 1993

USEPA, 1993b, "Superfund Chemical Data Matrix (SCDM); Washington, D.C. March, 1993

1000

1.2

301.

Page ...

Remedial investigation Report Site 16 NAS Whiting Field Milton, Florida

				winton, r ionaa			
					Lethal RTV	Sublethal RTV	
Analyte	Test	Test	Duration	Effect	mg/kg-BW-day	mg/kg-BW-day	References
	Species	Туре			Oral LD ₅₀ LOAEL RTV	LOAEL NOAEL RIV	

USEPA, 1993c, Great Lakes Quality Initiative Criteria Documents for the Protection of Wildlife (Proposal); EPA-822-R-93-007; Washington, D.C. April, 1993.

U.S. Fish and Wildlife Service, 1984, "Handbook of Toxicity of Pesticides to Wildlife," Resource Publication 153, U.S. Department of the Interior, Washington, D.C.

Virgo, B.B., and G.D. Bellward, 1975, "Effects of Dietary Dieldrin on Reproduction in the Swiss-Vancouver (SWV) Mouse," Environ. Physiol. Biochem., Vol. 5, pp. 440-450.

Table H - 3
RTVs Selected for Ecological Risk Assessment [a]
Units (mg/kgBW/day)

Remedial investigation Report Site 16 Naval Air Station Whiting Field Milton, Florida

	Small	Small Mammal [b]		Small	Small Bird [c]		Mammal [d]	Predatory Bird [e]	
Analyte	Lethal		Sublethal	Lethal	Sublethal	Lethal	Sublethal	Lethal	Sublethal
Semivolatile Organic Compounds									
Benzo(a)anthracene	12	[f]	10 [f]	NA	NA	12 [f]	10 [f]	NA	NA
Benzo(a)pyrene	12		10	NÁ	NA	12	10	NA	NA
Benzo(b)fluoranthene	12	[f]	10 [f]	NA	NA	12 [f]	10 [f]	NA	NA
Benzo(g,h,i)perylene	12	[f]	10 [f]	NA	NA	12 [f]	10 [f]	NA	NA
Benzo(k)fluoranthene	12	[f]	10 (f)	NA	NA	12 [f]	10 [f]	NA	NA
Carbazole	100		NA	NA	NA	100	NA ·	NA	NA
Chrysene	12	[f]	10 [f]	NA	NA	12 [f]	10 [f]	NA	NA .
Dibenz (a,h) anthracene	12	[f]	10 [f]	NA	NA	12 [f]	10 [f]	NA	NA
bis(2-Ethylhexyl)phthalate	160		3.5	NA	NA	160	3.5	NA	NA
Fluoranthene	400		10 [f]	NA	NA	400	10 [f]	NA	NA
Indeno(1,2,3-cd)pyrene	12	[f]	10 [f]	NA	. NA	12 [f]	10 [f]	NA	NA
Phenanthrene	140		10 (f)	NA	NA	140	10 [f]	NA	NA
Pyrene	160		10 [f]	NA	NA	160	10 [f]	NA	NA
Pesticides/PCBs									
4,4'-DDD	17.4		0.2	119	0.14	12	12	119	0.14
4,4'-DDE	140		0.2	119	0.39	140	12	119	0.39
4,4'-DDT	140		0.2	119	0.14	12	12	119	0.14
Aroclor-1254	100	[g]	0.153	16 (g	0.09	150 [g]	0.0096	16 [g]	0.9 [h]
Dieldrin	5		0.065	1.2	NA	13	0.065	1.2	NA
Inorganic Compounds									
Aluminum	740		425	NA	NA	740	425	NA	NA
Arsenic	29		0.58	3.6	1	3.1	0.58	3.6	1
Barium	43		19.8	NA	NA	43	19.8	NA	NA
Cadmium	30		2.15	NA	1	30	2.15	NA	1
Chromium	40		3.5	25.2	200	40	3.5	25.2	200
Copper	188		10	NA	NA	188	10	NA	NA
Lead	60		30	75	4.61	60	30	75	4.61
Manganese	45		14	NA	NA	45	14	NA	NA

Table H - 3

RTVs Selected for Ecological Risk Assessment [a] Units (mg/kgBW/day)

Remedial investigation Report Site 16 Naval Air Station Whiting Field

Milton, Florida

	Small M	ammal [b]	Small Bird [c]		Predatory Mammal [d]		Predatory Bird [e]	
Analyte	Lethal	Sublethal	Lethal	Sublethal	Lethal	Sublethal	Lethal	Sublethal
Mercury	4.4	0.05	4	0.064	4.4	0.05	4	0.064
Mercury (organic)	3.6	0.05	2.3	0.0064	0.2	0.01	2.3	0.0064
Silver	6.8	NA	NA	NA	6.8	NA	NA	NA
Vanadium	6.2	. 8.4	19.2	1.1	6.2	8.4	19.2	1.1
Zinc	502	20	NA	NA	502	20	NA	NA

Notes:

[a] Lethal RTVs correspond to the boxed lethal RTV presented in Table D-2. Lethal RTVs correspond to the highest NOAEL.

When an NOAEL value is not available then one-tenth of the lowest LOAEL, or one-fifth of the lowest LD50 is used as a surrogate value.

Sublethal RTVs correspond to the boxed sublethal RTV in table D-2. Lethal RTVs correspond to the highest NOAEL.

When an NOAEL value is not available, then one-tenth of the sublethal LOAEL is used as a surrogate.

- [b] These RTVs represent chemical concentrations that are not anticipated to result in adverse effects for the cotton mouse or short-tailed shrew.
- [c] These RTVs represent chemical concentrations that are not anticipated to result in adverse effects for the eastern meadowlark.
- [d] These RTVs represent chemical concentrations that are not anticipated to result in adverse effects for the red fox.

When no data are available, the small mammal value is used as a surrogate.

- e] These RTVs represent chemical concentrations that are not anticipated to result in adverse effects for the great-homed owl. When no data are available, the small bird value is used as a surrogate.
- [f] The value for benzo(a)pyrene was used as a surrogate.
- [g] The value for Aroclor -1260 is used as a surrogate.
- [h] The value for Aroclor 1254 is used as a surrogate.

Notes:

NA = not available.

RTV = reference toxicity value.

 LD_{50} = dose resulting in 50% mortality in test population.

LOAEL = lowest observed adverse effect level.

NOAEL = no observed adverse effect level.

PCBs = polychlorinated biphenyls.

Table H - 4
Summary of Toxicity Data for Plant Receptors

Remedial Investigation Report

Site 16

Naval Air Station Whiting Field

Milton,	Florida

Analyte	Reference	RTV in Soil (mg/Kg)
SEMI-VOLATILE ORGANICS		
Benzo(a)anthracene		25 [b]
Benzo(a)pyrene		25 [b]
Benzo(b)fluoranthene		25 [b]
Benzo(k)fluoranthene		25 [b]
Benzo(g,h,i)perylene		25 [b]
Carbazole		NA
Chrysene		25 [b]
Dibenzo(a,h)anthracene		25 [b]
bis(2-Ethylhexyl)phthalate	Hulzebos et al., 1993 [c]	>1,000
Fluoranthene		25 [b]
Indeno(1,2,3-cd)pyrene		25 [b]
Phenanthrene		25 [b]
Pyrene		25 [b]
PESTICIDES/PCBs		
4,4'-DDD		12.5 [d]
4,4'-DDE		12.5 [d]
4,4'-DDT		12.5 [d]
Aroclors	Will and Suter, 1994	40
Dieldrin		12.5 [d]
INORGANICS		
Aluminum	Will and Suter, 1994	50
Arsenic	Will and Suter, 1994	10
Barium	Will and Suter, 1994	500
Cadmium	Will and Suter, 1994	3
Chromium	Will and Suter, 1994	. 2
Copper	Will and Suter, 1994	100
Lead	Will and Suter, 1994	50

Table H - 4

Summary of Toxicity Data for Plant Receptors

Remedial Investigation Report

Site 16

Naval Air Station Whiting Field

Milton, Florida

Analyte	Reference	RTV in Soil (mg/Kg)
Manganese	Will and Suter, 1994	500
Mercury	Will and Suter, 1994	0.3
Silver	Will and Suter, 1994	2
Vanadium	Will and Suter, 1994	2
Zinc	Will and Suter, 1994	50

- [a] RTVs in soil are equal to chemical concentrations in soil that are not expected to result in adverse effects to plants.
- [b] Value represents 14-day growth EC₅₀ for Lactuca sativa in soil.
- [c] Value for acenaphthene used as a surrogate (Will and Suter, 1994).
- [d] Value for 4,4'-DDT used as a surrogate.

Notes:

NA = Not Available.

RTV = reference toxicity value.

PCBs = polychlorinated biphenyls.

References:

Hulzebos, E.M., D.M.M. Adema, E.M. Dirven-van Breemen, L. Henzen, W.A. van Dis, H.A. Herbold, J.A. Hoekstra, R. Baerselman, and C.A.M. van Gestel. 1993. "Phytoxicity Studies with Lactuca sativa in Soil and Nutrient Solution." Environ. Toxicol. and Chem. 1

Will, M.E., and G.W. Suter. 1994. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants.
1994 Rev. (September). Environmental Sciences Division. Oak Ridge, Tennessee: Oak Ridge National Laboratory.

Tabic 🛂 5

Summary of Toxicity Data for Terrestrial Invertebrates

Remedial Investigation Report Site 16 Naval Air Station Whiting Field Milton, Florida

				Milt	on, Florida		
Analyte	Test	Test	Test	Chemical Concentration	Effect '	RTV	Reference
	Туре	Duration	Species	(mg/kg)		(mg/kg)	
05140404 474 5 0004140 001	anouning.						
SEMIVOLATILE ORGANIC COM		1.4 day	E footida	173	16	24 [a]	Neuhauser et al., 1985.
Benzo(a)anthracene	Soil Test	14-day	E. foetida E. foetida	173	LC ₅₀		Neuhauser et al., 1985.
Benzo(a)pyrene	Soil Test	14-day	E. foetida	173	LC ₅₀		Neuhauser et al., 1985.
Benzo(b and k)fluoranthene	Soil Test Soil Test	14-day	E. foetida	173	LC ₅₀		Neuhauser et al., 1985.
Benzo(g,h,i)perylene	NA NA	14-day NA	NA	NA NA	LC ₅₀ NA	NA	NA
Carbazole		14-day	E. foetida	173	LC ₅₀		Neuhauser et al., 1985.
Chrysene	Soil Test Soil Test	•	E. foetida	173	LC ₅₀		Neuhauser et al., 1985.
Dibenz(a,h)anthracene		14-day		2,390			Neuhauser et al., 1985.
bis(2-Ethylhexyl)phthalate	Soil Test	14-day	4 test species E. foetida	2,390 173	LC ₅₀		Neuhauser et al., 1985.
Fluoranthene	Soil Test Soil Test	14-day 14-day	E. foetida	173	LC ₅₀ LC ₅₀		Neuhauser et al., 1985.
ndeno(1,2,3-cd)pyrene	Soil Test	14-day 14-day	E. foetida	173	LC ₅₀		Neuhauser et al., 1985.
Phenanthrene	Soil Test	•	E. foetida	173	LC ₅₀		Neuhauser et al., 1985.
Pyrene	Son rest	14-day	L. IUelida	173	1050	→ (a)	reduidade et ar., 1000.
PESTICIDES/PCBs							
4,4'-DDD	Soil Test	NS	NS	60	58 % mortality	12 [e]	USEPA, 1985
4,4'-DDE	Soil Test	NS	NS	60	58 % mortality	12 [e]	USEPA, 1985
4,4'-DDT	Soil Test	NS	NS	60	58 % mortality	12	USEPA, 1985
Aroclor-1254	NA	NA	NA	AN	NA	· NA	NA
Dieldrin	Soil Test	89-day	E. foetida	10	6 % decrease in number of cocoons hatched		Reinecke and Venter, 1985
Dieldrin	Soil Test	89-day	E. foetida	30	26 % decrease in number of cocoons hatched	30	Reinecke and Venter, 1985
Dieldrin	Soil Test	89-day	E. foetida	100	36 % decrease in number of cocoons hatched		Reinecke and Venter, 1985
Dieldrin	Soil Test	89-day	E. foetida	100	50 % decrease in number of cocoons produced		Reinecke and Venter, 1985
Endrin	NA	NA	NA	NA	NA	NA	NA
INORGANIC ANALYTES							
Aluminum	NA	NA	NA	NA	NA	NA	NA
Arsenic	Soil Test	14-day	E. foetida	100	0 % mortality	100	Bouche et al., 1987
Arsenic	Soil Test	14-day	E. foetida	200	100 % mortality		Bouche et al., 1987
Barium	NA	NA	NA	NA	NA	NA	NA
Cadmium	Soil Test	14-day	E. foetida	900	0 % mortality		Bouche et al., 1987
Cadmium	Soil Test	14-day	E. foetida	2,700	100 % mortality		Bouche et al., 1987
Cadmium	Soil Test	14-day	E. foetida	1,000 [c]	LC ₅₀		van Gestel and van Dis, 1988
Cadmium	Soil Test	20-week	E. foetida	50 [d]	Decrease in cocoon production	50 (e)	Malecki et al., 1982
Cadmium	Soil Test	2-week	E. foetida	1,843	LC ₅₀		Neuhauser et al., 1985
Chromium							
Copper ·	Soil Test	14-day	E. foetida	10	0 % mortality		Bouche et al., 1987
Copper	Soil Test	14-day	E. foetida	30	20 % mortality	30	Bouche et al., 1987

Table H - 5 Summary of Toxicity Data for Terrestrial Invertebrates

Remedial Investigation Report Site 16 Naval Air Station Whiting Field Milton, Florida

			1	Chemical			
Analyte	Test	Test	Test	Concentration	Effect	RTV	Reference
	Туре	Duration	Species	(mg/kg)		(mg/kg)	
Copper	Soil Test	20-week	E. foetida	2,000 [d]	Decrease in cocoon production		Malecki et al., 1982
Copper	Soil Test	2-week	E. foetida	643	LC ₅₀		Neuhauser et al., 1985
Lead	Soil Test	20-week	E. foetida	5,000 [d]	Decrease in cocoon production		Malecki et al., 1982
Lead	Soil Test	2-week	E. foetida	5,941	LC ₅₀	1,190 [e]	Neuhauser et al., 1985
Manganese	NA	NA	NA	NA	NA	NA	NA
Mercury	Soil Test	14-day	E. foetida	36	0 % mortality	36	Bouche et al., 1987
Mercury	Soil Test	14-day	E. foetida	216	60 % mortality		Bouche et al., 1987
Silver	NA ·	NA .	NA	NA	NA	NA	NA
Vanadium	NA	NA	NA	NA	NA	NA NA	NA .
Zinc	Soil Test	20-week	E. foetida	5,000 [d]	Decrease in cocoon production		Malecki et al., 1982
Zinc	Soil Test	2-week	E. foetida	662	LC ₅₀	130 [e]	Neuhauser et al., 1985

NOTES:

[a] Equal to the lowest LC50 in each chemical class, multiplied by a safety factor of 0.2.

Value for fluorene used for PAHs.

- [b] Mean of LC₅₀ for four test species (*A. teberculata, E. foetida, E. eugeniae,* and *P. excavatus*) from artificial soil tests; values used for a whole chemical class are multiplied by a factor of 0.2 (Neuhauser *et al.*, 1986). Value for dimethylphthalate used for phthalates.
- [c] LC_{50} value for soil at pH = 7.0; LC_{50} = 320 ug/g 560 ug/g for soil pH = 4.1.
- [d] Acetate salt.
- [e] Conservative factor of 0.2 applied to endpoint; resultant value should be protective of 99.9% of the exposed population from acute effects (USEPA, 1986).

Notes:

RTV = reference toxicity value.

NA = not available.

PCBs = polychlorinated biphenyls.

mg/kg = milligrams per kilogram.

 LD_{50} = dose resulting in 50% mortality in test population.

References:

Bouche, M.B., et al. 1987. "Lethal Concentrations of Heavy Metals in Tissue of Earthworms." Contract Number DAJA 45-87-C-0013, 2nd interim report (October).

Montpellier Cédex, France: Université des Sciences et Techniques du Languedoc.

van Gestel, C.A.M., and W.A. van Dis. 1988. "The Influence of Soil Characteristics on the Toxicity of Four Chemicals to the Earthworm Eisenia fetida endrei (Oligochaeta)." Biol. Fertil. Soils 6:262-265.

Hans, R.K, R.C. Gupta, and M.U. Beg. 1990. "Toxicity Assessment of Four Insecticides to Earthworm, Pheretima posthuma." Bulletin of Environ. Contam. Toxicol. 45:358-364

Malecki, M.R, E.F. Neuhauser, and R.C. Loehr. 1982. "The Effect of Metals on the Growth and Reproduction of Eisenia foetida." Pedobilogia 24:129-137.

Neuhauser, E.F., R.C. Loehr, M.R. Malecki, D.L. Milligan, and P.R. Durkin. 1985. "The Toxicity of Selected Organic Chemicals to the Earthworm Eisenia fetida." J. Environ. Qual. 14:383-388.

Reinecke, A.J. and J.M. Venter. 1985. "Influence of Dieldrin on the Reproduction of the Earthworm Eisenia fetida (Oligochaeta)." Biol. Fertil. Soils 1:39-44.

U.S. Environmental Protection Agency (USEPA). 1985. "Environmental Profiles and Hazard Indices for Constituents of Municipal Sludge: DDT/DDE/DDD," Office of Water Regulations and Standards, Wa

TABLE H-6 ESTIMATION OF CHRONIC EXPOSURES TO TERRESTRIAL RECEPTORS FROM EXPOSURE TO RME CONCENTRATIONS IN FOOD AND SURFACE SOIL

EXPOSURE CONCENTRATION DATA

REASONABLE MAXIMUM CHEMICAL SOIL CONCENTRATION (mg/kg) Benzo (a) anthracene 3.5E-01 3.7E-01 Benzo (a) pyrene Benzo (b) fluoranthene 4.1E-01 Benzo (k) fluoranthene 3.9E-01 3.0E-01 Benzo (g,h,i) perylene bis(2-Ethylhexyl) phthalate 1.2E-01 Carbazole 9.7E-02 Chrysene 3.9E-01 Dibenzo (a,h) anthracene 2.4E-01 Fluoranthene 3.4E-01 Indeno (1,2,3-cd) pyrene 3.2E-01 Phenanthrene 2.3E-01 Pyrene 3.1E-01 4.4-DDD 6.2E-03 4,4-DDE 3.7E-02 4,4-DDT 2.0E-02 Aroclor-1254 6.8E-02 Dieldrin 3.2E-02 Aluminum 1.1E+04 Arsenic 3.8E+00 Barium 6.3E+01 Cadmium 2.1E+00 Chromium 1.5E+01 7.8E+01 Copper Lead 4.7E+02 3.0E+02 Manganese Mercury 1.3E-01 Silver 2.3E+00 Vanadium 2.1E+01 Zinc 4.1E+02

TISSUE LEVELS IN PRIMARY PREY ITEMS (Site Specific)

		PREY ITEMS (S	ite Specific)						
Signature Sign	Invertebrate	Invertebrate	Plant	Plant	Mammal	Mammal	Bird	Small Bird	
5.0E-02 1.8E-02 3.4E-03 1.2E-03 9.5E-01 5.6E-03 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 5.9E-03 NA 0.0E+00 5.0E-02 2.1E-02 3.4E-03 1.4E-03 9.5E-01 6.6E-03 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.0E-03 9.5E-01 6.2E-03 NA 0.0E+00 5.0E-02 1.5E-02 3.4E-03 1.0E-03 9.5E-01 4.8E-03 NA 0.0E+00 5.0E-02 1.5E-03 1.0E-03 1.9E-01 4.1E-04 NA 0.0E+00 5.0E-02 5.9E-03 1.5E-01 0.0E+00 NA 0.0E+00 5.0E-02 1.9E-03 3.2E-03 1.5E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 1.2E-03 9.5E-01 3.8E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02<	BAF [a]	Tissue Level	BAF [a]	Tissue Level	BAF [a]	Tissue Level	BAF [a]	Tissue Level	
5.0E-02 1.8E-02 3.4E-03 1.2E-03 9.5E-01 5.6E-03 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 5.9E-03 NA 0.0E+00 5.0E-02 2.1E-02 3.4E-03 1.3E-03 9.5E-01 6.6E-03 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.0E-03 9.5E-01 6.2E-03 NA 0.0E+00 5.0E-02 1.5E-02 3.4E-03 1.0E-03 9.5E-01 4.8E-03 NA 0.0E+00 5.0E-02 1.5E-03 1.0E-03 1.9E-01 4.1E-04 NA 0.0E+00 5.0E-02 5.9E-03 1.3E-03 9.5E-01 6.2E-03 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 3.8E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 1.2E-03 9.5E-01 3.8E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 <		(mg/kg) [b]		(mg/kg) [b]		(mg/kg) [c]		(mg/kg) [¢]	
5.0E-02 2.1E-02 3.4E-03 1.4E-03 9.5E-01 6.6E-03 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 6.2E-03 NA 0.0E+00 5.0E-02 1.5E-02 3.4E-03 1.0E-03 9.5E-01 4.8E-03 NA 0.0E+00 5.0E-02 5.9E-03 8.7E-03 1.0E-03 1.9E-01 4.1E-04 NA 0.0E+00 5.0E-02 4.9E-03 5.2E-02 5.0E-03 1.5E-01 0.0E+00 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 6.2E-03 NA 0.0E+00 5.0E-02 1.7E-02 3.4E-03 1.2E-03 9.5E-01 5.5E-03 NA 0.0E+00 5.0E-02 1.7E-02 3.4E-03 1.1E-03 9.5E-01 5.5E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 3.7E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 1.1E-03 <	5.0E-02		3.4E-03	1.2E-03	9.5E-01		NA		************
5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 6.2E-03 NA 0.0E+00 5.0E-02 1.5E-02 3.4E-03 1.0E-03 9.5E-01 4.8E-03 NA 0.0E+00 5.0E-02 5.9E-03 8.7E-03 1.0E-03 1.9E-01 4.1E-04 NA 0.0E+00 5.0E-02 4.9E-03 5.2E-02 5.0E-03 1.5E-01 0.0E+00 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 6.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 1.3E-03 9.5E-01 5.5E-03 NA 0.0E+00 5.0E-02 1.7E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 <	5.0E-02	1.9E-02	3.4E-03	1.3E-03	9.5E-01	5.9E-03	NA	0.0E+00	
5.0E-02 1.5E-02 3.4E-03 1.0E-03 9.5E-01 4.8E-03 NA 0.0E+00 5.0E-02 5.9E-03 8.7E-03 1.0E-03 1.9E-01 4.1E-04 NA 0.0E+00 5.0E-02 4.9E-03 5.2E-02 5.0E-03 1.5E-01 0.0E+00 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 3.8E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 8.3E-04 9.5E-01 3.8E-03 NA 0.0E+00 5.0E-02 1.7E-02 3.4E-03 1.2E-03 9.5E-01 5.5E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 1.1E-03 <	5.0E-02	2.1E-02	3.4E-03	1.4E-03	9.5E-01	6.6E-03	NA	0.0E+00	
5.0E-02 5.9E-03 8.7E-03 1.0E-03 1.9E-01 4.1E-04 NA 0.0E+00 5.0E-02 4.9E-03 5.2E-02 5.0E-03 1.5E-01 0.0E+00 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 6.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 8.3E-04 9.5E-01 5.5E-03 NA 0.0E+00 5.0E-02 1.7E-02 3.4E-03 1.2E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 1.9E-03 2.9E+00 9.1E-04 1.7E+00 6.6E-02 1.0E-02 2.0E-05	5.0E-02	1.9E-02	3.4E-03	1.3E-03	9.5E-01	6.2E-03	NA	0.0E+00	
5.0E-02 4.9E-03 5.2E-02 5.0E-03 1.5E-01 0.0E+00 NA 0.0E+00 5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 6.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 8.3E-04 9.5E-01 3.8E-03 NA 0.0E+00 5.0E-02 1.7E-02 3.4E-03 1.2E-03 9.5E-01 5.5E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 8.0E-04 9.5E-01 5.0E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 3.3E+00 2.0E-02 1.0E-02 6.2E-05 1.2E+00 1.9E-03 2.9E+00 2.8E-03 5.7E-01 1.1E-02 1.0E-02 3.7E-04	5.0E-02	1.5E-02	3.4E-03	1.0E-03	9.5E-01	4.8E-03	NA	0.0E+00	
5.0E-02 1.9E-02 3.4E-03 1.3E-03 9.5E-01 6.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 8.3E-04 9.5E-01 3.8E-03 NA 0.0E+00 5.0E-02 1.7E-02 3.4E-03 1.2E-03 9.5E-01 5.5E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 8.0E-04 9.5E-01 3.7E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 8.0E-04 9.5E-01 5.0E-03 NA 0.0E+00 3.3E+00 2.0E-02 1.0E-02 6.2E-05 1.2E+00 1.9E-03 2.9E+00 9.1E-04 1.7E+00 6.3E-02 1.0E-02 3.7E-04 1.2E+00 1.4E-03 2.9E+00 2.8E-03 5.7E-01 1.1E-02 1.0E-02 2.0E-04 1.2E+00 1.4E-03 2.9E+00 5.5E-04 5.8E+00 3.9E-01 1.2E-01 8.2E-03	5.0E-02	5.9E-03	8.7E-03	1.0E-03	1.9E-01	4.1E-04	NA	0.0E+00	
5.0E-02 1.2E-02 3.4E-03 8.3E-04 9.5E-01 3.8E-03 NA 0.0E+00 5.0E-02 1.7E-02 3.4E-03 1.2E-03 9.5E-01 5.5E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 8.0E-04 9.5E-01 3.7E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 3.3E+00 2.0E-02 1.0E-02 6.2E-05 1.2E+00 1.9E-03 2.9E+00 9.1E-04 1.7E+00 6.3E-02 1.0E-02 3.7E-04 1.2E+00 6.3E-03 2.9E+00 2.8E-03 5.7E-01 1.1E-02 1.0E-02 2.0E-04 1.2E+00 1.4E-03 2.9E+00 5.5E-04 5.8E+00 3.9E-01 1.7E-02 5.4E-04 1.5E+00 2.0E-02 4.4E-01 1.2E-03 7.5E-02 8.5E+02 8.0E-04 9.	5.0E-02	4.9E-03	5.2E-02	5.0E-03	1.5E-01	0.0E+00	NA	0.0E+00	
5.0E-02 1.7E-02 3.4E-03 1.2E-03 9.5E-01 5.5E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 8.0E-04 9.5E-01 3.7E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 3.3E+00 2.0E-02 1.0E-02 6.2E-05 1.2E+00 1.9E-03 2.9E+00 9.1E-04 1.7E+00 6.3E-02 1.0E-02 3.7E-04 1.2E+00 6.3E-03 2.9E+00 2.8E-03 5.7E-01 1.1E-02 1.0E-02 2.0E-04 1.2E+00 1.4E-03 2.9E+00 2.8E-03 5.5E+00 3.9E-01 1.2E-01 8.2E-03 3.8E+00 1.2E-01 3.2E-01 1.9E-03 5.5E+00 1.7E-01 1.7E-02 5.4E-04 1.5E+00 2.0E-02 4.4E-01 1.2E-03 7.5E-02 8.5E+02 8.0E-04 <	5.0E-02	1.9E-02	3.4E-03	1.3E-03	9.5E-01	6.2E-03	NA	0.0E+00	
5.0E-02 1.7E-02 3.4E-03 1.1E-03 9.5E-01 5.2E-03 NA 0.0E+00 5.0E-02 1.2E-02 3.4E-03 8.0E-04 9.5E-01 3.7E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 3.3E+00 2.0E-02 1.0E-02 6.2E-05 1.2E+00 1.9E-03 2.9E+00 9.1E-04 1.7E+00 6.3E-02 1.0E-02 3.7E-04 1.2E+00 6.3E-03 2.9E+00 9.1E-04 5.7E-01 1.1E-02 1.0E-02 2.0E-04 1.2E+00 1.4E-03 2.9E+00 5.5E-04 5.8E+00 3.9E-01 1.2E-01 8.2E-03 3.8E+00 1.2E-01 3.2E-01 1.9E-03 5.5E+00 1.7E-02 5.4E-04 1.5E+00 2.0E-02 4.4E-01 1.2E-03 7.5E-02 8.5E+02 8.0E-04 9.0E+00 7.5E-02 1.5E+01 NA 0.0E+00 6.6E-03 2.5E-02 3.0E-01 1.1E+00 <	5.0E-02	1.2E-02	3.4E-03	8.3E-04	9.5E-01	3.8E-03	NA	0.0E+00	
5.0E-02 1.2E-02 3.4E-03 8.0E-04 9.5E-01 3.7E-03 NA 0.0E+00 5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 3.3E+00 2.0E-02 1.0E-02 6.2E-05 1.2E+00 1.9E-03 2.9E+00 9.1E-04 1.7E+00 6.3E-02 1.0E-02 3.7E-04 1.2E+00 6.3E-03 2.9E+00 2.8E-03 5.7E-01 1.1E-02 1.0E-02 2.0E-04 1.2E+00 1.4E-03 2.9E+00 5.5E-04 5.8E+00 3.9E-01 1.2E-01 8.2E-03 3.8E+00 1.2E-01 3.2E-01 1.9E-03 5.5E+00 1.7E-01 1.7E-02 5.4E-04 1.5E+00 2.0E-02 4.4E-01 1.2E-03 7.5E-02 8.5E+02 8.0E-04 9.0E+00 7.5E-02 1.5E+01 NA 0.0E+00 6.6E-03 2.5E-02 3.0E-01 1.1E+00 1.0E-01 4.0E-02 6.0E-03 5.2E-05 7.5E-03 4.8E-01 3.3E-01	5.0E-02	1.7E-02	3.4E-03	1.2E-03	9.5E-01	5.5E-03	NA	0.0E+00	\$.
5.0E-02 1.6E-02 3.4E-03 1.1E-03 9.5E-01 5.0E-03 NA 0.0E+00 3.3E+00 2.0E-02 1.0E-02 6.2E-05 1.2E+00 1.9E-03 2.9E+00 9.1E-04 1.7E+00 6.3E-02 1.0E-02 3.7E-04 1.2E+00 1.9E-03 2.9E+00 2.8E-03 5.7E-01 1.1E-02 1.0E-02 2.0E-04 1.2E+00 1.4E-03 2.9E+00 5.5E-04 5.8E+00 3.9E-01 1.2E-01 8.2E-03 3.8E+00 1.2E-01 1.9E-03 5.5E+00 1.7E-01 1.7E-02 5.4E-04 1.5E+00 2.0E-02 4.4E-01 1.2E-03 7.5E-02 8.5E+02 8.0E-04 9.0E+00 7.5E-02 1.5E+01 NA 0.0E+00 6.6E-03 2.5E-02 3.0E-01 1.1E+00 1.0E-01 4.0E-02 6.0E-03 5.2E-05 7.5E-03 4.8E-01 3.0E-02 1.9E+00 7.5E-03 1.0E-02 NA 0.0E+00 1.1E+01 2.2E+01 3.3E+01 6.9E+01	5.0E-02	1.6E-02	3.4E-03	1.1E-03	9.5E-01	5.2E-03	NA	0.0E+00	
3.3E+00 2.0E-02 1.0E-02 6.2E-05 1.2E+00 1.9E-03 2.9E+00 9.1E-04 1.7E+00 6.3E-02 1.0E-02 3.7E-04 1.2E+00 6.3E-03 2.9E+00 2.8E-03 5.7E-01 1.1E-02 1.0E-02 2.0E-04 1.2E+00 1.4E-03 2.9E+00 5.5E-04 5.8E+00 3.9E-01 1.2E-01 8.2E-03 3.8E+00 1.2E-01 3.2E-01 1.9E-03 5.5E+00 1.7E-01 1.7E-02 5.4E-04 1.5E+00 2.0E-02 4.4E-01 1.2E-03 7.5E-02 8.5E+02 8.0E-04 9.0E+00 7.5E-02 1.5E+01 NA 0.0E+00 6.6E-03 2.5E-02 3.0E-01 1.1E+00 1.0E-01 4.0E-02 6.0E-03 5.2E-05 7.5E-03 4.8E-01 3.0E-02 1.9E+00 7.5E-03 1.0E-02 NA 0.0E+00 1.1E+01 2.2E+01 3.3E+01 6.9E+01 2.1E+00 4.8E+01 3.8E-01 2.3E-01 1.6E-01 1.3E+01 7.8E-03 2.3E-02 2.8E-01 1.0E-01 NA 0.0E+00	5.0E-02	1.2E-02	3.4E-03	8.0E-04	9.5E-01	3.7E-03	NA	0.0E+00	$\delta^{r,l}$
1.7E+00 6.3E-02 1.0E-02 3.7E-04 1.2E+00 6.3E-03 2.9E+00 2.8E-03 5.7E-01 1.1E-02 1.0E-02 2.0E-04 1.2E+00 1.4E-03 2.9E+00 5.5E-04 5.8E+00 3.9E-01 1.2E-01 8.2E-03 3.8E+00 1.2E-01 3.2E-01 1.9E-03 5.5E+00 1.7E-01 1.7E-02 5.4E-04 1.5E+00 2.0E-02 4.4E-01 1.2E-03 7.5E-02 8.5E+02 8.0E-04 9.0E+00 7.5E-02 1.5E+01 NA 0.0E+00 6.6E-03 2.5E-02 3.0E-01 1.1E+00 1.0E-01 4.0E-02 6.0E-03 5.2E-05 7.5E-03 4.8E-01 3.0E-02 1.9E+00 7.5E-03 1.0E-02 NA 0.0E+00 1.1E+01 2.2E+01 3.3E+01 6.9E+01 2.1E+00 4.8E+01 3.8E-01 2.3E-01 1.6E-01 2.4E+00 1.5E-03 2.3E-02 2.8E-01 1.0E-01 2.8E-01 1.4E-02 1.6E-01 1.3E+01 7.8E-01 6.1E+01 6.0E-01 1.2E+01 NA 0.0E+00	5.0E-02	1.6E-02	3.4E-03	1.1E-03	9.5E-01	5.0E-03	NA	0.0E+00	
5.7E-01 1.1E-02 1.0E-02 2.0E-04 1.2E+00 1.4E-03 2.9E+00 5.5E-04 5.8E+00 3.9E-01 1.2E-01 8.2E-03 3.8E+00 1.2E-01 3.2E-01 1.9E-03 5.5E+00 1.7E-01 1.7E-02 5.4E-04 1.5E+00 2.0E-02 4.4E-01 1.2E-03 7.5E-02 8.5E+02 8.0E-04 9.0E+00 7.5E-02 1.5E+01 NA 0.0E+00 6.6E-03 2.5E-02 3.0E-01 1.1E+00 1.0E-01 4.0E-02 6.0E-03 5.2E-05 7.5E-03 4.8E-01 3.0E-02 1.9E+00 7.5E-03 1.0E-02 NA 0.0E+00 1.1E+01 2.2E+01 3.3E+01 6.9E+01 2.1E+00 4.8E+01 3.8E-01 2.3E-01 1.6E-01 2.4E+00 1.5E-03 2.3E-02 2.8E-01 1.0E-01 2.8E-01 1.4E-02 1.6E-01 1.3E+01 7.8E-01 6.1E+01 6.0E-01 1.2E+01 NA 0.0E+00 2.0E-02 3.7E+01 0.0E+00 0.0E+00 1.5E-02 1.3E-01 NA 0.0E+00 6.8E-	3.3E+00	2.0E-02	1.0E-02	6.2E-05	1.2E+00	1.9E-03	2.9E+00	9.1E-04	- militar
5.8E+00 3.9E-01 1.2E-01 8.2E-03 3.8E+00 1.2E-01 3.2E-01 1.9E-03 5.5E+00 1.7E-01 1.7E-02 5.4E-04 1.5E+00 2.0E-02 4.4E-01 1.2E-03 7.5E-02 8.5E+02 8.0E-04 9.0E+00 7.5E-02 1.5E+01 NA 0.0E+00 6.6E-03 2.5E-02 3.0E-01 1.1E+00 1.0E-01 4.0E-02 6.0E-03 5.2E-05 7.5E-03 4.8E-01 3.0E-02 1.9E+00 7.5E-03 1.0E-02 NA 0.0E+00 1.1E+01 2.2E+01 3.3E+01 6.9E+01 2.1E+00 4.8E+01 3.8E-01 2.3E-01 1.6E-01 2.4E+00 1.5E-03 2.3E-02 2.8E-01 1.0E-01 2.8E-01 1.4E-02 1.6E-01 1.3E+01 7.8E-01 6.1E+01 6.0E-01 1.2E+01 NA 0.0E+00 7.8E-02 3.7E+01 0.0E+00 0.0E+00 1.5E-02 1.3E-01 NA 0.0E+00 2.0E-02 5.9E+00 5.0E-02 1.5E+01 2.0E-02 1.7E-01 NA 0.0E+00 1.5E-01 <td>1.7E+00</td> <td>6.3E-02</td> <td>1.0E-02</td> <td>3.7E-04</td> <td>1.2E+00</td> <td>6.3E-03</td> <td>2.9E+00</td> <td>2.8E-03</td> <td>- 4</td>	1.7E+00	6.3E-02	1.0E-02	3.7E-04	1.2E+00	6.3E-03	2.9E+00	2.8E-03	- 4
5.5E+00 1.7E-01 1.7E-02 5.4E-04 1.5E+00 2.0E-02 4.4E-01 1.2E-03 7.5E-02 8.5E+02 8.0E-04 9.0E+00 7.5E-02 1.5E+01 NA 0.0E+00 6.6E-03 2.5E-02 3.0E-01 1.1E+00 1.0E-01 4.0E-02 6.0E-03 5.2E-05 7.5E-03 4.8E-01 3.0E-02 1.9E+00 7.5E-03 1.0E-02 NA 0.0E+00 1.1E+01 2.2E+01 3.3E+01 6.9E+01 2.1E+00 4.8E+01 3.8E-01 2.3E-01 1.6E-01 2.4E+00 1.5E-03 2.3E-02 2.8E-01 1.0E-01 2.8E-01 1.4E-02 1.6E-01 1.3E+01 7.8E-01 6.1E+01 6.0E-01 1.2E+01 NA 0.0E+00 7.8E-02 3.7E+01 0.0E+00 0.0E+00 1.5E-02 1.3E-01 NA 0.0E+00 2.0E-02 5.9E+00 5.0E-02 1.5E+01 2.0E-02 1.7E-01 NA 0.0E+00 6.8E-02 8.8E-03 1.8E-01 2.3E-02 1.0E-02 9.4E-05 2.3E+00 8.2E-04 1.5E-01 <td>5.7E-01</td> <td>1.1E-02</td> <td>1.0E-02</td> <td>2.0E-04</td> <td>1.2E+00</td> <td>1.4E-03</td> <td>2.9E+00</td> <td>5.5E-04</td> <td>z*.</td>	5.7E-01	1.1E-02	1.0E-02	2.0E-04	1.2E+00	1.4E-03	2.9E+00	5.5E-04	z*.
7.5E-02 8.5E+02 8.0E-04 9.0E+00 7.5E-02 1.5E+01 NA 0.0E+00 6.6E-03 2.5E-02 3.0E-01 1.1E+00 1.0E-01 4.0E-02 6.0E-03 5.2E-05 7.5E-03 4.8E-01 3.0E-02 1.9E+00 7.5E-03 1.0E-02 NA 0.0E+00 1.1E+01 2.2E+01 3.3E+01 6.9E+01 2.1E+00 4.8E+01 3.8E-01 2.3E-01 1.6E-01 2.4E+00 1.5E-03 2.3E-02 2.8E-01 1.0E-01 2.8E-01 1.4E-02 1.6E-01 1.3E+01 7.8E-01 6.1E+01 6.0E-01 1.2E+01 NA 0.0E+00 7.8E-02 3.7E+01 0.0E+00 0.0E+00 1.5E-02 1.3E-01 NA 0.0E+00 2.0E-02 5.9E+00 5.0E-02 1.5E+01 2.0E-02 1.7E-01 NA 0.0E+00 6.8E-02 8.8E-03 1.8E-01 2.3E-02 1.0E-02 9.4E-05 2.3E+00 8.2E-04 1.5E-01 3.5E-01 8.0E-02 1.8E-01 1.5E-01 1.6E-02 NA 0.0E+00 1.2E-01	5.8E+00	3.9E-01	1.2E-01	8.2E-03	3.8E+00	1.2E-01	3.2E-01	1.9E-03	
6.6E-03 2.5E-02 3.0E-01 1.1E+00 1.0E-01 4.0E-02 6.0E-03 5.2E-05 7.5E-03 4.8E-01 3.0E-02 1.9E+00 7.5E-03 1.0E-02 NA 0.0E+00 1.1E+01 2.2E+01 3.3E+01 6.9E+01 2.1E+00 4.8E+01 3.8E-01 2.3E-01 1.6E-01 2.4E+00 1.5E-03 2.3E-02 2.8E-01 1.0E-01 2.8E-01 1.4E-02 1.6E-01 1.3E+01 7.8E-01 6.1E+01 6.0E-01 1.2E+01 NA 0.0E+00 7.8E-02 3.7E+01 0.0E+00 0.0E+00 1.5E-02 1.3E-01 NA 0.0E+00 2.0E-02 5.9E+00 5.0E-02 1.5E+01 2.0E-02 1.7E-01 NA 0.0E+00 6.8E-02 8.8E-03 1.8E-01 2.3E-02 1.0E-02 9.4E-05 2.3E+00 8.2E-04 1.5E-01 3.5E-01 8.0E-02 1.8E-01 1.5E-01 1.6E-02 NA 0.0E+00 1.2E-01 2.5E+00 1.1E-03 2.3E-02 1.2E-01 5.4E-02 NA 0.0E+00	5.5E+00	1.7E-01	1.7E-02	5.4E-04	1.5E+00	2.0E-02	4.4E-01	1.2E-03	- shrine -
7.5E-03 4.8E-01 3.0E-02 1.9E+00 7.5E-03 1.0E-02 NA 0.0E+00 1.1E+01 2.2E+01 3.3E+01 6.9E+01 2.1E+00 4.8E+01 3.8E-01 2.3E-01 1.6E-01 2.4E+00 1.5E-03 2.3E-02 2.8E-01 1.0E-01 2.8E-01 1.4E-02 1.6E-01 1.3E+01 7.8E-01 6.1E+01 6.0E-01 1.2E+01 NA 0.0E+00 7.8E-02 3.7E+01 0.0E+00 0.0E+00 1.5E-02 1.3E-01 NA 0.0E+00 2.0E-02 5.9E+00 5.0E-02 1.5E+01 2.0E-02 1.7E-01 NA 0.0E+00 6.8E-02 8.8E-03 1.8E-01 2.3E-02 1.0E-02 9.4E-05 2.3E+00 8.2E-04 1.5E-01 3.5E-01 8.0E-02 1.8E-01 1.5E-01 1.6E-02 NA 0.0E+00 1.2E-01 2.5E+00 1.1E-03 2.3E-02 1.2E-01 5.4E-02 NA 0.0E+00	7.5E-02	8.5E+02	8.0E-04	9.0E+00	7.5E-02	1.5E+01	NA	0.0E+00	
1.1E+01 2.2E+01 3.3E+01 6.9E+01 2.1E+00 4.8E+01 3.8E-01 2.3E-01 1.6E-01 2.4E+00 1.5E-03 2.3E-02 2.8E-01 1.0E-01 2.8E-01 1.4E-02 1.6E-01 1.3E+01 7.8E-01 6.1E+01 6.0E-01 1.2E+01 NA 0.0E+00 7.8E-02 3.7E+01 0.0E+00 0.0E+00 1.5E-02 1.3E-01 NA 0.0E+00 2.0E-02 5.9E+00 5.0E-02 1.5E+01 2.0E-02 1.7E-01 NA 0.0E+00 6.8E-02 8.8E-03 1.8E-01 2.3E-02 1.0E-02 9.4E-05 2.3E+00 8.2E-04 1.5E-01 3.5E-01 8.0E-02 1.8E-01 1.5E-01 1.6E-02 NA 0.0E+00 1.2E-01 2.5E+00 1.1E-03 2.3E-02 1.2E-01 5.4E-02 NA 0.0E+00	6.6E-03	2.5E-02	3.0E-01	1.1E+00	1.0E-01	4.0E-02	6.0E-03	5.2E-05	
1.6E-01 2.4E+00 1.5E-03 2.3E-02 2.8E-01 1.0E-01 2.8E-01 1.4E-02 1.6E-01 1.3E+01 7.8E-01 6.1E+01 6.0E-01 1.2E+01 NA 0.0E+00 7.8E-02 3.7E+01 0.0E+00 0.0E+00 1.5E-02 1.3E-01 NA 0.0E+00 2.0E-02 5.9E+00 5.0E-02 1.5E+01 2.0E-02 1.7E-01 NA 0.0E+00 6.8E-02 8.8E-03 1.8E-01 2.3E-02 1.0E-02 9.4E-05 2.3E+00 8.2E-04 1.5E-01 3.5E-01 8.0E-02 1.8E-01 1.5E-01 1.6E-02 NA 0.0E+00 1.2E-01 2.5E+00 1.1E-03 2.3E-02 1.2E-01 5.4E-02 NA 0.0E+00	7.5E-03	4.8E-01	3.0E-02	1.9E+00	7.5E-03	1.0E-02	NA	0.0E+00	
1.6E-01 1.3E+01 7.8E-01 6.1E+01 6.0E-01 1.2E+01 NA 0.0E+00 7.8E-02 3.7E+01 0.0E+00 0.0E+00 1.5E-02 1.3E-01 NA 0.0E+00 2.0E-02 5.9E+00 5.0E-02 1.5E+01 2.0E-02 1.7E-01 NA 0.0E+00 6.8E-02 8.8E-03 1.8E-01 2.3E-02 1.0E-02 9.4E-05 2.3E+00 8.2E-04 1.5E-01 3.5E-01 8.0E-02 1.8E-01 1.5E-01 1.6E-02 NA 0.0E+00 1.2E-01 2.5E+00 1.1E-03 2.3E-02 1.2E-01 5.4E-02 NA 0.0E+00	1.1E+01	2.2E+01	3.3E+01	6.9E+01	2.1E+00	4.8E+01	3.8E-01	2.3E-01	
7.8E-02 3.7E+01 0.0E+00 0.0E+00 1.5E-02 1.3E-01 NA 0.0E+00 2.0E-02 5.9E+00 5.0E-02 1.5E+01 2.0E-02 1.7E-01 NA 0.0E+00 6.8E-02 8.8E-03 1.8E-01 2.3E-02 1.0E-02 9.4E-05 2.3E+00 8.2E-04 1.5E-01 3.5E-01 8.0E-02 1.8E-01 1.5E-01 1.6E-02 NA 0.0E+00 1.2E-01 2.5E+00 1.1E-03 2.3E-02 1.2E-01 5.4E-02 NA 0.0E+00	1.6E-01	2.4E+00	1.5E-03	2.3E-02	2.8E-01	1.0E-01	2.8E-01	1.4E-02	
2.0E-02 5.9E+00 5.0E-02 1.5E+01 2.0E-02 1.7E-01 NA 0.0E+00 6.8E-02 8.8E-03 1.8E-01 2.3E-02 1.0E-02 9.4E-05 2.3E+00 8.2E-04 1.5E-01 3.5E-01 8.0E-02 1.8E-01 1.5E-01 1.6E-02 NA 0.0E+00 1.2E-01 2.5E+00 1.1E-03 2.3E-02 1.2E-01 5.4E-02 NA 0.0E+00	1.6E-01	1.3E+01	7.8E-01	6.1E+01	6.0E-01	1.2E+01	NA	0.0E+00	
6.8E-02 8.8E-03 1.8E-01 2.3E-02 1.0E-02 9.4E-05 2.3E+00 8.2E-04 1.5E-01 3.5E-01 8.0E-02 1.8E-01 1.5E-01 1.6E-02 NA 0.0E+00 1.2E-01 2.5E+00 1.1E-03 2.3E-02 1.2E-01 5.4E-02 NA 0.0E+00	7.8E-02	3.7E+01	0.0E+00	0.0E+00	1.5E-02	1.3E-01	NA	0.0E+00	
1.5E-01 3.5E-01 8.0E-02 1.8E-01 1.5E-01 1.6E-02 NA 0.0E+00 1.2E-01 2.5E+00 1.1E-03 2.3E-02 1.2E-01 5.4E-02 NA 0.0E+00	2.0E-02	5.9E+00	5.0E-02	1.5E+01	2.0E-02	1.7E-01	NA	0.0E+00	
1.2E-01 2.5E+00 1.1E-03 2.3E-02 1.2E-01 5.4E-02 NA 0.0E+00	6.8E-02	8.8E-03	1.8E-01	2.3E-02	1.0E-02	9.4E-05	2.3E+00	8.2E-04	
	1.5E-01	3.5E-01	8.0E-02	1.8E-01	1.5E-01	1.6E-02	NA	0.0E+00	
1.8E+00 7.3E+02 6.1E-01 2.5E+02 2.1E+00 2.9E+02 NA 0.0E+00	1.2E-01	2.5E+00	1.1E-03	2.3E-02	1.2E-01	5.4E-02	NA	0.0E+00	
	1.8E+00	7.3E+02	6.1E-01	2.5E+02	2.1E+00	2.9E+02	NA	0.0E+00	

[[]a] Bioaccumulation factors are presented in

Appendix H, Table H-1

[[]b] Plant and invertebrate tissue concentrations are calculated by multiplying the soil concentration by the plant or invertebrate BAF.

⁽c) Mammal and bird tissue concentrations are calculated by multiplying the small mammal or bird body weight- and ingestion rate-normalized TBD by the mammal or bird BAF.

NA = Not analyzed

ND = Not detected

TBD = Total body dose

TABLE H-6
ESTIMATION OF CHRONIC EXPOSURES TO TERRESTRIAL RECEPTORS FROM EXPOSURE TO RME CONCENTRATIONS IN FOOD AND SURFACE SOIL

TOTAL BODY DOSE (mg/kgBW-day) [a]

	Cotton mouse	Eastern Meadowlark	Short-tailed shrew	Great-horned owl	Red fox
Chemical					
Benzo (a) anthracene	9.2E-04	8.5E-05	7.2E-04	2.8E-06	3.6E-07
Benzo (a) pyrene	9.8E-04	9.0E-05	7.6E-04	2.9E-06	3.8E-07
Benzo (b) fluoranthene	1.1E-03	9.9E-05	8.4E-04	3.3E-06	4.2E-07
Benzo (k) fluoranthene	1.0E-03	9.4E-05	8.0E-04	3.1E-06	3.9E-07
Benzo (g,h,i) perylene	7.9E-04	7.2E-05	6.1E-04	2.4E-06	3.0E-07
bis(2-Ethylhexyl) phthalate	3.6E-04	2.9E-05	2.4E-04	5.2E-07	1.0E-07
Carbazole	6.4E-04	2.6E-05	2.1E-04	3.4E-07	9.0E-08
Chrysene	1.0E-03	9.4E-05	8.0E-04	3.1E-06	3.9E-07
Dibenzo (a,h) anthracene	6.3E-04	5.8E-05	4.9E-04	1.9E-06	2.4E-07
Fluoranthene	9.1E-04	8.3E-05	7.1E-04	2.7E-06	3.5E-07
indeno (1,2,3-cd) pyrene	8.5E-04	7.8E-05	6.6E-04	2.6E-06	3.3E-07
Phenanthrene	6.1E-04	5.6E-05	4.8E-04	1.8E-06	2.4E-07
Pyrene	8.3E-04	7.6E-05	6.4E-04	2.5E-06	3.2E-07
4,4-DDD	2.1E-04	4.3E-05	2.4E-04	6.2E-07	1.1E-07
4,4-DDE	6.9E-04	1.3E-04	7.8E-04	2.1E-06	3.6E-07
4,4-DDT	1.6E-04	2.6E-05	1.6E-04	4.9E-07	7.6E-08
Aroclor-1254	4.5E-03	8.2E-04	4.6E-03	3.5E-05	3.1E-06
Dieldrin	1.7E-03	3.6E-04	2.0E-03	5.8E-06	9.7E-07
Aluminum	3.0E+01	3.3E+00	2.6E+01	4.3E-02	1.1E-02
Arsenic	1.0E-01	1.2E-03	7.9E-03	2.4E-05	5.2E-06
Barium	2.8E-01	1.1E-02	1.0E-01	2.2E-04	4.5E-05
Cadmium	5.9E+00	8.4E-02	3.8E-01	1.3E-02	7.9E-04
Chromium	5.3E-02	7.0E-03	5.0E-02	8.1E-05	2.0E-05
Copper	5.3E+00	7.0E-02	3.7E-01	3.7E-03	3.7E-04
Lead	1.2E+00	1.4E-01	1.1E+00	1.7E-03	4.4E-04
Manganese	1.8E+00	6.1E-02	5.3E-01	1.1E-03	2.4E-04
Mercury	2.3E-03	4.9E-05	3.3E-04	5.3E-07	1.7E-07
Silver	2.3E-02	1.1E-03	7.7E-03	1.3E-05	3.4E-06
/anadium	6.5E-02	8.1E-03	6.0E-02	8.8E-05	2.4E-05
Zinc	2.8E+01	1.7E+00	9.4E+00	8.1E-02	7.1E-03

[[]a] Calculated by summing the products of individual prey type concentrations and percent in diet, multiplying by the SFF, exposure duration, and ingestion rate, and then dividing by body weight.

SSL

TABLE H-7

ESTIMATION OF CHRONIC EXPOSURES TO TERRESTRIAL RECEPTORS FROM EXPOSURE TO RME CONCENTRATIONS IN FOOD AND SURFACE SOIL

REMEDIAL INVESTIGATION REPORT Naval Air Station Whiting Field-Site 16

EXPOSURE PARAMETERS [c]

Indicator		P6	arçent Prey i	n Diet			1	iome Range	Site Foraging	Dietary Ingestion	Water Ingestion	Body Weight	Exposure
Species		Inverts		Small Mammals	Amphibians	Birds	Soil	(acres)	Frequency (d)	Rate (kg/day)	Rate (l/day)	(kg)	Duration
Cotton mouse	Small herb. mammal	10%	88%	0%	0%	0%	2%	0.147	6.8E-01	0.0029	0.003	0.021	1
Eastern Meadowlark	Small omn. bird	75%	20%	0%	0%	0%	5%	5.0	2.0E-02	0.012	0.0115	0.087	1
Short-tailed shrew	Small omn. mammal	78%	12%	0%	0%	0%	10%	0.96	1.0E-01	0.002	0.0025	0.017	1
Great-horned owl	Predatory bird	0%	0%	80%	0%	19%	1%	15	6.7E-03	0.078	0.077	1.5	1
Red fox	Predatory mammal	20%	10%	57%	0%	10%	3%	250	4.0E-04	0.24	0.398	4.69	1

	0.1 acres
SITE AREA	

NOTES:

[c] Documentation of exposure parameters presented in Table 7-7.

[d] Site Foraging Frequency (SFF). Calculated by dividing site area by receptor home range (cannot exceed 1.0)

TABLE H-8
RISK FROM POTENTIAL LETHAL EFFECTS FOR TERRESTRIAL RECEPTORS FROM RME CONCENTRATIONS
OF ECPCs IN FOOD AND SURFACE SOIL

	C	otton mous	Ð	East	ern Meado	wlark	Sho	rt-tailed shi	g w
CHEMICAL		Lethal			Lethal			Lethal	
	TED	RTV	HQ	TBD	RTV	HQ	TBD	RTV	HQ
Benzo (a) anthracene	9.2E-04	1.2E+01	7.7E-05	8.5E-05			7.2E-04	1.2E+01	6.0E-05
Benzo (a) pyrene	9.8E-04	1.2E+01	8.2E-05	9.0E-05			7.6E-04	1.2E+01	6.4E-05
Benzo (b) fluoranthene	1.1E-03	1.2E+01	9.0E-05	9.9E-05			8.4E-04	1.2E+01	7.0E-05
Benzo (k) fluoranthene	1.0E-03	1.2E+01	8.5E-05	9.4E-05			8.0E-04	1.2E+01	6.6E-05
Benzo (g,h,i) perylene	7.9E-04	1.2E+01	6.6E-05	7.2E-05			6.1E-04	1.2E+01	5.1E-05
bis(2-Ethylhexyl) phthalate	3.6E-04	1.6E+02	2.2E-06	2.9E-05			2.4E-04	1.6E+02	1.5E-06
Carbazole	6.4E-04	1.0E+02	6.4E-06	2.6E-05			2.1E-04	1.0E+02	2.1E-06
Chrysene	1.0E-03	1.2E+01	8.5E-05	9.4E-05			8.0E-04	1.2E+01	6.6E-05
Dibenzo (a,h) anthracene	6.3E-04	1.2E+01	5.3E-05	5.8E-05			4.9E-04	1.2E+01	4.1E-05
Fluoranthene	9.1E-04	4.0E+02	2.3E-06	8.3E-05			7.1E-04	4.0E+02	1.8E-06
Indeno (1,2,3-cd) pyrene	8.5E-04	1.2E+01	7.1E-05	7.8E-05			6.6E-04	1.2E+01	5.5E-05
Phenanthrene	6.1E-04	1.4E+02	4.4E-06	5.6E-05			4.8E-04	1.4E+02	3.4E-06
Pyrene	8.3E-04	1.6E+02	5.2E-06	7.6E-05			6.4E-04	1.6E+02	4.0E-06
4,4-DDD	2.1E-04	1.7E+01	1.2E-05	4.3E-05	1.2E+02	3.6E-07	2.4E-04	1.7E+01	1.4E-05
4,4-DDE	6.9E-04	1.4E+02	4.9E-06	1.3E-04	1.2E+02	1.1E-06	7.8E-04	1.4E+02	5.5E-06
4,4-DDT	1.6E-04	1.7E+01	9.2E-06	2.6E-05	1.2E+02	2.2E-07	1.6E-04	1.7E+01	9.2E-06
Aroclor-1254	4.5E-03	1.0E+02	4.5E-05	8.2E-04	1.6E+01	5.1E-05	4.6E-03	1.0E+02	4.6E-05
Dieldrin	1.7E-03	5.0E+00	3.5E-04	3.6E-04	1.2E+00	3.0E-04	2.0E-03	5.0E+00	4.1E-04
Aluminum	3.0E+01	7.4E+02	4.0E-02	3.3E+00			2.6E+01	7.4E+02	3.6E-02
Arsenic	1.0E-01	2.9E+01	3.5E-03	1.2E-03	3.6E+00	3.3E-04	7.9E-03	2.9E+01	2.7E-04
Barium	2.8E-01	4.3E+01	6.5E-03	1.1E-02			1.0E-01	4.3E+01	2.4E-03
Cadmium	5.9E+00	3.0E+01	2.0E-01	8.4E-02			3.8E-01	3.0E+01	1.3E-02
Chromium	5.3E-02	4.0E+01	1.3E-03	7.0E-03	2.6E+01	2.7E-04	5.0E-02	4.0E+01	1.2E-03
Соррег	5.3E+00	1.9E+02	2.8E-02	7.0E-02			3.7E-01	1.9E+02	2.0E-03
Lead	1.2E+00	6.0E+01	2.1E-02	1.4E-01	7.5E+01	1.9E-03	1.1E+00	6.0E+01	1.9E-02
Manganese	1.8E+00	4.5E+01	4.1E-02	6.1E-02			5.3E-01	4.5E+01	1.2E-02
Mercury	2.3E-03	4.4E+00	5.1E-04	4.9E-05	4.0E+00	1.2E-05	3.3E-04	4.4E+00	7.6E-05
Silver	2.3E-02	6.8E+00	3.3E-03	1.1E-03			7.7E-03	6.8E+00	1.1E-03
Vanadium	6.5E-02	6.2E+00	1.1E-02	8.1E-03	1.9E+01	4.2E-04	6.0E-02	6.2E+00	9.7E-03
Zinc	2.8E+01	5.0E+02	5.7E-02	1.7E+00			9.4E+00	5.0E+02	1.9E-02
SUMMARY HAZARD INDEX	<u> </u>	T	4.1E-01			3.3E-03		T	1.2E-01

TBD = Total Body Dose (mg/kgBW-day).

RTV = Reference Toxicity Value (mg/kgBW-day); wildlife RTVs are presented in Appendix F, Table F-9.

HQ = Hazard Quotient (calculated by dividing TBD by RTV)

NA = Not Available

TABLE H-8
RISK FROM POTENTIAL LETHAL EFFECTS FOR TERRESTRIAL RECEPTORS FROM RME CONCENTRATIONS
OF ECPCs IN FOOD AND SURFACE SOIL

REMEDIAL INVESTIGATION REPORT Naval Air Station Whiting Field-Site 16

	G	reat-horned o	wi	ı	ted fox	
CHEMICAL		Lethal			Lethal	
	TBD	RTV	HQ	TBD	RTV	HQ
Benzo (a) anthracene	2.8E-06			3.6E-07	1.2E+01	3.0E-08
Benzo (a) pyrene	2.9E-06		ŀ	3.8E-07	1.2E+01	3.1E-08
Benzo (b) fluoranthene	3.3E-06			4.2E-07	1.2E+01	3.5E-08
Benzo (k) fluoranthene	3.1E-06			3.9E-07	1.2E+01	3.3E-08
Benzo (g,h,i) perylene	2.4E-06		ŀ	3.0E-07	1.2E+01	2.5E-08
bis(2-Ethylhexyl) phthalate	5.2E-07			1.0E-07	1.6E+02	6.4E-10
Carbazole	3.4E-07			9.0E-08	1.0E+02	9.0E-10
Chrysene	3.1E-06			3.9E-07	1.2E+01	3.3E-08
Dibenzo (a,h) anthracene	1.9E-06			2.4E-07	1.2E+01	2.0E-08
Fluoranthene	2.7E-06			3.5E-07	4.0E+02	8.7E-10
Indeno (1,2,3-cd) pyrene	2.6E-06		l	3.3E-07	1.2E+01	2.7E-08
Phenanthrene	1.8E-06			2.4E-07	1.4E+02	1.7E-09
Pyrene	2.5E-06		E	3.2E-07	1.6E+02	2.0E-09
4,4-DDD	6.2E-07	1.2E+02	5.2E-09	1.1E-07	1.2E+01	9.4E-09
4,4-DDE	2.1E-06	1.2E+02	1.7E-08	3.6E-07	1.4E+02	2.6E-09
4,4-DDT	4.9E-07	1.2E+02	4.1E-09	7.6E-08	1.2E+01	6.4E-09
Aroclor-1254	3.5E-05	1.6E+01	2.2E-06	3.1E-06	1.5E+02	2.1E-08
Dieldrin	5.8E-06	1.2E+00	4.9E-06	9.7E-07	1.3E+01	7.5E-08
Aluminum	4.3E-02		ŀ	1.1E-02	7.4E+02	1.4E-05
Arsenic	2.4E-05	3.6E+00	6.7E-06	5.2E-06	3.1E+00	1.7E-06
Barium	2.2E-04			4.5E-05	4.3E+01	1.0E-06
Cadmium	1.3E-02			7.9E-04	3.0E+01	2.6E-05
Chromium	8.1E-05	2.5E+01	3.2E-06	2.0E-05	4.0E+01	5.1E-07
Copper	3.7E-03			3.7E-04	1.9E+02	2.0E-06
Lead	1.7E-03	7.5E+01	2.2E-05	4.4E-04	6.0E+01	7.4E-06
Manganese	1.1E-03			2.4E-04	4.5E+01	5.3E-06
Mercury	5.3E-07	4.0E+00	1.3E-07	1.7E-07	4.4E+00	3.8E-08
Silver	1.3E-05			3.4E-06	6.8E+00	5.0E-07
Vanadium	8.8E-05	1.9E+01	4.6E-06	2.4E-05	6.2E+00	3.9E-06
Zinc	8.1E-02		ĺ	7.1E-03	5.0E+02	1.4E-05
SUMMARY HAZARD INDEX			4.4E-05			7.8E-05

TBD = Total Body Dose (mg/kgBW-day).

RTV = Reference Toxicity Value (mg/kgBW-day); wildlife RTVs are presented in Appendix F, Table F-9.

HQ = Hazard Quotient (calculated by dividing TBD by RTV)

NA = Not Available

TABLE H-9
RISK FROM POTENTIAL SUBLETHAL EFFECTS FOR TERRESTRIAL RECEPTORS FROM RME CONCENTRATIONS
OF ECPCs IN FOOD AND SURFACE SOIL

ALIFERIA CO	C	otton mous	50	East	ern Meado	wlark	Sho	rt-tailed shi Subjethal	.dw
CHEMICAL	me	Sublethal	1100	TBD	Subletha RTV	HQ	TBD	RTV	HQ
Danier (a) anthronous	TBD 9.2E-04	RTV 1.0E+01	HQ 9.2E-05	8.5E-05	RIV	ПU	7.2E-04	1.0E+01	7.2E-05
Benzo (a) anthracene	9.2E-04 9.8E-04	1.0E+01	9.8E-05	9.0E-05			7.2E-04 7.6E-04	1.0E+01	7.6E-05
Benzo (a) pyrene	1.1E-03	1.0E+01	1.1E-04	9.9E-05			8.4E-04	1.0E+01	8.4E-05
Benzo (b) fluoranthene	1.1E-03 1.0E-03	1.0E+01	1.0E-04	9.4E-05			8.0E-04	1.0E+01	8.0E-05
Benzo (k) fluoranthene	7.9E-04			7.2E-05			6.1E-04	1.0E+01	6.1E-05
Benzo (g,h,i) perylene		1.0E+01	7.9E-05				2.4E-04	3.5E+00	6.9E-05
bis(2-Ethylhexyl) phthalate	3.6E-04	3.5E+00	1.0E-04	2.9E-05			2.4E-04 2.1E-04	3.3E+00	0.9E-03
Carbazole	6.4E-04	4.05.04	4.05.04	2.6E-05				4.05.04	0.00.00
Chrysene	1.0E-03	1.0E+01	1.0E-04	9.4E-05			8.0E-04	1.0E+01	8.0E-05
Dibenzo (a,h) anthracene	6.3E-04	1.0E+01	6.3E-05	5.8E-05			4.9E-04	1.0E+01	4.9E-05
Fluoranthene	9.1E-04	1.0E+01	9.1E-05	8.3E-05			7.1E-04	1.0E+01	7.1E-05
Indeno (1,2,3-cd) pyrene	8.5E-04	1.0E+01	8.5E-05	7.8E-05			6.6E-04	1.0E+01	6.6E-05
Phenanthrene	6.1E-04	1.0E+01	6.1E-05	5.6E-05			4.8E-04	1.0E+01	4.8E-05
Pyrene	8.3E-04	1.0E+01	8.3E-05	7.6E-05			6.4E-04	1.0E+01	6.4E-05
4,4-DDD	2.1E-04	2.0E-01	1.0E-03	4.3E-05	1.4E-01	3.1E-04	2.4E-04	2.0E-01	1.2E-03
4,4-DDE	6.9E-04	2.0E-01	3.5E-03	1.3E-04	3.9E-01	3.4E-04	7.8E-04	2.0E-01	3.9E-03
4,4-DDT	1.6E-04	2.0E-01	8.0E-04	2.6E-05	1.4E-01	1.9E-04	1.6E-04	2.0E-01	8.0E-04
Aroclor-1254	4.5E-03	1.5E-01	2.9E-02	8.2E-04	9.0E-02	9.1E-03	4.6E-03	1.5E-01	3.0E-02
Dieldrin	1.7E-03	6.5E-02	2.7E-02	3.6E-04			2.0E-03	6.5E-02	3.1E-02
Aluminum	3.0E+01	4.3E+02	7.0E-02	3.3E+00			2.6E+01	4.3E+02	6.2E-02
Arsenic	1.0E-01	5.8E-01	1.8E-01	1.2E-03	1.0E+00	1.2E-03	7.9E-03	5.8E-01	1.4E-02
Barium	2.8E-01	2.0E+01	1.4E-02	1.1E-02			1.0E-01	2.0E+01	5.2E-03
Cadmium	5.9E+00	2.2E+00	2.8E+00	8.4E-02	1.0E+00	8.4E-02	3.8E-01	2.2E+00	1.8E-01
Chromium	5.3E-02	3.5E+00	1.5E-02	7.0E-03	2.0E+02	3.5E-05	5.0E-02	3.5E+00	1.4E-02
Copper	5.3E+00	1.0E+01	5.3E-01	7.0E-02			3.7E-01	1.0E+01	3.7E-02
Lead	1.2E+00	3.0E+01	4.1E-02	1.4E-01	4.6E+00	3.0E-02	1.1E+00	3.0E+01	3.7E-02
Manganese	1.8E+00	1.4E+01	1.3E-01	6.1E-02			5.3E-01	1.4E+01	3.8E-02
Mercury	2.3E-03	5.0E-02	4.5E-02	4.9E-05	6.4E-02	7.6E-04	3.3E-04	5.0E-02	6.7E-03
Silver	2.3E-02			1.1E-03			7.7E-03		
Vanadium	6.5E-02	8.4E+00	7.8E-03	8.1E-03	1.1E+00	7.4E-03	6.0E-02	8.4E+00	7.2E-03
Zinc	2.8E+01	2.0E+01	1.4E+00	1.7E+00			9.4E+00	2.0E+01	4.7E-01
-									
SUMMARY HAZARD INDEX			5.3E+00			1.3E-01			9.4E-01

TBD = Total Body Dose (mg/kgBW-day).

RTV = Reference Toxicity Value (mg/kgBW-day); wildlife RTVs are presented in Appendix F, Table F-9.

HQ = Hazard Quotient (calculated by dividing TBD by RTV)

NA = Not Available

TABLE H-9
RISK FROM POTENTIAL SUBLETHAL EFFECTS FOR TERRESTRIAL RECEPTORS FROM RME CONCENTRATIONS
OF ECPCs IN FOOD AND SURFACE SOIL

	G	reat-horned o	wi	1	Red fox	
CHEMICAL		Sublethal			Sublethal	
	TBD	RTV	HQ	TBD	RTV	HQ
Benzo (a) anthracene	2.8E-06			3.6E-07	1.0E+01	3.6E-08
Benzo (a) pyrene	2.9E-06			3.8E-07	1.0E+01	3.8E-08
Benzo (b) fluoranthene	3.3E-06			4.2E-07	1.0E+01	4.2E-08
Benzo (k) fluoranthene	3.1E-06			3.9E-07	1.0E+01	3.9E-08
Benzo (g,h,i) perylene	2.4E-06			3.0E-07	1.0E+01	3.0E-08
bis(2-Ethylhexyl) phthalate	5.2E-07			1.0E-07	3.5E+00	2.9E-08
Carbazole	3.4E-07			9.0E-08		
Chrysene	3.1E-06			3.9E-07	1.0E+01	3.9E-08
Dibenzo (a,h) anthracene	1.9E-06			2.4E-07	1.0E+01	2.4E-08
Fluoranthene	2.7E-06			3.5E-07	1.0E+01	3.5E-08
Indeno (1,2,3-cd) pyrene	2.6E-06			3.3E-07	1.0E+01	3.3E-08
Phenanthrene	1.8E-06			2.4E-07	1.0E+01	2.4E-08
Pyrene	2.5E-06			3.2E-07	1.0E+01	3.2E-08
4.4-DDD	5.9E-07	1.4E-01	4.2E-06	1.1E-07	1.2E+01	9.3E-09
4,4-DDE	2.0E-06	3.9E-01	5.1E-06	3.6E-07	1.2E+01	3.0E-08
4,4-DDT	4.7E-07	1.4E-01	3.4E-06	7.6E-08	1.2E+01	6.3E-09
Aroclor-1254	3.5E-05	9.0E-01	3.9E-05	3.1E-06	9.6E-03	3.3E-04
Dieldrin	5.8E-06			9.7E-07	6.5E-02	1.5E-05
Aluminum	4.3E-02		ļ	1.1E-02	4.3E+02	2.5E-05
Arsenic	2.4E-05	1.0E+00	2.4E-05	5.2E-06	5.8E-01	9.0E-06
Barium	2.2E-04		İ	4.5E-05	2.0E+01	2.3E-06
Cadmium	1.3E-02	1.0E+00	1.3E-02	7.9E-04	2.2E+00	3.7E-04
Chromium	8.1E-05	2.0E+02	4.0E-07	2.0E-05	3.5E+00	5.8E-06
Copper	3.7E-03			3.7E-04	1.0E+01	3.7E-05
Lead	1.7E-03	4.6E+00	3.6E-04	4.4E-04	3.0E+01	1.5E-05
Manganese	1.1E-03			2.4E-04	1.4E+01	1.7E-05
Mercury	5.0E-07	6.4E-02	7.9E-06	1.7E-07	5.0E-02	3.3E-06
Silver	1.3E-05	J L UL		3.4E-06		
Vanadium	8.8E-05	1.1E+00	8.0E-05	2.4E-05	8.4E+00	2.9E-06
Zinc	8.1E-02	7,16.00	5.52 55	7.1E-03	2.0E+01	3.5E-04
LIIIC	0.12-02			7.11		V.0E-0-
SUMMARY HAZARD INDEX			1.4E-02		T	1.2E-03

TBD = Total Body Dose (mg/kgBW-day).

RTV = Reference Toxicity Value (mg/kgBW-day); wildlife RTVs are presented in Appendix F, Table F-9.

HQ = Hazard Quotient (calculated by dividing TBD by RTV)

NA = Not Available

TABLE H-10
ESTIMATION OF SUBCHRONIC EXPOSURES TO TERRESTRIAL RECEPTORS FROM EXPOSURE TO CT CONCENTRATIONS IN FOOD AND SURFACE SOIL

EXPOSURE CONCENTRATION DATA

TISSUE LEVELS IN PRIMARY PREY ITEMS (Site Specific)

	CENTRAL TENDENCY	Invertebrate	Invertebrate	Plant	Plant	Mammal	Mammal	8ird	Small Bird
HEMICAL	EXPOSURE CONCENTRATION	BAF (a)	Tissue Level	BAF (a)	Tissue Level	BAF [a]	Tissue Level	BAF [a]	Tissue Level
	(mg/kg)		(mg/kg) [b]		(mg/kg) [b]		(mg/kg) [c]		(mg/kg) [c]
Benzo (a) anthracene	2.9E-01	5.0E-02	1.4E-02	3.4E-03	9.8E-04	9.5E-01	4.6E-03	NA	0.0E+00
Benzo (a) pyrene	3.3E-01	5.0E-02	1.6E-02	3.4E-03	1.1E-03	9.5E-01	5.2E-03	NA	0.0E+00
Benzo (b) fluoranthene	3.7E-01	5.0E-02	1.8E-02	3.4E-03	1.3E-03	9.5E-01	5.9E-03	NA	0.0E+00
Benzo (k) fluoranthene	3.4E-01	5.0E-02	1.7E-02	3.4E-03	1.2E-03	9.5E-01	5.5E-03	NA	0.0E+00
Benzo (g,h,i) perylene	2.5E-01	5.0E-02	1.3E-02	3.4E-03	8.6E-04	9.5E-01	4.0E-03	NA	0.0E+00
ois(2-Ethylhexyl) phthalate	1.2E-01	5.0E-02	5.9E-03	8.7E-03	1.0E-03	1.9E-01	4.1E-04	NA	0.0E+00
Carbazole	9.7E-02	5.0E-02	4.9E-03	5.2E-02	5.0E-03	1.5E-01	0.0E+00	NA	0.0E+00
Chrysene	3.3E-01	5.0E-02	1.6E-02	3.4E-03	1.1E-03	9.5E-01	5.2E-03	NA	0.0E+00
Dibenzo (a,h) anthracene	2.1E-01	5.0E-02	1.1E-02	3.4E-03	7.3E-04	9.5E-01	3.4E-03	NA	0.0E+00
luoranthene	2.9E-01	5.0E-02	1.4E-02	3.4E-03	9.9E-04	9.5E-01	4.6E-03	NA	0.0E+00
ndeno (1,2,3-cd) pyrene	2.7E-01	5.0E-02	1.3E-02	3.4E-03	9.2E-04	9.5E-01	4.2E-03	NA	0.0E+00
Phenanthrene	2.0E-01	5.0E-02	9.8E-03	3.4E-03	6.7E-04	9.5E-01	3.1E-03	NA	0.0E+00
yrene	2.6E-01	5.0E-02	1.3E-02	3.4E-03	8.8E-04	9.5E-01	4.1E-03	NA	0.0E+00
,4-DDD	4.4E-03	3.3E+00	1.5E-02	1.0E-02	4.4E-05	1.2E+00	1.4E-03	2.9E+00	6.4E-04
,4-DDE	1.5E-02	1.7E+00	2.6E-02	1.0E-02	1.5E-04	1.2E+00	2.6E-03	2.9E+00	1.2E-03
,4-DDT	1.1E-02	5.7E-01	6.2E-03	1.0E-02	1.1E-04	1.2E+00	7.5E-04	2.9E+00	3.0E-04
Arocior-1254	4.6E-02	5.8E+00	2.7E-01	1.2E-01	5.5E-03	3.8E+00	8.4E-02	3.2E-01	1.3E-03
Dieldrin	1.5E-02	5.5E+00	8.1E-02	. 1.7E-02	2.5E-04	1.5E+00	9.5E-03	4.4E-01	5.4E-04
Muminum	8.7E+03	7.5E-02	6.5E+02	8.0E-04	7.0E+00	7.5E-02	1.2E+01	NA	0.0E+00
rsenic	2.8E+00	6.6E-03	1.8E-02	3.0E-01	8.4E-01	1.0E-01	2.9E-02	6.0E-03	3.9E-05
Barium	3.7E+01	7.5E-03	2.8E-01	3.0E-02	1.1E+00	7.5E-03	6.0E-03	NA	0.0E+00
Cadmium	1.2E+00	1.1E+01	1.3E+01	3.3E+01	4.0E+01	2.1E+00	2.7E+01	3.8E-01	1.3E-01
Chromium	1.1E+01	1.6E-01	1.7E+00	1.5E-03	1.6E-02	2.8E-01	7.2E-02	2.8E-01	1.0E-02
Copper	3.3E+01	1.6E-01	5.2E+00	7.8E-01	2.5E+01	6.0E-01	5.1E+00	NA	0.0E+00
.ead	1.1E+02	7.8E-02	8.6E+00	0.0E+00	0.0E+00	1.5E-02	2.9E-02	NA	0.0E+00
Manganese	1.3E+02	2.0E-02	2.6E+00	5.0E-02	6.5E+00	2.0E-02	7.4E-02	NA	0.0E+00
fercury	1.0E-01	6.8E-02	6.8E-03	1.8E-01	1.8E-02	1.0E-02	7.2E-05	2.3E+00	6.3E-04
ilver	1.4E+00	1.5E-01	2.1E-01	8.0E-02	1.1E-01	1.5E-01	1.0E-02	NA	0.0E+00
/anadium	1.6E+01	1.2E-01	1.9E+00	1.1E-03	1.7E-02	1.2E-01	4.0E-02	NA	0.0E+00
linc	1.0E+02	1.8E+00	1.8E+02	6.1E-01	6.3E+01	2.1E+00	7.2E+01	NA	0.0E+00

[[]a] Bioaccumulation factors are presented in

SSLCT

Appendix H, Table H-1

[[]b] Plant and invertebrate tissue concentrations are calculated by multiplying the soil concentration by the plant or invertebrate BAF.

[[]c] Mammal and bird tissue concentrations are calculated by multiplying the small mammal or bird body weight- and ingestion rate-normalized TBD by the mammal or bird BAF.

NA = Not analyzed

ND = Not detected

TBD = Total body dose

TABLE H-10
ESTIMATION OF SUBCHRONIC EXPOSURES TO TERRESTRIAL RECEPTORS FROM EXPOSURE TO CT CONCENTRATIONS IN FOOD AND SURFACE SOI

TOTAL BODY DOSE (mg/kgBW-day) [a]

	Cotton mouse	Eastern Meadowl	ark Short-tailed shrew	Great-horned owl	Red fox
Chemical					
Benzo (a) anthracene	7.5E-04	6.9E-05	5.9E-04	2.3E-06	2.0E-05
Benzo (a) pyrene	8.6E-04	7.9E-05	6.7E-04	2.6E-06	2.3E-05
Benzo (b) fluoranthene	9.7E-04	8.9E-05	7.6E-04	2.9E-06	2.6E-05
Benzo (k) fluoranthene	9.0E-04	8.3E-05	7.0E-04	2.7E-06	2.4E-05
Benzo (g,h,i) perylene	6.6E-04	6.1E-05	5.1E-04	2.0E-06	1.8E-05
bis(2-Ethylhexyl) phthalate	3.6E-04	2.9E-05	2.4E-04	5.2E-07	7.1E-06
Carbazole	6.4E-04	2.6E-05	2.1E-04	3.4E-07	6.2E-06
Chrysene	8.6E-04	7.9E-05	6.7E-04	2.6E-06	2.3E-05
Dibenzo (a,h) anthracene	5.6E-04	5.1E-05	4.3E-04	1.7E-06	1.5E-05
Fluoranthene	7.6E-04	6.9E-05	5.9E-04	2.3E-06	2.0E-05
Indeno (1,2,3-cd) pyrene	7.0E-04	6.4E-05	5.5E-04	2.1E-06	1.9E-05
Phenanthrene	5.2E-04	4.7E-05	4.0E-04	1.5E-06	1.4E-05
Pyrene	6.7E-04	6.2E-05	5.2E-04	2.0E-06	1.8E-05
4,4-DDD	1.5E-04	3.0E-05	1.7E-04	4.4E-07	5.5E-06
4,4-DDE	2.8E-04	5.4E-05	3.1E-04	8.4E-07	1.0E-05
4,4-DDT	8.7E-05	1.4E-05	8.7E-05	2.6E-07	2.9E-06
Aroclor-1254	3.0E-03	5.6E-04	3.1E-03	2.4E-05	1.5E-04
Dieldrin	8.1E-04	1.7E-04	9.5E-04	2.7E-06	3.2E-05
Aluminum	2.3E+01	2.5E+00	2.0E+01	3.3E-02	5.7E-01
Arsenic	7.5E-02	8.8E-04	5.8E-03	1.8E-05	2.7E-04
Barium	1.6E-01	6.2E-03	5.9E-02	1.3E-04	1.8E-03
Cadmium	3.4E+00	4.8E-02	2.2E-01	7.6E-03	3.2E-02
Chromium	3.7E-02	4.9E-03	3.5E-02	5.8E-05	1.0E-03
Copper	2.2E+00	2.9E-02	1.5E-01	1.5E-03	1.1E-02
Lead	2.9E-01	3.3E-02	2.6E-01	3.9E-04	7.2E-03
Manganese	8.0E-01	2.6E-02	2.3E-01	4.7E-04	7.2E-03
Mercury	1.7E-03	3.7E-05	2.6E-04	4.1E-07	8.9E-06
Silver	1.4E-02	6.8E-04	4.7E-03	7.6E-06	1.4E-04
Vanadium	4.9E-02	6.1E-03	4.5E-02	6.6E-05	1.2E-03
Zinc	7.2E+00	4.3E-01	2.4E+00	2.0E-02	1.2E-01

[[]a] Calculated by summing the products of individual prey type concentrations and percent in diet, multiplying by the SFF, exposure duration, and ingestion rate, and then dividing by body weight.

TABLE H-11

ESTIMATION OF SUBCHRONIC EXPOSURES TO TERRESTRIAL RECEPTORS FROM EXPOSURE TO CT CONCENTRATIONS IN FOOD AND SURFACE SOIL

REMEDIAL INVESTIGATION REPORT Naval Air Station Whiting Field-Site 16

EXPOSURE PARAMETERS [c]

Indicator Species			Plants		Amphibians	Birds	H Soll	ome Ranga (acres)	Site Foraging Frequency [d]	Dietary Ingestion Rate (kg/day)	Water Ingestion Rate (Vday)	Body Weight Expo (kg) Dura	osure ation
Cotton mouse	Small herb. mammal	10%	88%	0%	0%	0%	2%	0.147	6.8E-01	0.0029	0.003	0.021	1
Eastern Meadowlark	Small omn. bird	75%	20%	0%	0%	0%	5%	5	2.0E-02	0.012	0.0115	0.087	1
Short-tailed shrew	Small omn. mammal	78%	12%	0%	0%	0%	10%	0.96	1.0E-01	0.002	0.0025	0.017	1
Great-horned owl	Predatory bird	0%	0%	80%	0%	19%	1%	15	6.7E-03	0.078	0.077	1.5	1
Red fox	Predatory mammal	20%	10%	57%	0%	10%	3%	250	2.8E-02	0.240	0.398	4.69	1

SITE AREA.	0.1 acres

NOTES:

[c] Documentation of exposure parameters presented in Table 9-8.

[d] Site Foraging Frequency (SFF). Calculated by dividing site area by receptor home range (cannot exceed 1.0)

TABLE H-12
RISK FROM POTENTIAL LETHAL EFFECTS FOR TERRESTRIAL RECEPTORS FROM CENTRAL TENDENCY
EXPOSURE CONCENTRATIONS OF ECPCs IN FOOD AND SURFACE SOIL

	C	otton mous	ie	East	ern Meado	wlark	Short-tailed shrew			
CHEMICAL		Lethal			Lethal			Lethat		
	TBD	RTV	HQ	TBD	RTV	HQ	TBD	RTV	HQ	
Benzo (a) anthracene	7.5E-04	1.2E+01	6.3E-05	6.9E-05			5.9E-04	1.2E+01	4.9E-05	
Benzo (a) pyrene	8.6E-04	1.2E+01	7.2E-05	7.9E-05			6.7E-04	1.2E+01	5.6E-05	
Benzo (b) fluoranthene	9.7E-04	1.2E+01	8.1E-05	8.9E-05			7.6E-04	1.2E+01	6.3E-05	
Benzo (k) fluoranthene	9.0E-04	1.2E+01	7.5E-05	8.3E-05			7.0E-04	1.2E+01	5.9E-05	
Benzo (g,h,i) perylene	6.6E-04	1.2E+01	5.5E-05	6.1E-05	•		5.1E-04	1.2E+01	4.3E-05	
bis(2-Ethylhexyl) phthalate	3.6E-04	1.6E+02	2.2E-06	2.9E-05			2.4E-04	1.6E+02	1.5E-06	
Carbazole	6.4E-04	1.0E+02	6.4E-06	2.6E-05			2.1E-04	1.0E+02	2.1E-06	
Chrysene	8.6E-04	1.2E+01	7.2E-05	7.9E-05			6.7E-04	1.2E+01	5.6E-05	
Dibenzo (a,h) anthracene	5.6E-04	1.2E+01	4.7E-05	5.1E-05			4.3E-04	1.2E+01	3.6E-05	
Fluoranthene	7.6E-04	4.0E+02	1.9E-06	6.9E-05			5.9E-04	4.0E+02	1.5E-06	
Indeno (1,2,3-cd) pyrene	7.0E-04	1.2E+01	5.8E-05	6.4E-05			5.5E-04	1.2E+01	4.5E-05	
Phenanthrene	5.2E-04	1.4E+02	3.7E-06	4.7E-05			4.0E-04	1.4E+02	2.9E-06	
Pyrene	6.7E-04	1.6E+02	4.2E-06	6.2E-05			5.2E-04	1.6E+02	3.3E-06	
4,4-DDD	1.5E-04	1.7E+01	8.5E-06	3.0E-05	1.2E+02	2.6E-07	1.7E-04	1.7E+01	9.9E-06	
4,4-DDE	2.8E-04	1.4E+02	2.0E-06	5.4E-05	1.2E+02	4.6E-07	3.1E-04	1.4E+02	2.2E-06	
4,4-DDT	8.7E-05	1.7E+01	5.0E-06	1.4E-05	1.2E+02	1.2E-07	8.7E-05	1.7E+01	5.0E-06	
Aroclor-1254	3.0E-03	1.0E+02	3.0E-05	5.6E-04	1.6E+01	3.5E-05	3.1E-03	1.0E+02	3.1E-05	
Dieldrin	8.1E-04	5.0E+00	1.6E-04	1.7E-04	1.2E+00	1.4E-04	9.5E-04	5.0E+00	1.9E-04	
Aluminum	2.3E+01	7.4E+02	3.1E-02	2.5E+00			2.0E+01	7.4E+02	2.7E-02	
Arsenic	7.5E-02	2.9E+01	2.6E-03	8.8E-04	3.6E+00	2.4E-04	5.8E-03	2.9E+01	2.0E-04	
Barium	1.6E-01	4.3E+01	3.8E-03	6.2E-03			5.9E-02	4.3E+01	1.4E-03	
Cadmium	3.4E+00	3.0E+01	1.1E-01	4.8E-02			2.2E-01	3.0E+01	7.3E-03	
Chromium	3.7E-02	4.0E+01	9.3E-04	4.9E-03	2.6E+01	1.9E-04	3.5E-02	4.0E+01	8.8E-04	
Copper	2.2E+00	1.9E+02	1.2E-02	2.9E-02			1.5E-01	1.9E+02	8.1E-04	
Lead	2.9E-01	6.0E+01	4.8E-03	3.3E-02	7.5E+01	4.4E-04	2.6E-01	6.0E+01	4.3E-03	
Manganese	8.0E-01	4.5E+01	1.8E-02	2.6E-02			2.3E-01	4.5E+01	5.1E-03	
Mercury	1.7E-03	4.4E+00	4.0E-04	3.7E-05	4.0E+00	9.4E-06	2.6E-04	4.4E+00	5.8E-05	
Silver	1.4E-02	6.8E+00	2.0E-03	6.8E-04			4.7E-03	6.8E+00	6.9E-04	
Vanadium	4.9E-02	6.2E+00	7.9E-03	6.1E-03	1.9E+01	3.2E-04	4.5E-02	6.2E+00	7.3E-03	
Zinc	7.2E+00	5.0E+02	1.4E-02	4.3E-01			2.4E+00	5.0E+02	4.7E-03	
SUMMARY HAZARD INDEX	1		2.1E-01			1.4E-03			6.1E-02	

TBD = Total Body Dose (mg/kgBW-day).

RTV = Reference Toxicity Value (mg/kgBW-day); wildlife RTVs are presented in Appendix S, Table S-9.

HQ = Hazard Quotient (calculated by dividing TBD by RTV)

NA = Not Available

TABLE H-12
RISK FROM POTENTIAL LETHAL EFFECTS FOR TERRESTRIAL RECEPTORS FROM CENTRAL TENDENCY
EXPOSURE CONCENTRATIONS OF ECPCs IN FOOD AND SURFACE SOIL

	Great-horned owl Lethal			Red fox Lethal		
CHEMICAL						
	TBD	RTV	на	TBD	RTV	HQ
Benzo (a) anthracene	2.3E-06			2.0E-05	1.2E+01	1.7E-06
Benzo (a) pyrene	2.6E-06		1	2.3E-05	1.2E+01	1.9E-06
Benzo (b) fluoranthene	2.9E-06		Ì	2.6E-05	1.2E+01	2.2E-06
Benzo (k) fluoranthene	2.7E-06			2.4E-05	1.2E+01	2.0E-06
Benzo (g,h,i) perylene	2.0E-06			1.8E-05	1.2E+01	1.5E-06
bis(2-Ethylhexyl) phthalate	5.2E-07			7.1E-06	1.6E+02	4.5E-08
Carbazole	3.4E-07			6.2E-06	1.0E+02	6.2E-08
Chrysene	2.6E-06			2.3E-05	1.2E+01	1.9E-06
Dibenzo (a,h) anthracene	1.7E-06			1.5E-05	1.2E+01	1.2E-06
Fluoranthene	2.3E-06			2.0E-05	4.0E+02	5.1E-08
Indeno (1,2,3-cd) pyrene	2.1E-06			1.9E-05	1.2E+01	1.6E-06
Phenanthrene	1.5E-06			1.4E-05	1.4E+02	9.8E-08
Pyrene	2.0E-06			1.8E-05	1.6E+02	1.1E-07
4,4-DDD	4.4E-07	1.2E+02	3.7E-09	5.5E-06	1.2E+01	4.6E-07
4,4-DDE	8.4E-07	1.2E+02	7.0E-09	1.0E-05	1.4E+02	7.2E-08
4,4-DDT	2.6E-07	1.2E+02	2.2E-09	2.9E-06	1.2E+01	2.4E-07
Aroclor-1254	2.4E-05	1.6E+01	1.5E-06	1.5E-04	1.5E+02	9.8E-07
Dieldrin	2.7E-06	1.2E+00	2.3E-06	3.2E-05	1.3E+01	2.4E-06
Aluminum	3.3E-02			5.7E-01	7.4E+02	7.7E-04
Arsenic	1.8E-05	3.6E+00	4.9E-06	2.7E-04	3.1E+00	8.6E-05
Barium	1.3E-04			1.8E-03	4.3E+01	4.2E-05
Cadmium	7.6E-03			3.2E-02	3.0E+01	1.1E-03
Chromium	5.8E-05	2.5E+01	2.3E-06	1.0E-03	4.0E+01	2.5E-05
Copper	1.5E-03			1.1E-02	1.9E+02	5.6E-05
Lead	3.9E-04	7.5E+01	5.2E-06	7.2E-03	6.0E+01	1.2E-04
Manganese	4.7E-04			7.2E-03	4.5E+01	1.6E-04
Mercury	4.1E-07	4.0E+00	1.0E-07	8.9E-06	4.4E+00	2.0E-06
Silver	7.6E-06			1.4E-04	6.8E+00	2.1E-05
Vanadium	6.6E-05	1.9E+01	3.4E-06	1.2E-03	6.2E+00	2.0E-04
Zinc	2.0E-02			1.2E-01	5.0E+02	2.5E-04
	· · · · ·					
SUMMARY HAZARD INDEX	<u> </u>	· · · · · · · · · · · · · · · · · · ·	2.0E-05			2.8E-03
<u></u>			1			

TBD = Total Body Dose (mg/kgBW-day).

RTV = Reference Toxicity Value (mg/kgBW-day); wildlife RTVs are presented in Appendix S, Table S-9.

HQ = Hazard Quotient (calculated by dividing TBD by RTV)

NA = Not Available

TABLE H-13
RISK FROM POTENTIAL SUBLETHAL EFFECTS FOR TERRESTRIAL RECEPTORS FROM CENTRAL TENDENCY
EXPOSURE CONCENTRATIONS OF ECPCs IN FOOD AND SURFACE SOIL

REMEDIAL INVESTIGATION REPORT Naval Air Station Whiting Field-Site 16

	C	otton mou	50	East	ern Meado	wiark	Sho	rt-tailed sh	rew
CHEMICAL		Sublethal			Sublethal			Subjethal	
	TBD	RTV	HQ	TBD	RTV	HQ	TBD	RTV	HQ
Benzo (a) anthracene	7.5E-04	1.0E+01	7.5E-05	6.9E-05			5.9E-04	1.0E+01	5.9E-05
Benzo (a) pyrene	8.6E-04	1.0E+01	8.6E-05	7.9E-05			6.7E-04	1.0E+01	6.7E-05
Benzo (b) fluoranthene	9.7E-04	1.0E+01	9.7E-05	8.9E-05			7.6E-04	1.0E+01	7.6E-05
Benzo (k) fluoranthene	9.0E-04	1.0E+01	9.0E-05	8.3E-05			7.0E-04	1.0E+01	7.0E-05
Benzo (g,h,i) perylene	6.6E-04	1.0E+01	6.6E-05	6.1E-05			5.1E-04	1.0E+01	5.1E-05
bis(2-Ethylhexyl) phthalate	3.6E-04	3.5E+00	1.0E-04	2.9E-05			2.4E-04	3.5E+00	6.9E-05
Carbazole	6.4E-04			2.6E-05			2.1E-04		
Chrysene	8.6E-04	1.0E+01	8.6E-05	7.9E-05			6.7E-04	1.0E+01	6.7E-05
Dibenzo (a,h) anthracene	5.6E-04	1.0E+01	5.6E-05	5.1E-05			4.3E-04	1.0E+01	4.3E-05
Fluoranthene	7.6E-04	1.0E+01	7.6E-05	6.9E-05			5.9E-04	1.0E+01	5.9E-05
Indeno (1,2,3-cd) pyrene	7.0E-04	1.0E+01	7.0E-05	6.4E-05			5.5E-04	1.0E+01	5.5E-05
Phenanthrene	5.2E-04	1.0E+01	5.2E-05	4.7E-05			4.0E-04	1.0E+01	4.0E-05
Pyrene	6.7E-04	1.0E+01	6.7E-05	6.2E-05			5.2E-04	1.0E+01	5.2E-05
4,4-DDD	1.5E-04	2.0E-01	7.4E-04	3.0E-05	1.4E-01	2.2E-04	1.7E-04	2.0E-01	8.7E-04
4,4-DDE	2.8E-04	2.0E-01	1.4E-03	5.4E-05	3.9E-01	1.4E-04	3.1E-04	2.0E-01	1.6E-03
4,4-DDT	8.7E-05	2.0E-01	4.4E-04	1.4E-05	1.4E-01	1.0E-04	8.7E-05	2.0E-01	4.3E-04
Aroclor-1254	3.0E-03	1.5E-01	2.0E-02	5.6E-04	9.0E-02	6.2E-03	3.1E-03	1.5E-01	2.1E-02
Dieldrin	8.1E-04	6.5E-02	1.2E-02	1.7E-04			9.5E-04	6.5E-02	1.5E-02
Aluminum	2.3E+01	4.3E+02	5.4E-02	2.5E+00			2.0E+01	4.3E+02	4.8E-02
Arsenic	7.5E-02	5.8E-01	1.3E-01	8.8E-04	1.0E+00	8.8E-04	5.8E-03	5.8E-01	1.0E-02
Barium	1.6E-01	2.0E+01	8.2E-03	6.2E-03			5.9E-02	2.0E+01	3.0E-03
Cadmium	3.4E+00	2.2E+00	1.6E+00	4.8E-02	1.0E+00	4.8E-02	2.2E-01	2.2E+00	1.0E-01
Chromium	3.7E-02	3.5E+00	1.1E-02	4.9E-03	2.0E+02	2.5E-05	3.5E-02	3.5E+00	1.0E-02
Copper	2.2E+00	1.0E+01	2.2E-01	2.9E-02			1.5E-01	1.0E+01	1.5E-02
Lead	2.9E-01	3.0E+01	9.6E-03	3.3E-02	4.6E+00	7.1E-03	2.6E-01	3.0E+01	8.7E-03
Manganese	8.0E-01	1.4E+01	5.7E-02	2.6E-02			2.3E-01	1.4E+01	1.6E-02
Mercury	1.7E-03	5.0E-02	3.5E-02	3.7E-05	6.4E-02	5.9E-04	2.6E-04	5.0E-02	5.1E-03
Silver	1.4E-02			6.8E-04			4.7E-03		
Vanadium	4.9E-02	8.4E+00	5.8E-03	6.1E-03	1.1E+00	5.5E-03	4.5E-02	8.4E+00	5.4E-03
Zinc	7.2E+00	2.0E+01	3.6E-01	4.3E-01			2.4E+00	2.0E+01	1.2E-01
			İ						
SUMMARY HAZARD INDEX			2.5E+00			6.9E-02			3.8E-01

TBD = Total Body Dose (mg/kgBW-day).

RTV = Reference Toxicity Value (mg/kgBW-day); wildlife RTVs are presented in Appendix S, Table S-9.

HQ = Hazard Quotient (calculated by dividing TBD by RTV)

NA = Not Available

TABLE H-13
RISK FROM POTENTIAL SUBLETHAL EFFECTS FOR TERRESTRIAL RECEPTORS FROM CENTRAL TENDENCY
EXPOSURE CONCENTRATIONS OF ECPCs IN FOOD AND SURFACE SOIL

REMEDIAL INVESTIGATION REPORT Naval Air Station Whiting Field-Site 16

CHEMICAL	G	reat-horned owl		Red fox Subjethal			
CHEMICAL	TBD	RTV	но	TBD	RTV	HQ	
Benzo (a) anthracene	2.3E-06			2.0E-05	1.0E+01	2.0E-06	
Benzo (a) pyrene	2.6E-06			2.3E-05	1.0E+01	2.3E-06	
Benzo (b) fluoranthene	2.9E-06			2.6E-05	1.0E+01	2.6E-06	
Benzo (k) fluoranthene	2.7E-06	200		2.4E-05	1.0E+01	2.4E-06	
Benzo (g,h,i) perylene	2.0E-06			1.8E-05	1.0E+01	1.8E-06	
bis(2-Ethylhexyl) phthalate	5.2E-07		İ	7.1E-06	3.5E+00	2.0E-06	
Carbazole	3.4E-07		ı	6.2E-06			
Chrysene	2.6E-06		1	2.3E-05	1.0E+01	2.3E-06	
Dibenzo (a,h) anthracene	1.7E-06		1	1.5E-05	1.0E+01	1.5E-06	
Fluoranthene	2.3E-06			2.0E-05	1.0E+01	2.0E-06	
Indeno (1,2,3-cd) pyrene	2.1E-06		[1.9E-05	1.0E+01	1.9E-06	
Phenanthrene	1.5E-06			1.4E-05	1.0E+01	1.4E-06	
Pyrene	2.0E-06			1.8E-05	1.0E+01	1.8E-06	
4,4-DDD	4.4E-07	1.4E-01	3.1E-06	5.5E-06	1.2E+01	4.6E-07	
4,4-DDE	8.4E-07	3.9E-01	2.1E-06	1.0E-05	1.2E+01	8.5E-07	
4,4-DDT	2.6E-07	1.4E-01	1.9E-06	2.9E-06	1.2E+01	2.4E-07	
Aroclor-1254	2.4E-05	9.0E-01	2.6E-05	1.5E-04	9.6E-03	1.5E-02	
Dieldrin	2.7E-06			3.2E-05	6.5E-02	4.9E-04	
Aluminum	3.3E-02		İ	5.7E-01	4.3E+02	1.3E-03	
Arsenic	1.8E-05	1.0E+00	1.8E-05	2.7E-04	5.8E-01	4.6E-04	
Barium	1.3E-04		-	1.8E-03	2.0E+01	9.1E-05	
Cadmium	7.6E-03	1.0E+00	7.6E-03	3.2E-02	2.2E+00	1.5E-02	
Chromium	5.8E-05	2.0E+02	2.9E-07	1.0E-03	3.5E+00	2.8E-04	
Copper	1.5E-03		•	1.1E-02	1.0E+01	1.1E-03	
Lead	3.9E-04	4.6E+00	8.4E-05	7.2E-03	3.0E+01	2.4E-04	
Manganese	4.7E-04			7.2E-03	1.4E+01	5.2E-04	
Mercury	4.1E-07	6.4E-02	6.4E-06	8.9E-06	5.0E-02	1.8E-04	
Silver	7.6E-06			1.4E-04			
Vanadium	6.6E-05	1.1E+00	6.0E-05	1.2E-03	8.4E+00	1.5E-04	
Zinc	2.0E-02			1.2E-01	2.0E+01	6.2E-03	
SUMMARY HAZARD INDEX			7.8E-03		· · · · · · · · · · · · · · · · · · ·	4.1E-02	

TBD = Total Body Dose (mg/kgBW-day).

RTV = Reference Toxicity Value (mg/kgBW-day); wildlife RTVs are presented in Appendix S, Table S-9.

HQ = Hazard Quotient (calculated by dividing TBD by RTV)

NA = Not Available

APPENDIX I

1-1

AQUIRE Freshwater Toxicity Information (µg/L) Site 16

		Wilton, Fi			Effect		AQUIRE	Year
Chemical Name	Species	Age	Exposure	Effect	Concentration		Reference	of
Grieninga, rame					Lethal	Sublethal	Number	Publication
organiae								
iorganics Iuminum	Brachionus calyciflorus; Rotifer;	NEONATE	24 H	LC ₅₀	> 3,000		219385	. 9
	Myriophyllum spicatum, Water-milfoil,	4 CM APEX	32 D	EC₅oGR	•	12,700	212262	7
	Myriophyllum spicatum, Water-milfoil,	4 CM APEX	32 D	EC50BM *		7,600	212262	7
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ BM *		2,500	212262	
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ GR		5,100	212262	
	Salmo trutta; Brown trout;	ALEVIN	28 D	LC ₅₀	19		213472	
	Salmo trutta; Brown trout;	ALEVIN	42 D	LC ₅₀	72		213472	
	Salmo trutta; Brown trout;	ALEVIN	21 D	LC ₅₀	84 to 105		213472	
	Salmo trutta; Brown trout;	ALEVIN	42 D	LC ₅₀	15		213472	
	Salmo trutta; Brown trout;	ALEVIN	28 D	LC ₅₀	79		213472	
	Salmo trutta; Brown trout;	FERT EGG	<4 MO	HAT		<677	213472	
	Salvelinus fontinalis; Brook trout;	FRY	43.2 H	LC ₅₀	1,000		216632	
	Salvelinus fontinalis; Brook trout;	FRY	7.3 D	LC ₅₀	630		216632	
	Salvelinus fontinalis; Brook trout;	FRY	79.2 H	LC ₅₀	500		216632	
	Salvelinus fontinalis; Brook trout;	ADULT, 25-30 CM	5 D	LET	320		216632	
	Salvelinus fontinalis; Brook trout;	FRY	86.4 H	LT ₅₀	1,000		216632	
	Salvelinus fontinalis; Brook trout;	FRY	11.5 D	LT ₅₀	100		216632	
	Salvelinus fontinalis; Brook trout;	FRY, 22-23 MM	10.67 D	LT ₅₀	480		216188	
	Salvelinus fontinalis; Brook trout;	FRY	4.7 D	LT50	650		216632	
	Salvelinus fontinalis; Brook trout;	FRY, 22-23 MM	19.67 D	LT ₅₀	470		216188	
	Salvelinus fontinalis; Brook trout;	FRY	5 D	LT ₅₀	1,000		216632	
	Salvelinus fontinalis; Brook trout;	FRY, 22-23 MM	20.83 D	LT ₅₀	20		216188	
	Salvelinus fontinalis; Brook trout;	FRY	50.4 H	LT ₅₀	500		216632	
	Salvelinus fontinalis; Brook trout;	FRY, 22-23 MM	4.79 D	LT ₅₀	42		216188	
	Salvelinus fontinalis; Brook trout;	FRY	67.2 H	LT ₅₀	500		216632	
	Salvelinus fontinalis; Brook trout;	FRY, 22-23 MM	8.42 D	LT50	500		216188	
	Salvelinus fontinalis; Brook trout;	EYED EGGS	5 D	MOR *	. 320		216632	
	Salvelinus fontinalis; Brook trout;	FRY, 22-23 MM	>20.83 D	LT ₅₀	10		216188	
	Salvelinus fontinalis; Brook trout;	0.2 G, 30 D	3 D	GRO *		268	213592	
	Salvelinus fontinalis; Brook trout;	FRY, 22-23 MM	>20.83 D	LT ₅₀	500		216188	
	Salvelinus fontinalis; Brook trout;	FRY	55.2 H	LT ₅₀	500		216632	
	Salvelinus fontinalis; Brook trout;	FRY, 22-23 MM	>20.83 D	LT ₅₀	500		216188	
	Salvelinus fontinalis; Brook trout;	FRY	38.4 H	LT ₅₀	500		216632	
	Salvelinus fontinalis; Brook trout;	0.2 G, 30 D	56 D	MOR *	268		213592	
	Salvelinus fontinalis; Brook trout;	FRY	5.2 D	LT ₅₀	100		216632	
	Salvelinus fontinalis; Brook trout;	RECENTLY HATCHED FRY	5 D	LET	320		216632	

Table I-1 AQUIRE Freshwater Toxicity Information (µg/L) Site 16

	(1) 15 (1) 14 (1) 2 (2)				Effect		AQUIRE	
Chemical Name	Species	Age	Exposure	Effect	Concentration		Reference	
					Lethal	Sublethal	Number	Publication
	Salvelinus fontinalis; Brook trout;	YEARLINGS, 13-17 CM	5 D	LET	320		216632	80
Aluminum chloride	Ambystoma opacum; Marbled salamander;	EGGS	8 D	LC ₅₀	2,280		216199	78
	Brachydanio rerio; Zebra danio, zebrafish;	LARVAE, 7-8 D POST-SPAWN	48 H	LC ₅₀	106,000		311199	85
	Brachydanio rerio; Zebra danio, zebrafish;	LARVAE, 7-8 D POST-SPAWN	48 H	LC ₅₀	80,000		311199	85
	Carassius auratus; Goldfish;	EGGS	7 D	LC ₅₀	150		215305	. 78
	Chilomonas paramecium; Cryptomonad;	NR	0.17 H	LET	2,400		212863	73
	Cyprinus carpio; Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	24 H	MOR *	8,000		315166	81
	Cyprinus carpio, Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	48 H	MOR *	2,000		315166	81
	Cyprinus carpio; Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	24 H	MOR *	4,000		315166	81
	Cyprinus carpio; Common, mirror, colored, carp;	7,5-8.5 CM, 10.5-12.5 G	48 H	MOR *	2,000		315166	81
	Cyprinus carpio; Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	24 H	MOR *	8,000		315166	8
	Cyprinus carpio; Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	48 H	MOR *	8,000		315166	8
	Daphnia magna; Water flea;	12 H	21 D	EC ₅₀ IM ?		1,400	212022	` 72
	Daphnia magna; Water flea;	4 H	64 H	EC _{so} IM		1,400	212054	4
	Daphnia magna; Water flea;	12 H	48 H	EC ₅₀ IM?		3,900	212022	7
	Daphnia magna; Water flea;	12 H	21 D	EC ₅₀ RE?		680	212022	7
	Euglena gracilis; Flagellate euglenoid;	NR	3 H	MOR *	1,000,000		212863	7.
	Gambusia affinis; Mosquitofish; Poeciliidae;	ADULT, FEMALE	48 H	LC ₅₀	27,500		210508	5
	Gambusia affinis; Mosquitofish; Poeciliidae;	ADULT, FEMALE	24 H	LC ₅₀	29,600		210508	5
	Gambusia affinis; Mosquitofish; Poeciliidae;	ADULT, FEMALE	96 H	LC ₅₀	27,100		210508	5
*	Gambusia affinis; Mosquitofish; Poeciliidae;	ADULT, FEMALE	96 H	MOR * (Calc)	20,400		210508	5
	Microhyla carolinensis; Narrow mouthed frog;	EGGS	7 D	LC ₅₀	50		215305	7
	Micropterus salmoides; Largemouth bass;	EGGS	8 D	LC ₅₀	170		216199	7
	Oncorhynchus mykiss, Rainbow trout, donaldson trout;	EGGS	28 D	LC ₅₀	560		215305	7
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 6 WK	9.25 D	PHY *		5,140; 1,570	218830	7
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	EGGS	28 D	LC ₅₀	560		216199	7
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 6 MO	45 D	PHY *		514; 514	218830	7:
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 11 WK	43.9 D	LC ₅₀	513		219328	7
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 6 WK	4.7 D	PHY *		5,200; 5,050	218830	7:
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 6 MO	31.96 D	LT ₅₀	5,230	, , ,	219328	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 6 WK	7.46 D	LT ₅₀	5,140		219328	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 6 MO	45 D	GRO *	-,	51.6; 51 6		
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 6 WK	71.52 H	LT ₅₀	5,200	22, 20	219328	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 11 WK	45 D	GRO *	-1	513	219328	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 6 MO	45 D	GRO *		514		
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 6 MO	45 D	GRO *		51.6	219328	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 11 WK	38.9 D	LT ₅₀	5,140	31.0	219328	
	Peranema trichophorum; Flagellate;	NR	0.17 H	LET	>1.000.000		212863	

uvie I-1

AQUIRE Freshwater Toxicity Information (µg/L) Site 16

Remedial Investigation NAS Whiting Field Milton, Florida

<u> </u>		Milton, Flor	iua			·····		
					Effect		AQUIRE	Year
Chemical Name	Species	Age	Exposure	Effect	Concentration		Reference	
			445	000+	Lethal	Sublethal	Number	Publica
	Pimephales promelas; Fathead minnow;	LARVAE, <24 H	14 D	GRO *	•	66; 35		
	Pimephales promelas, Fathead minnow,	EMBRYO	4 D	HAT *		66; 35 30 to 60		
	Pimephales promelas; Fathead minnow;	30 D	to 109 D	HIS	50.4- 400	30 10 60		
	Pimephales promelas; Fathead minnow;	12 D LARVAE	to 96 H	MOR	50 to 400		210836	
	Pimephales promelas; Fathead minnow,	JUVENILE	to 96 H	MOR	50 to 400		210836	
	Pimephales promelas; Fathead minnow;	1 D LARVAE	to 96 H	MOR	50 to 400		210836	
	Pimephales promelas; Fathead minnow,	LARVAE, <24 H	14 D	MOR *	66; 35	4- 45	213070	
	Pimephales promelas; Fathead minnow;	ADULT	2 MO	REP *		66; 35		
	Tetrahymena pyriformis; Ciliate;	NR	0.17 H	LET	3,200		212863	
	Tropisternus lateralis; Beetle;	ADULT	14 D	PHY * (Calc)		27,000	212868	
minum sulfate	Asellus aquaticus; Aquatic sowbug;	ADULT, 7 MM, 1.5 MG DRY WT	48 H	EC ₅₀ IM ?	•	6,570	311972	
	Asellus aquaticus; Aquatic sowbug;	ADULT, 7 MM, 1.5 MG DRY WT	72 H	EC ₅₀ IM ?		4,370	311972	
	Biomphalaria glabrata; Snail;	ADULT, 4-4.5 SUTURE WHORL	24 H	STR *		100	212853	
	Biomphalaria glabrata, Snail;	ADULT, 4-4.5 SUTURE WHORL	24 H	STR *		1,000	212853	
	Cladocera; Water flea order;	NR	2 MO *	POP *		500	217183	
	Crangonyx pseudogracilis; Amphipod;	ADULT, 4 MM, 0.2 MG DRY WT	48 H	EC ₅₀ IM ?		12,800	311972	
	Crangonyx pseudogracilis; Amphipod;	ADULT, 4 MM, 0.2 MG DRY WT	96 H	EC ₅₀ IM ?		9,190	311972	
	Crustacea; Crustacean class;	NR	2 MO *	ABD *		500	217183	
	Cyprinus carpio; Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	24 H	MOR *	8,000		315166	
	Cyprinus carpio; Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	24 H	MOR *	8,000		315166	
	Cyprinus carpio; Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	48 H	MOR *	2,000		315166	
	Cyprinus carpio; Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	48 H	MOR *	4,000		315166	
	Cyprinus carpio; Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	48 H	MOR *	4,000		315166	
	Cyprinus carpio; Common, mirror, colored, carp;	7.5-8.5 CM, 10.5-12.5 G	48 H	MOR *	8,000		315166	
	Daphnia magna; Water flea;	8 H, YOUNG	0.25 H *	LOC *		136,000	212171	
	Fundulus heteroclitus, Mummichog,	NR	36 H	LC ₁₀₀ (Calc)	2,200		212865	
	Fundulus heteroclitus; Mummichog;	NR .	5 D	LC ₁₀₀ (Calc)	1,100		212865	
	Gambusia affinis; Mosquitofish;	ADULT, FEMALE	24 H	LC ₅₀	69,000		210508	
	Gambusia affinis; Mosquitofish;	ADULT, FEMALE	48 H	LC ₅₀	38,000		210508	
	Gambusia affinis; Mosquitofish;	ADULT, FEMALE	48 H	MOR * (Calc)	< 28,000		210508	
	Gambusia affinis; Mosquitofish;	ADULT, FEMALE	96 H	LC ₅₀ ? (Calc)	37,000		210508	
	Micropterus dolomieui; Smallmouth bass;	13.8(12-17) MM, 32.5(9-59) MG	30 D	GRO *		251.6	312723	
	Micropterus dolomieui; Smallmouth bass;	LARVAE	30 D	MOR *	251.6		312723	
	Micropterus dolomieui; Smallmouth bass;	LARVAE. 48 H POST-HATCH	96 H	MOR *	100		312723	
	Micropterus dolomieui; Smallmouth bass;	LARVAE, 48 H POST-HATCH	96 H	MOR *	196		312723	
	Micropterus dolomieui; Smallmouth bass;	LARVAE, 48 H POST-HATCH	96 H	MOR *	- 217		312723	
	Micropterus dolomieui; Smallmouth bass;	LARVAE, 48 H POST-HATCH	96 H	MOR *	32		312723	
•	Micropterus dolomieui, Smallmouth bass,	LARVAE, 48 H POST-HATCH	96 H	MOR *	320		312723	

Table I-1 AQUIRE Freshwater Toxicity Information (µg/L) Site 16

					Effect		AQUIRE	Year
Chemical Name	Species	Age	Exposure	Effect	Concentration		Reference	
	Minister delicities Constitution to be a second	LADVAE 40 LADOOT HATOU	00.11	NOD +	Lethal	Sublethal	Number	Publica
	Micropterus dolomieui; Smallmouth bass;	LARVAE, 48 H POST-HATCH	96 H	MOR *	56		312723	
	Micropterus dolomieui; Smallmouth bass;	LARVAE, 48 H POST-HATCH	96 H	MOR *	560		312723	
	Notemigonus crysoleucas; Golden shiner;	NR	45 D	MOR *	100,000		312756	
	Notemigonus crysoleucas; Golden shiner;	NR	45 D	MOR *	100,000		312756	
	Oncorhynchus mykiss, Rainbow trout, donaldson trout;	118-355 G, 22-31 CM FORK LENGTH	24 H	MOR *	910		212508	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	118-355 G, 22-31 CM FORK LENGTH	24 H	MOR *	9,100		212508	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	118-355 G, 22-31 CM FORK LENGTH	48 H	LET	9,100		212508	
	Oncorhynchus mykiss, Rainbow trout, donaldson trout;	118-355 G, 22-31 CM FORK LENGTH	48 H	MOR *	910		212508	
	Oncorhynchus mykiss, Rainbow trout, donaldson trout,	118-355 G, 22-31 CM FORK LENGTH	72 H	MOR *	910		212508	
	Oncorhynchus mykiss, Rainbow trout, donaldson trout;	118-355 G, 22-31 CM FORK LENGTH	96 H	HEM *		90		
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	118-355 G, 22-31 CM FORK LENGTH	96 H	HEM *		910		
	Oncorhynchus mykiss, Rainbow trout, donaldson trout;	118-355 G, 22-31 CM FORK LENGTH	96 H	HEM *		910		
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	118-355 G, 22-31 CM FORK LENGTH	96 H	MOR *	90		212508	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	118-355 G, 22-31 CM FORK LENGTH	96 H	MOR *	910		212508	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	50-80 MM	10 D	LC₀	200,000		216520	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	50-80 MM	10 D	LC ₀	50,000		216520	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	50-80 MM	42 H	LC ₁₀₀	50,000		216520	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	50-80 MM	42 H	LC ₁₀₀	50,000		216520	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	50-80 MM	96 H	MOR *	50,000		216520	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING, 11 WK	45 D	PHY *		513	218830	
	Salvelinus fontinalis, Brook trout,	14 MO, 210 MM, 130 G	24 H	LC ₅₀ ?	4,000		216115	
	Salvelinus fontinalis; Brook trout;	14 MO, 210 MM, 130 G	24 H	LC ₅₀ ?	4,450		216115	
	Salvelinus fontinalis; Brook trout;	14 MO, 210 MM, 130 G	24 H	MOR *	5,000		216115	
	Salvelinus fontinalis; Brook trout;	14 MO, 210 MM, 130 G	24 H	MOR *	5,000		216115	
	Salvelinus fontinalis; Brook trout;	14 MONTHS, 210 MM, 130 G	96 H	LC ₅₀ ?	3,600		216115	
	Satvelinus fontinalis; Brook trout;	EYED EMBRYO - LARVAE	45 D	GRO *		283	312720	
	Salvelinus fontinalis; Brook trout;	EYED EMBRYO - LARVAE	60 D	BEH *		283	312720	
	Salvelinus fontinalis; Brook trout;	EYED EMBRYO - LARVAE	60 D	MOR *	283		312720	
	Stizostedion lucioperca; Pikeperch;	11.5-16 MM	24 H	MOR *	400		212700	
	Daphnia magna; Water flea;	<= 24 H	24 H	LC ₅₀	> 530,000		215184	
	Daphnia magna; Water flea;	<= 24 H	48 H	LC _{so}	410,000		215184	
	Daphnia magna; Water flea;	<= 24 H	48 H	MOR *	68,000		215184	
	Lemma minor; Duckweed;	20 COLONIES OR 40 FRONDS	40 H	EC ₅₀ GR	00,000	26,000		
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ BM *		103,000		
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ BM *		41,200		
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ GR		113,000		
•	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ GR		83,800		

AQUIRE Freshwater Toxicity Information (µg/L) Site 16

Remedial Investigation NAS Whiting Field Milton, Florida

					Effect		AQUIRE	Year
Chemical Name	Species	Age	Exposure	Effect	Concentral	tion	Reference	of
	·				Lethal	Sublethal	Number	Publica
rium chloride	Austropotamobius pallipes pall; Crayfish	19-32 MM	96 H	LC _{s0}	46,000		228813	
	Daphnia magna; Water flea	12 H	21 D	REP		8,900	228734	
	Daphnia magna; Water flea	12 H	48 H	IMM		14,500	228732	
	Echinogammarus berilloni; Scud	NR	24 H	LC ₅₀	336,000		307710	
	Gambusia affinis; Mosquitofish	ADULT, FEMALE	96 H	MOR	66,200		215457	
	Gambusia affinis; Mosquitofish	ADULT, FEMALE	24 H	LC ₅₀	2,910,000		215454	
	Gammarus pulex; Scud	NR	24 H	LC ₅₀	3,980,000		307706	1
	Lemma minor; Duckweed	FRONDS	96 H	GRO		25,000	283261	
	Orconectes limosus; Crayfish	19-32 MM	96 H	LC ₅₀	78,000		228816)
	Salmo trutta; Brown trout	YEARLING	48 H	LC ₅₀	150,000		240072	
ad	Astacus astacus; European crayfish;	8-10 CM	2 WK	ENZ *		20	210376	
	Astacus astacus; European crayfish;	8-10 CM	to 10 WK	HIS		20	210376	
	Barbus arulius; Barb;	1.24 G	4 D	HIS		200,000 to 400,000	219972	
	Brachionus calyciflorus; Rotifer;	NEONATE	24 H	LC ₅₀	> 4,000		219385	
	Brachydanio rerio; Zebra danio, zebrafish;	DECHLORIONATED EGG	24 H			72	219870	
	Brachydanio rerio; Zebra danio, zebrafish;	EGG	48 H			72	219870	
	Bufo arenarum; Toad;	EMBRYO	24 H	DVP *		1,000	213162	
	Bufo arenarum; Toad;	EMBRYO	24 H	MOR *	1,000		213162	-41.
	Carassius auratus; Goldfish;	UNDERYEARLING	1 WK *	ENZ *		470	315460	
	Ceriodaphnia reticulata; Water flea;	< 4 H	48 H	LC ₅₀	530		311181	
	Daphnia magna; Water flea;	< 24 H	48 H	LC ₅₀	4,400		311181	
	Daphnia pulex; Water flea;	< 24 H	48 H	LC ₅₀	5,100		311181	
	Dugesia dorotocephala; Turbellarian, flatworm;	18-20 MM	1 H	BEH *		100 to 1,000	310581	
	Dugesia tigrina; Turbellarian, flatworm;	NR	96 H	LC ₅₀	160,000		218709	
	Hyalella azteca; Scud;	NR	5 D	LC ₁₀₀	5,000		219804	
	Lemna minor, Duckweed,	20 COLONIES OR 40 FRONDS	4 D	EC ₅₀ GR		8,000	311789	
	Lepomis gibbosus; Pumpkinseed;	> 1.75 YR	<=2 WK *	ENZ *		90	315460	
	Micropterus dolomieui; Smallmouth bass;	EGG	96 H	MOR *	<=15,900		312153	
	Micropterus dolomieui; Smallmouth bass;	FINGERLING	10 WK	FOC.		405	312153	
	Micropterus dolomieui; Smallmouth bass;	FINGERLING	90 D	GRO *		405	312153	
	Micropterus dolomieui; Smallmouth bass;	FINGERLING	90 D	HEM *		405	312153	
	Micropterus dolomieui; Smallmouth bass;	FINGERLING	96 H	LC ₅₀	29,000		312153	
	Micropterus dolomieui; Smallmouth bass;	SAC FRY, 7 D POST-SPAWN	96 H	MOR *	<=15,900		312153	
	Micropterus dolomieui; Smallmouth bass;	SWIM-UP FRY, 17 D POST-SPAWN	96 H	LC ₅₀	2,800		312153	
	Micropterus dolomieui; Smallmouth bass;	SWIM-UP, FRY 17 D POST-SPAWN	96 H	LC50	2,200		312153	
	Micropterus salmoides, Largemouth bass;	NR	24 H	BEH *		1,500	311127	
•	Micropterus salmoides; Largemouth bass;	NR ·	24 H	RES *		1,050	311127	

18 18 21

Table I-1 AQUIRE Freshwater Toxicity Information (µg/L) Site 16

				•	Effect		AQUIRE	Year
Chemical Name	Species	Age	Exposure	Effect	Concentration		Reference	
 					Lethal	Sublethal	Number	Publicat
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ BM *		363,000	212262	
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ BM *		808,000	212262	
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ GR		725,000	212262	
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ GR		767,000	212262	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	10.5 G	32 WK	HIS *			310573	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	15 G	24 H	HEM *		130	315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	110		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	120		315719	
	Oncorhynchus mykiss, Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	120		315719	
	Oncorhynchus mykiss, Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	210		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	300		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	470		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	490		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	500		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	52		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	53		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	740		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	80		315719	•
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	85		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	900		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	4 MO, 15 G	4 to 72 H	MOR *	910		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	53 G	1 WK	MOR *	1,000		315719	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	6-18 MO	<=2 WK *	ENZ.*	•	10	315460	
	Oncorhynchus mykiss, Rainbow trout, donaldson trout,	6.5 G	30 WK	HIS *		120	310573	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	NEWLY HAT, SAC FRY	18 9 D	ABN *		32	219830	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	NEWLY HAT, SAC FRY	189 D	ENZ *		100	219830	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	NEWLY HAT, SAC FRY	189 D	HEM *		100	219830	
	Pimephales promelas; Fathead minnow;	JUVENILE	4 WK	PHY		500 to 1,000	210204	
	Potamogeton crispus; Curled pondweed;	NR	NR	PSE *		25,000	217552	
	Salvelinus fontinalis, Brook trout;	6-18 MO	<=2 WK *	ENZ *		90		
	Simocephalus vetulus; Water flea;	< 24 H	48 H	LC ₅₀	4,500		311181	
nese	Algae; Algae, phytoplankton, algal mat;	NATURAL COLONY	38 D	POP *		280	212862	
	Anabolia nervosa; Quiver fly;	LARVAE	7 D	LET	2,000,000		210725	
	Chironomus thummi; Midge;	LARVAE	7 D	LET	1,000,000		210725	
	Cyprinidae; Minnow, carp family;	1 SUMMER	2.25 H	LET *	1,000,000		210725	
	Cyprinidae; Minnow, carp family;	1 SUMMER	24 H	LET *	2,000,000		210725	
•	Cyprinidae; Minnow, carp family;	1 SUMMER	25 H	LET *	1,800,000		210725	

1-1

AQUIRE Freshwater Toxicity Information (µg/L) Site 16

			Effect	AQUIRE	Year			
Chemical Name	Species	Age	Exposure	Effect	Concentration	1		
Street, seat 1 marries	Speciel	. 			Lethal	Sublethal	Number	Publication
	Cyprinidae; Minnow, carp family;	1 SUMMER	4.17 D	LET *	800,000		210725	
	Cyprinidae; Minnow, carp family;	1 SUMMER	5.13 D	LET *	700,000		Reference Number 210725	
	Cyprinidae; Minnow, carp family;	1 SUMMER	6.63 D	LET *	650,000		210725	
	Cyprinidae; Minnow, carp family;	1 SUMMER	7 D	MOR *	600,000		210725	
	Cyprinidae, Minnow, carp family,	1 SUMMER	78 H	LET *	900,000		210725	
	Cyprinidae; Minnow, carp family;	2 SUMMERS	48 H	LET *	2,000,000		210725	
	Gammarus roeseli; Scud;	NR .	7 D	LET	70,000		210725	
	Lemna minor; Duckweed;	20 COLONIES OR 40 FRONDS	4 D	EC ₅₀ GR		31,000	311789	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	1 SUMMER	10 H	LET *	700,000		210725	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	1 SUMMER	13 H	LET *	600,000		210725	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	1 SUMMER	34 H	LET *	300,000		210725	
	Oncorhynchus mykiss; Rainbow trout; donaldson trout;	1 SUMMER	5 D	LET *	100,000		210725	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	1 SUMMER	7 D	MOR *	75,000		210725	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	1 SUMMER	77 H	LET *	150,000		210725	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	2 SUMMERS	34 H	LET *	600,000		210725	
	Salvelinus fontinalis; Brook trout;	1 SUMMER	15 H	LET *	700,000		210725	
	Salvelinus fontinalis; Brook trout;	1 SUMMER	23 H	LET .	600,000		210725	
	Salvelinus fontinalis; Brook trout;	1 SUMMER	4.79 D	LET *	150,000		210725	
	Salvelinus fontinalis; Brook trout;	1 SUMMER	66 H	LET *	300,000		210725	
	Salvelinus fontinalis; Brook trout;	1 SUMMER	7 D	MOR *	100,000		210725	
	Salvelinus fontinalis; Brook trout;	2 SUMMERS	41 H	LET *	600,000		210725	
	Tinca tinca; Tench;	1 SUMMER	48 H	LET *	2,000,000		210725	
	Tinca tinca; Tench;	1 SUMMER	6.75 D	LET *	1,500,000		210725	
	Tinca tinca; Tench;	1 SUMMER	7 D	MOR *	1,200,000		210725	
	Tinca tinca; Tench;	1 SUMMER	7 D	MOR *	1,300,000		210725	
	Tinca tinca; Tench;	1 SUMMER	96 H	LET *	1,800,000		210725	
	Tinca tinca; Tench;	2 SUMMERS	7 D	LET*	2,000,000		210725	
	Tubifex tubifex; Tubificid worm;	NR	7 D	LET	700,000		210725	
	Algae; Algae, phytopiankton, algal mat;	CLADOCERA, COPEPODA, ROTIFERA	2 WK	CLR *		15 to 30	311256	j
	Algae; Algae, phytoplankton, algal mat;	EXPO GRO PHASE	24 H	PSE		<=98100	213095	,
	Asellus communis; Aquatic sowbug;	NR	20 D	RSD *		0.11 to 0.12	312027	
	Brachionus calyciflorus, Rotifer,	NEONATE	24 H	LC ₅₀	1,300		219385	,
	Canthocamptus sp; Copepod;	LARVAE	24 H	LET	1,250		311797	
	Carassius auratus; Goldfish;	20-25 G	to 15 D	BIO *		500	219207	
	Catostomus commersoni, White sucker;	JUVENILE, 142 MM, 28.7 G	1 WK	RSD		890	312412	
	Ceriodaphnia reticulata; Water flea;	< 4 H	48 H	LC ₅₀	76		311181	
and a substitution	Channa punctatus; Snake-head catfish;	2.4 G, 58 MM	24 H	ENZ *		56,000	315190	J

Table I-1 AQUIRE Freshwater Toxicity Information (μg/L) Site 16

					Effect		AQUIRE	Year
Chemical Name	Species	Age	Exposure	Effect	Concentration		Reference	of
					Lethal	Sublethal	Number	Publicat
	Chironomidae; Midge family;	LARVAE	12 MO	POP		1,140	213176	
	Chironomus riparius; Midge;	4TH INSTAR LARVAE	>10 D	RSD		50 to 100	212729	
	Clarias lazera; Catfish;	IMMATURE, 12-15 G	2 to 96 H	BIO *		32,000	312716	
	Clarias lazera; Catfish;	JUVENILE, 230 MM, 130 G	24 H	RSD *		15,000	312717	
	Cyclops sp; Cyclopoid copepod;	ADULT	48 H	LC ₅₀	3,310		313255	
	Cypris subglobosa; Ostracod;	NR	12 H	LC50	47,780		312365	
	Cypris subglobosa; Ostracod;	NR	24 H	LC ₅₀	50,620		312365	
	Cypris subglobosa; Ostracod;	NR	48 H	LC ₅₀	34,990		312365	
	Cypris subglobosa; Ostracod;	NR	96 H	LC50	8,352		312365	
	Daphnia lumholzi; Water flea;	NR	12 H	LC ₅₀	10,740		312365	
	Daphnia lumholzi, Water flea;	NR	24 H	LC ₅₀	6,704		312365	
	Daphnia lumholzi; Water flea;	NR	48 H	LC ₅₀	2,290		312365	
	Daphnia lumholzi; Water flea;	NR	96 H	LC ₅₀	437.5		312365	
	Daphnia magna; Water flea;	24-48 HR, NEONATE	21 D	GRO *		150	213950	
	Daphnia magna; Water flea;	24-48 HR, NEONATE	21 D	MOR	50 to 150		213950	
	Daphnia magna, Water flea;	24-48 HR, NEONATE	21 D	REP *		150	213950	
	Daphnia magna; Water flea;	< 24 H	48 H	LC ₅₀	68		311181	
	Daphnia pulex; Water flea;	< 24 H	48 H	LC ₅₀	107		311181	
	Dugesia dorotocephala; Turbellarian, flatworm;	18-20 MM	1 H	BEH *		1,000 to 10,000	310581	
	Dugesia tigrina; Turbellarian, flatworm;	NR	96 H	LC ₅₀	7,400		218709	
	Gambusia affinis; Mosquitofish;	MIXED SIZES	to 30 D	RSD		50	312897	
	Gambusia affinis; Mosquitofish;	NR	. 48 H	LC ₅₀ ?	116		315578	
	Gammarus lacustris; Scud;	NR	96 H	LC ₅₀	2,240		313058	
	Gomphonema parvulum; Diatom;	MIXED SPECIES	to 28 D	ABD *		1,000	212397	
	Hyphessobrycon serpae; Serpa tetra;	JUVENILE & OLDER FISH	14 D	RSD		66,000	212709	
	Invertebrates; Invertebrates;	CLADOCERA, COPEPODA, ROTIFERA	2 WK	POP *		17.1 to 89.6	311256	
	Invertebrates; Invertebrates;	CLADOCERA, COPEPODA, ROTIFERA	2 WK	POP *		30 to 90	311256	
	Lemna minor; Duckweed;	20 COLONIES OR 40 FRONDS	4 D	EC50GR		10,000	311789	
	Lepomis gibbosus, Pumpkinseed,	15-25 G	to 15 D	BIO *		500	219207	
	Lepomis macrochirus; Bluegill;	NR	6 MO	MOR *	5,000		212143	
	Limnodrilus sp; Sludge worm;	NR	14 D	RSD		1,000	311865	
	Lophopodella carteri; Bryozoa;	ANCENSTRULAE, 2-3 D	96 H	LC50	5,630		216703	
	Macrobrachium hendersodayanus; Prawn;	NR	96 H	oc.		7,870	311545	
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC₅oBM *		21,600	212262	
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ GR		20,900	212262	
	Myriophyllum spicatum; Water-milfoil;	4 CM APEX	32 D	EC ₅₀ GR		21,600	212262	
	Mystus vittatus; Catfish;	80-100 MM, 6-10 G	96 H	LC ₅₀ ?	209,000		315793	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	20-50 G	6 H	PHY	,	2,000	311200	

*]*1-1

AQUIRE Freshwater Toxicity Information (µg/L) Site 16

Remedial Investigation NAS Whiting Field Milton, Florida

				•	Effect		AQUIRE	Year
Chemical Name	Species	Age	Exposure	Effect	Concentration		Reference	of
				· · · · · · · · · · · · · · · · · · ·	Lethal	Sublethal	Number	Publication
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	FINGERLING	12 D	RSD *		910 to 2,320	311689	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	JUVENILE	to 4 WK	BIO		44 to 140	310107	1
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	NR	48 H	LC ₅₀	2,600		310185	•
	Oncorhynchus mykiss, Rainbow trout, donaldson trout,	NR	48 H	LC ₅₀	2,800		218317	
nc	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	NR	48 H	LC ₅₀	3,500		218317	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	SAC-FRY	42 D	GRO *		430	310527	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	SAC-FRY	42 D	MOR *	120		310527	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	SAC-FRY	42 D	MOR *	430		310527	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	SAC-FRY	42 D	MOR * (Calc)	220		310527	
	Oncorhynchus mykiss; Rainbow trout, donaldson trout;	SAC-FRY	42 D	MOR * (Calc)	80		310527	
	Osteichthyes; Bony fish class;	ADULT GUPPY, 20-30 MM	48 H	LC ₅₀	2,630		212882	
	Osteichthyes; Bony fish class;	ADULT GUPPY, 20-30 MM	96 H	LC ₅₀	1,860		212882	
	Osteichthyes; Bony fish class;	JUVENILE GUPPY, 8-15 MM	48 H	LC ₅₀	1,970		212882	
	Osteichthyes; Bony fish class;	JUVENILE GUPPY, 8-15 MM	96 H	LC ₅₀	1,360		212882	
	Pectinatella magnifica; Bryozoa;	ANCENSTRULAE, 2-3 D	96 H	LC ₅₀	4,310		216703	
	Phaenopsectra sp; Chironomid;	MIXED SPECIES	to 28 D	ABD *		10,000	212397	
	Pimephales promelas; Fathead minnow;	NEWLY HAT, < 24 H	7 D	GRO *		184	311182	
	Pimephales promelas; Fathead minnow;	NEWLY HAT, < 24 H	7 D	GRO *		85	311182	
	Pimephales promelas; Fathead minnow;	NEWLY HAT, < 24 H	7 D	LC ₅₀	. 238		311182	
	Pimephales promelas; Fathead minnow;	NEWLY HAT, < 24 H	96 H	LC ₅₀	238		311182	
	Pimephales promelas; Fathead minnow;	SUBADULT, 8-12 WK, <=250 MG	2 to 35 D	GRO *		600	210678	
	Pimephales promelas; Fathead minnow;	SUBADULT, 8-12 WK, <=250 MG	96 H	LC ₅₀	2,540		210678	
	Plumatella emarginata; Bryozoan;	ANCENSTRULAE, 2-3 D	96 H	LC ₅₀	5,300		216703	
	Salmo trutta; Brown trout;	NR .	2 to 40 D	RSD		366 to 832	311216	
	Tilapia sparrmanii; Banded bream;	12.13-81.77 G	2 to 72 H	oc *.		98,000	213066	
	Tilapia zillii; Tilapia;	IMMATURE, 7-9 G	2 to 96 H	BIO *		22,000	312716	
	Tubifex sp; Tubificid worm;	NR	14 D	RSD		1,000	311865	

NOTES:

ABD = Abundance

ABN = Abnormalities

BCF = Bioconcentration factor

BEH = Behavioral change

BIO = Biochemical effect

BM = Biomass

BMS = Biomass

C = Celcius

G = Grams

GR = Growth

GRO = Growth

H = Hours

HAT = Hatchability

HEM ≈ Hematological effect

HIS = Histological effect

IM = Immobilization

OC = Oxygen consumption

PGR = Population growth

PHY = Physiological effects

POP = Population, species diversity

PSE = Photosynthesis effect

RE = Reproduction

REP = Adverse effect to reproduction

RES = Respiratory effects

Table I-1

AQUIRE Freshwater Toxicity Information (µg/L) Site 16

Remedial Investigation
NAS Whiting Field

		Milton	, Florida					
·					Effe	ect	AQUIRE	Year
Chemical Name	Species	Age	Exposure	Effect	Concer	ntration	Reference	of
					Lethal	Sublethal	Number	Publication
CLR = Chlorophyll content		LC ₅₀ = Lethal concentration to 50	0% of test organisms		RN = Renewel			
CM = Centimeter		LET = Lethality			RSD = Residue			
D = Days		LOC = Locomotor Behaviour	•		ST = Static			
EC ₅₀ = Effect of concentration to 50% of	f the population	LT ₅₀ ≈ Lethal threshold to 50% o	f test organisms		STR = Stress			
EMS = Emergance?		MM = Millimeter			THL = Thermal effect			
ENZ = Enzyme effect		MOR = Mortality			VTE = Vertebral effect			
F = Farenheit	·	NR = Not reported			μg/L = Microgram per liter			

APPENDIX J

NAVY RESPONSE TO COMMENT

Florida Department of Environmental Protection

1. All contaminant data should be evaluated using the ground water, surface water and soil MCLs and SCTLs in Chapter 62-785, F.A.C. Until then, all tables, conclusions and other determinations (especially soil) cannot be adequately reviewed. This comment applies to many tables in the report and in the Appendix. All existing tables should be reviewed for applicability. References to the Soil Cleanup Goals for Florida, 1995 and the associated Applicability of Soil Cleanup Goals for Florida, 1996, should be removed as well as those to the 1994 Ground Water Guidance Concentrations. This is especially important in Section 6.0, Human Health Risk Assessment.

<u>Response:</u> Agree. All contaminant data will be evaluated using the values presented in Chapter 62-777, F.A.C. All references to the 1995 Florida Soil Cleanup Goals, the associated 1996 Applicability of Soil Cleanup Goals for Florida, and the 1994 Groundwater Guidance Concentrations will be deleted.

2. Soil contaminants should be evaluated with respect the leachability criteria in Table II of Chapter 62-785, F.A.C., including assessment of that possibility by use of the SPLP procedure in those instances where the leachability value may be exceeded. If the Navy intends to conduct the actual leaching evaluation from within the Basewide Groundwater Evaluation, it should so state; however, it seems to me that where such an evaluation may be needed, it should be stated in this report to properly document that need.

<u>Response:</u> Agree. Soil contaminants will be evaluated with respect to the leachability criteria in Chapter 62-777, F.A.C. A statement indicating the Navy intends to conduct the actual leaching evaluation from within the Basewide Groundwater Evaluation will be added to the RI.

3. In the manner of Figure 5-7, please present other contaminant data, where they exceed either the Federal or Florida screening numbers, especially for surface soil, on a figure in order that an appraisal can be made of the adequacy of areal contaminant assessment. I am particularly concerned about the areas west of soil samples 16-SL-03, 16S002 and 16S004, in addition to those areas where a high contaminant value is the existing "outer" sampling point.

Response: As suggested by the reviewer, contaminant data for soils will be included on a figure.

4. Please prepare a table that summarizes the contaminants when they exceed either a Federal or State screening level (MCL; SCTL) for each media. I am basically asking for the information presented in the Conclusions, Section 9.1, except in a form that is easily understood and used in evaluating the report and which includes only information where a regulatory level is exceeded. In that regard, I am attaching a suggested form for the table.

<u>Response:</u> A summary table providing a list of contaminants exceeding screening criteria will be included in the final report.

5. Does the Navy intend to incorporate the background evaluation that is currently being formulated into Section 6.2, where the various soil types are discussed and which were evaluated in the General Information Report? It seems that it may be appropriate to wait on the conclusion of the ongoing background evaluation.

Response: The background evaluation will be submitted as a separate report. For the purpose of the Site

RI, information presented in the GIR will be used.

6. Be aware that Chapter 62-777, F.A.C. is currently being promulgated by the Department and could be adopted by late this Spring. When it is, all media contaminant values will be represented by the values in that rule. If the final remedy for Site 16 is not in place before that time, we will have to review the values, where different and determine if they affect any conclusions and recommendations that have been made.

Response: A comparison to Chapter 62-777, F.A.C will be included in the report.

7. Figures 6-2 through 6-13: several figures in this group have the risk lines in the wrong place and several give the FDEP Risk Level as a range. Please refer to Figure 6-10, which is correct. Please make the remaining figures the same as it for the risk level and for placement of the heavy line. Please add a "1" at the level of the heavy line on the ordinate of Figure 13.

<u>Response:</u> All figures in Chapter 6 will be reviewed for errors. FDEP risk level will be clearly identified instead of a range.

8. Table 6-12, page 6-47: please make sure the leaching values in the eleventh column are those from Chapter 62-785, F.A.C. or Chapter 62-777, F.A.C., depending on when the final document is submitted.

Response: Table 6-12 will be updated per values presented in Chapter 62-777.

9. Section 6.8, Summary of Human Health Risk Assessment: the sixth "bullet" discusses the background values of arsenic. Unless those data are presented and discussed in the report, that statement should not be a part of the summary and should be deleted. Additionally, I find it disturbing that the Navy only discusses the presence of PAHs in the context of "other non-site related anthropogenic sources." It would be interesting if the Navy would elaborate on and discuss some of those other sources. The Navy should recognize that, in the absence of a valid reason to believe otherwise, it is likely that waste disposal practices are responsible for the presence of these materials at Site 16, especially since the name of the site is given as an "open disposal and burning area." This is an example of a continuing pattern of downplaying the importance of analytical information. This is reinforced by the statement in the same section regarding beryllium in surface water and the accompanying discussion that apparently is intended to cast doubt on the data in which it states "that this ELCR is based on only one sample." I suggest that that Navy should take additional samples instead of denigrating data that it has collected at great cost and which should be valid.

<u>Response</u>: The arsenic statement in Section 6.8 will be removed. All data collected at Site 16 will be reevaluated before the RI is finalized to ensure appropriate conclusions have been made.

10. Section 7.4.1, page 7-20, Section 7.4.4, page 7-27, Section 7.6.4, page 7-35 and Section 9.1, page 9-5: the use of a 10-fold attenuation factor to evaluate risks to aquatic receptors is not entirely valid. The Navy should also present an evaluation of undiluted ground water to aquatic receptors as a realistic "worst case" scenario. This should not come as a surprise, since the State of Florida has been consistent in not allowing dilution factors to be a part of ground water evaluations.

<u>Response:</u> The undiluted groundwater at Site 16 will be evaluted as a worse case exposure scenario for aquatic receptors. The results of this evaluation will be incorporated into the existing text. In addition, an ERA is going to be conducted for Clear Creek, focusing on surface water and sediment collected from the creek.

11. Section 7.6.4, page 7-38, last paragraph: the discussion regarding salmonid fish species is questionable in that no data are presented to show that they "do not occur in Clear Creek downstream of Site 16." It could be postulated, using Navy data, that they do not occur downstream of Site 16 because of the discharge of high iron content ground water. Irrespective, the point is that if the discharge is high in iron, it is, ipso facto, something which should be addressed on a rational basis by the Navy.

<u>Response:</u> Additional data will be collected to address the reviewers comment during the investigation of Clear Creek and its tributaries as a separate site (Site 39).

12. References: please update the FDEP references to reflect the newer and current regulations and guidance documents.

Response: References will be updated as recommended.

General Comment:

1. Although these comments are few in numbers, they will necessitate considerable rewrite of the document and changes in many of the tables. In effect, a new report will be produced. I request that the Navy incorporate the changes with respect to the Florida-based content prior to submitting any future reports since they cannot be adequately reviewed in the absence of the newer information.

Response: Future reports will include evaluations based on the latest guidance.

USEPA SPECIFIC COMMENTS:

1. Page IV, Second Bulleted Item. Please note that the memo accompanying the EPA Region III Risk-Based Concentration (RBC) table from Roy L. Smith, toxicologist, clearly states that generally the RBC table should not be used to set cleanup levels. As such, the RBCs should not be referred to as residential soil cleanup goals.

Response: As suggested by the reviewer, RBCs will not be referred to as residential soil cleanup goals.

2. <u>Page xvi, Glossary</u>. The definition for IRIS in the glossary is unreadable. Please revise in subsequent versions of the report.

Response: Page xvi will be revised.

3. Page 3-6, Table 3-1 and Appendix C. Table 3-1 presents a Summary of Monitoring Well Construction Details and Appendix C contains individual monitoring well and test pit logs. However, many of the well logs listed in Table 3-1 are not presented in Appendix C. Also, monitoring well logs WHF-16-2D and WHF-16-6I are presented in Appendix C, but are not listed in Table 3-1. Additionally, several monitoring well logs (WHF-15-3I, 15-3D, 15-4S, 15-5S, WHF-16-3II) in Appendix C are missing pages and monitoring well logs WHF-15-15-4S, WHF-15-5S and WHF-1466-6S appear to be mislabeled. These discrepancies should be corrected in the RI Report.

<u>Response</u>: Discrepancies identified by the reviewer will be corrected. However, a monitoring well was not installed at soil boring location WHF-16-2D. Therefore it was not included in Table 3-1.

4. Page 5-6, Section 5.2, Hydraulic Conductivity and Seepage Velocity. The text states, "The average hydraulic conductivity values for individual monitoring wells at Site 16 ranged from 0.27 feet per day (ft/day) (9.5 x 10⁻² centimeters per second [cm/sec]) for WHF-16-3D to 46.5 ft/day (1.64 x 10⁻⁵ cm/sec) for WHF-16-3II. The geometric mean of the hydraulic conductivity values for Site 16 is 22.2 ft/day (7.8 x 10⁻⁴ cm/sec) or approximately 8,000 feet per year." However, the centimeters per second values appear to have been incorrectly converted from the values in feet per day. The values 0.27 ft/day should be 9.5 10⁻⁵ cm/sec, 46.5 ft/day should be 1.64 10⁻² cm/sec and 22.2 ft/day should be 7.8 10⁻³ cm/sec. The calculations should be verified and corrected in the text if necessary.

Response: Calculations will be verified and corrected.

Page 5-11, Table 5-2. As indicated on Table 5-2, the distance between monitoring wells WHF-16-2S and WHF-16-4S and between wells WHF-16-6S and WHF-16-3S are 900 feet and 495 feet, respectively. However, according to the scale presented on Figures 5-5 and 5-6, the distances are 930 and 540 feet, respectively. This amount of difference in the distances between wells would change the hydraulic gradient calculations; therefore the correct well distances should be used in calculating the hydraulic gradients and should be corrected in the text as well as the table.

<u>Response</u>: Discrepancies between the figure and the table will be corrected. If necessary, the hydraulic gradients will be revised.

6. Page 5-15, Section 5.3. The text states that a mounded feature was associated with a significant total magnetic anomaly and a conductivity anomaly. However the text does not elaborate further as to the nature of the anomalies. Has the potential existence of buried drums been investigated? The text also states, "An attempt was made to determine the depth of the fill at Site 16 using DC resistivity. Results

were inconclusive, however, and the survey was not completed (ABB-ES, 1993)." The text should provide additional information stating why the results were inconclusive and why the survey was not completed.

Response: The text will be revised to read as follows.

A mounded feature located at grid coordinates 680E, 190S (Figure B-1, Appendix B of this report) was associated with a high amplitude magnetic anomaly and a conductivity anomaly. This suggests a pit may have been dug at this location and filled with ferromagnetic metal subsequently covered. The survey grid was extended to the east in an attempt to extend past all the anomalies. But after three attempts, it was discontinued because these isolated anomalies appeared to be not associated with the Open Disposal activities at Site 16.

The potential for the existence of buried drums at this location was not investigated further.

7. Page 5-23, Figure 5-9. Figure 5-9 presents interpreted total volatile organic compounds (VOC) isopleth lines. Soil gas sample location numbers 35 and 45 are, according Figure 5-9, near the total VOC concentration line which indicates greater than 5000 parts per million (ppm). If soil gas sample locations 35 and 45 have concentrations greater than 5000 ppm, the actual concentrations at these locations should be stated in the text of the RI Report.

Response: The actual concentrations for soil gas location numbers 35 and 45 are >5,000 and >5,000 respectively. The instrument has a range of 0 to 5,000 ppm and therefore the concentrations are presented as >5,000 ppm.

8. <u>Page 5-40, Section 5.5</u>. When comparing site related data to the EPA Region III RBCs, the text should clearly state whether industrial or residential values were exceeded. This comment also applies to other locations within the report where data is screened against the RBCs.

<u>Response</u>: As suggested by the reviewer, the text will clarify if residential or industrial values are exceeded.

9. <u>Page 5-43, Table 5-12</u>. The semi-volatile constituent presented in Table 5-12, as methylnaphthalene should be corrected to be 2-methylnaphthalene.

Response: The text will be revised as recommended by the reviewer.

10. <u>Page 5-49, Section 5.7</u>. The text should clearly state the intent behind comparing site-related data for surface water to the Florida Groundwater Guidance Concentrations.

Response: Rationale for comparing the surface water to the Florida GCTLs will be included in this section.

11. <u>Page 5-60, Section 5.8.2</u>. In the last paragraph on this page, the text should state that aluminum exceeded the Federal and State secondary MCL in two monitoring wells. The comment applies elsewhere in the report where aluminum exceedances in groundwater are being reported.

Response: The text will be revised as recommended by the reviewer.

12. Page 5-72, Table 5-24. Several of the Federal Maximum Contaminant Levels (MCLs) and Florida Guidance concentrations for the associated constituents appear to be incorrect. For example, the Federal MCL and Florida groundwater guidance for 1,2-dichloroethene (total) should both be 70 micrograms per

The second secon

liter (μ g/l). However, Table 5-24 lists these concentrations as 55 μ g/l and 7 μ g/l respectively. These guidance numbers should be checked and verified prior to performing the feasibility study.

Response: Table 5-24 will be revised and values from Chapter 62-777 FAC will be incorporated.

13. Page 5-76, Section 5.8.2. According to the EPA Region 4, Environmental Investigations Standard Operating Procedures and Quality Assurance Manual, May 1996, as a standard practice, ground water samples will not be filtered for routine analysis. Filtering will usually only be performed to determine the fraction of major ions and trace metals passing the filter and used for flow system analysis and for the purpose of geochemical speciation modeling. Filtration is not allowed to correct for improperly designed or constructed monitoring wells, inappropriate sampling methods, or poor sampling technique. When samples are collected for routine analyses and are filtered, such as under conditions of excessive turbidity, both filtered and non-filtered samples will be submitted for analyses. With this in mind, this section of the report should address the findings of the non-filtered sample analysis followed by a discussion of the filtered samples. The text should also address discrepancies between non-filtered versus filtered samples.

<u>Response</u>: The text will a discussion of filtered and unfiltered analytical results and identify any discrepancies between filtered and unfiltered samples.

14. <u>Page 5-78, Section 5.8.2</u>. Please verify the federal MCL for 1,2-dichloroethene as reported in the third paragraph.

Response: MCL for 1,2-dichloroethene will be verified.

15. Appendix C, Monitoring Well and Test Pit Logs. The boring log for monitoring well WHF-15-71 lists "OVA" under the column for drilling method. OVA is incorrect, the correct drilling method should be either mud rotary, hollow stem auger or other drilling method as appropriate. The boring log should be corrected to reflect the proper drilling method. Also, several well logs have the well development date omitted. This information should be added to the well logs that do not have this information. The test pit lithologic description logs do not have the name of the individual who logged the excavation. This information should be included on the test pit logs.

Response: All available information will be included in the boring logs.

16. <u>Appendix E, Surface Water Analytical Data</u>. A duplicate set of groundwater analytical data, presented as Appendix G was included in Appendix E, Surface Water Analytical Data. This duplicate data set should be removed from the RI.

Response: The duplicate data set will be deleted.

** The following comments relate to the human health and ecological risk review sections of the Site 16 RI Report:

GENERAL COMMENTS:

17. Section 6.4 of the report presents the human health toxicity assessment for Site 16. The text states that Appendix G contains brief toxicity summaries for human health contaminants of potential concern (COPCs) identified in surface soil, subsurface soil, surface water, and groundwater at the site. However, Appendix G does not presently contain this information. In addition, toxicity profiles are not included in the ecological risk assessment (ERA) for compounds that are present at concentrations greater than their ecological screening value. This information should be included as part of the ecological toxicity

evaluation. In order to evaluate the toxic potential of the contaminants identified in the media at this site, toxicological information should be presented for each of the contaminants identified as human health and ecological chemicals of concern.

Response: Missing information identified in the comment will be included in the final RI report.

18. The step-wise procedure that is used to identify Contaminants of Concern (COCs) at Site 16 (illustrated in Figure 7-3, Page 7-10) does not follow the step-wise procedure delineated in Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessment ("Process Document", 1997). EPA Region IV has stated that all ERAs that have not been finalized must follow the procedures described in the Process Document, which supersedes all prior guidance. The most significant difference between the procedures used in this ERA and the Process Document is that in this ERA, compounds are compared to frequency, background levels, and role as essential nutrients before being compared to ecological screening levels. The initial step identified by the Process Document is the comparison of compound concentrations to ecological screening levels, so that the potential for risk is determined before mitigating factors are considered. Refer to the Process Document and the December 1998 Region IV memorandum for additional guidance on revising the ERA.

Response: The Site 16 ERA will be reviewed to determine whether the conclusions presented in this report would be altered by using the most recent *Process Document* approach. If it is determined the qualitative conclusions of the ERA would have been affected, additional information will be included in the final RI report.

19. The method that is used to quantify risk in this ERA is not in accordance with current EPA and Region IV guidance. Food chain modeling based solely on soil concentrations, which is the approach used in this ERA, is strongly discouraged in the new guidance. Instead, the actual exposure of primary consumers (such as the mouse, shrew, and meadowlark) to compounds that are present in environmental media at concentrations greater than their ecological screening and background values is to be determined by sampling and analysis of earthworms/insects and plants at the site. This approach reduces much of the uncertainty associated with former procedures, including the issues of bioavailability and soil-to-organism transfer rates. Since it appears that all of the samples from this site were collected prior to the release of the new guidance (1996 and earlier), the lack of biological samples to support the ERA is understood. However, it is strongly recommended that the procedures for conducting ERAs at other Whiting Field sites be revised so that they are in closer agreement with the Process Document and the most recent Region IV guidance.

<u>Response</u>: The reviewers comment is noted and the Navy will follow the procedures provided in the *Process Document* and Region IV guidance for future ERAs conducted at Whiting Field.

20. The Dutch soil screening levels that are used as ecological screening values for Site 16 [Beyer. 1990. Evaluating soil contamination. US Fish and Wildlife Service, Biological Report 90(2)] may not be sufficiently protective of ecological receptors. Region IV issued ecological screening levels for soil in December 1998 and has stated that screening levels used in ERAs that have not been finalized should be comparable to the values that have been adopted. When the two sets of screening values were compared, it was determined that the screening values used for arsenic and chromium in this ERA are much higher than those adopted by Region IV. The recommended screening value for arsenic is 10 mg/kg rather than 20 mg/kg and for chromium is 0.4 mg/kg rather than 100 mg/kg. If the Region IV values had been used in this ERA, neither compound would have been screened out and the risks both compounds would have been calculated. Potential risks from arsenic and chromium must be addressed in the ERA.

Response: The new Region IV ecological screening values will be incorporated into the Site 16 ERA and the results will be revised accordingly.

21. An assessment of risks from subsurface soil (below a depth of 1 foot) to ecological receptors is not included in the ERA. Although it is unlikely that birds and mammals will have consequential contact with subsurface soil, the root zone of many shrubs and trees such as pine trees will include subsurface soil. Also, soil invertebrates such as earthworms and fire ants can be expected to burrow into deeper than 1 foot into the subsurface soil. A qualitative assessment of risks in subsurface soil to these receptor groups should be included in the ERA.

<u>Response</u>: An assessment of the analytes detected in subsurface soil will be conducted and the potential for risks to deep rooted trees and soil invertebrates will be evaluated. This information will be included in the revised report.

Hazard Quotients (HQs) for contaminants at Site 16 are calculated using the 95% Upper Confidence Limit (UCL) rather than the maximum site concentration. Region IV has stated that 95% UCLs should not be used in ERA. Rather, to show the potential risk at the site, HQs should be determined using the following combinations: maximum site concentration/NOAEL, average site concentration/NOAEL, maximum site concentration/LOAEL, and average site concentration/LOAEL. For Site 16, the perceived maximum risks are, in general, increased less than four-fold if the maximum concentration is used rather than the 95% UCL. The Hazard Indices for most receptors remain less than 1. No changes are requested in the Site 16 ERA regarding to the use of the 95% UCL, but future submissions should not use the 95% UCL to calculate risk.

Response: All future ecological exposure assessments will use average and maximum concentrations terms.

SPECIFIC COMMENTS:

23. <u>Table 6-3</u>. The table presents the selection of human health chemicals of potential concern. An asterisk is presented in the table in the "Detected Concentrations Range" column of the table. However, the endnotes on this table do not provide any information regarding the intended meaning of this notation. The endnotes should indicate the definition of the asterisk.

Response: Table 6-3 will be revised as suggested by the reviewer.

24. Page 7-1, Section 7.0, Paragraph 1. Six documents are described as current guidance for ERAs at Superfund sites. However, the Process Document (Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessment, 1997) supercedes the 1989, 1992, and 1996 guidance documents, and EPA has stated these older documents should not be used in the preparation of risk assessments. Region IV Supplemental Guidance has been superceded by the December 1998 memorandum; this memorandum may not have been available at the time this ERA was prepared. Since food chain modeling is not included in the Process Document, it will be necessary to cite some of the older documents in the text. In order to bridge the old and new guidance, the text should be revised so that it is clear that the older documents do not represent current guidance and stating why the superceded guidance documents are being used in this ERA.

<u>Response</u>: The text will be revised to clarify which documents represent current guidance and why superceded documents were used in the ERA.

25. Page 7-5 through 7-7, Section 7.2.2; and Page 7-6, Figure 7-2. The Conceptual Site Model (CSM) presented in the ERA is too general. Four broad groups of ecological receptors are identified—wildlife, terrestrial plants, terrestrial invertebrates, and aquatic receptors. As per guidance in the Process Document, the CSM should distinguish between exposure routes for different groups of wildlife receptors such as herbivorous birds and mammals, primary carnivores/omnivores, and secondary carnivores. A CSM should illustrate the food web and the relationship between the specific receptors that are being modeled. The CSM for Site 16 should be revised, or a second Figure illustrating the food web relationship between different receptors should be added to the ERA.

Response: A more detailed conceptual site model will be generated included in the final RI report.

26. Page 7-6, Figure 7-2. The meaning of the bullets that appear in various receptor/exposure route boxes is not provided in either the figure or the text. It cannot be assumed that the reader will know that the bulleted boxes indicate complete exposure pathways. This information should be added to the figure.

Response: Footnotes will be added to this figure to clarify the meaning of the bullets and shading.

27. Page 7-7, Section 7.2.2, Paragraph 1. The text states that dermal adsorption is considered a negligible exposure pathway. This statement is generally qualified, since dermal adsorption can present a significant risk in areas that are heavily contaminated with particular compounds. The text should be modified to read that dermal adsorption is considered to be a negligible exposure pathway for receptors at this site relative to ingestion because the presence of fur and feathers is likely to prevent extensive direct contact with the skin. Also, the exclusion of the dermal adsorption and inhalation pathways from the ERA should be included as a source of uncertainty in the Uncertainty Analysis (Section 7.7).

Response: The text will be modified to read, dermal adsorption is considered to be a negligible exposure pathway for ecological receptors based on the presence of fur and feathers and the likelihood they would prevent direct contact to the skin. An uncertainty will be added to Section 7.7 to further discuss the type and magnitude of ECPCs detected at the site, and the likelihood they are not present at concentrations high enough to generate a dermal or inhalation risks.

28. Page 7-7, Section 7.2.2, Paragraph 2. The text states that no burrowing animals were observed as Site 16 during characterization. This does not mean that burrowing animals will not inhabit Site 16 in the future, since the area appears to be desirable to ecological receptors. The text should be modified to state that although no burrowing animals were seen at Site 16, the site does provide acceptable habitat for burrowing animals.

Response: The last sentence of the second paragraph on page 7-7 will be modified to include a statement regarding the suitability of Site 16 for burrowing animals. "...although this habitat may be suitable to these receptors."

29. Page 7-9 through 7-20, Section 7.3, Figure 7-3. The selection process for ecological COCs has been changed in the Process Document. The most significant change is that the soil sampling data should first be screened against ecological screening levels. Only after screening are compounds present at concentrations greater than their ecological screening levels evaluated regarding frequency of detection, background levels, and role as essential nutrients. The selection process in this ERA for Site 13 should be revised to be in agreement with the new guidance.

Response: Please refer to USEPA Comment # 18.

TO THE WORLD SHAPE OF THE PERSON OF THE PERS

30. Page 7-11, Section 7.3, Paragraph 3, and Table 7-2. The Dutch soil screening values from Beyer that were used, as ecological screening values for Site 16 are out-of-date. Region IV has recently adopted soil screening values based on more recent screening values developed by the Netherlands, the Canadian Council of Ministers of the Environment, and Oak Ridge National Laboratory. The recommended screening value for arsenic is 10 mg/kg rather than 20 mg/kg and for chromium is 0.4 mg/kg rather than 100 mg/kg. Screening values for iron and silver have adopted. The ERA should acknowledge the new guidance and include some discussion as to whether the use of the newly adopted values would have altered the conclusions presented in the ERA.

<u>Response</u>: The new Region IV ecological screening values will be incorporated into the Site 16 ERA and the results will be revised accordingly.

31. Page 7-13, Table 7-2. The 95% UCL for aluminum is 11,271 mg/kg. This number is difficult to read since the first "1" is printed on the column line. The table should be revised so that the number is clearly printed.

Response: Table 7-2 will be revised as suggested by the reviewer.

32. Page 7-20, Section 7.4.1, Paragraph 7. The text states that a 10-fold attenuation factor was applied to the RME concentration of constituents in groundwater in order to derive an exposure concentration for constituents in groundwater potentially reaching Clear Creek. No justification was provided in the ERA for the selection of 10 as the attenuation factor. The rationale for selecting this attenuation factor should be included in the ERA.

<u>Response</u>: The 10-fold attenuation factor is a conservative estimate of the attenuation occurring between groundwater and surface water exposure.

33. Page 7-21, Section 7.4.2 and Page 7-25, Table 7-7. The calculated risks to avian primary consumers are based solely on the Eastern Meadowlark, which consumes approximately 75% of its diet as invertebrates and 20% as plant materials. Because of differences in biouptake and bioaccumulation, the concentrations of contaminants in invertebrates and plants are generally disproportionate. The percentage of invertebrates and plants in the diet will alter the calculated risks to the receptor. This dietary difference is addressed for small mammals with the inclusion of both herbivorous and insectivorous primary consumers. In lieu of the inclusion of a herbivorous avian receptor, it is recommended that differences in diet be identified and discussed as a source of uncertainty in the ERA.

<u>Response</u>: A discussion of the differences in the diet of herbivorous and insectivorous birds and the ramifications on the calculated risks for avian receptors will be provided in Section 7.4.2.

Pages 7-35 through 7-39, Section 7.6.4. Much of the discussion of risks from groundwater discharging to Clear Creek is inappropriate in the context of a risk assessment. Five compounds, bis(2-ethylhexyl)phthalate, 4,4'-DDT, aluminum, iron, and zinc are theoretically present in the groundwater at concentrations higher than screening criteria. It must therefore be assumed that there is a potential for risk. However, within the context of the risk assessment, these compounds are excluded as COCs for a variety of reasons, including frequency of detection, background concentrations, the presence of suspended solids in groundwater samples, and toxicity to resident species. These reasons are more properly part of the risk management process, and their discussion should be separate from the risk assessment. It is the responsibility of the risk manager and the trustees of the site working with the risk assessor to the significance of this information. The text should be revised so that the risk assessment and risk

management discussions are separate and clearly identified.

<u>Response</u>: As suggested by the reviewer, for all future reports the consideration of the frequency of detection, background concentrations, use of unfiltered data, and relative toxicity will be included in a separate section.

35. Page 7-36, Table 7-12. A value of 50 ug/L is cited as the AQUIRE Lowest Reported Adverse Effect concentration. The value is for the narrow mouth frog. However, based on the AQUIRE values presented in Appendix I, the lowest reported adverse effect concentration is 15 ug/L for brown trout. The text (Page 7-38) correctly identifies 15 ug/L as the lowest value. The table entry should be corrected.

Response: The value of 50 ug/L, for the narrow mouth frog was used in Table 7-12, as this species is more likely to be present in a black water stream than a salmonid species (i.e., brown trout). The narrow mouth frog is more representative of the aquatic receptors present at the site. Changing this value to 15 ug/l does would not have an affect on the outcome of the risk assessment. Please refer to response to general comment #11.

36. Page 7-38, Section 7.6.4, Paragraph. The text states that aquatic receptors in Clear Creek downgradient of Site 16 are likely to be more tolerant of aluminum than larval trout. No evidence is presented to corroborate the validity of this statement. Additional discussion including the identification of species present in Clear Creek (or alternatively a reference to where the species list is located) and relevant toxicity data must be included to the text to support the statement that aluminum is less toxic to receptors in Clear Creek than indicated by the lowest AQUIRE value.

<u>Response</u>: The text states, the receptors likely to be present in the stream, are more tolerant to exposure to aluminum, than larval trout. Please refer to comment #35. In addition, text will be included in this section to support the statement; receptors down gradient from the site are more tolerant to exposure to aluminum.

37. Page 7-39, Section 7.7, Paragraph 6. The text states that risks to amphibians and reptiles species from the surface soil were not estimated because bioaccumulation and toxicity data are lacking. Since quantitative exposure data are not available, a brief qualitative discussion as to whether risks to these groups are anticipated should be included in the Uncertainty Analysis. The qualitative discussion might include information such as the general toxicity of the compounds present (i.e., are any known to be unusually toxic to these receptor groups in other media), their probable bioavailability, and whether the amphibian and reptile populations at this site show signs of stress.

<u>Response</u>: As recommended by the reviewer, a discussion of the risks to amphibian and reptile species will be added to the uncertainty section.

Page 7-41, Section 7.8, Paragraph 3. The text states that risks to aquatic receptors in Clear Creek are not expected, based on the screening evaluation of groundwater. This is not correct; refer to Specific Comment 9. Five compounds, bis(2-ethylhexyl)phthalate, 4,4'-DDT, aluminum, iron, and zinc are theoretically present in the groundwater discharging into Clear Creek at concentrations higher than screening criteria. Their exclusion as COCs is based on a weight-of-evidence risk management discussion. In the ERA, these five compounds should be identified as having a potential to cause risk.

Response: The text will be revised to state, the analytes listed in the comment were detected at concentrations exceeding ecological screening benchmarks. However, it is unlikely, these analytes would pose a risk to ecological receptors based on the arguments presented in Section 7.6.4. In addition, please refer to comment #11.

39. Page 9-5, Section 9.1, Paragraph 3; and Page viii, Executive Summary, Paragraph 2. The text states that risks were not identified for terrestrial wildlife resulting from exposure to compounds in surface soil or surface water, and that therefore reductions in the survivability, growth and reproduction of wildlife populations is not anticipated. This is incorrect. Sublethal risks associated primarily with cadmium, lead, and zinc in the surface soil were identified for small mammals, small birds, and predatory birds. Sublethal risks include reductions in growth and reproduction. This is correctly stated in Paragraph 7 on Page 9-5 and Paragraph 6 on Page viii. The text should be corrected.

Response: The text will be revised.

40. Page 9-5, Section 9.1, Paragraph 6; and Page viii, Executive Summary, Paragraph 5. The text states that risks to aquatic receptors in Clear Creek are not expected based on the screening evaluation of groundwater. This is not correct; refer to Specific Comment 9. Five compounds, bis(2-ethylhexyl)phthalate, 4,4'-DDT, aluminum, iron, and zinc are theoretically present in the groundwater discharging into Clear Creek at concentrations higher than screening criteria. The text should be corrected.

Response: Please refer to comment #38.

41. Appendix H. Spreadsheets showing the intermediate steps in the calculation of Potential Dietary Exposure (PDE) are not included. Data such as the calculated dietary exposure from each food item should be included.

<u>Response</u>: The spreadsheets will be reviewed and any missing tables will be included in the updated report.

42. Appendix H, Table H-6. For the Great-Horned Owl, a dietary exposure of 9% sediment is identified. This value causes the dietary percentages for the owl to total 108%. In Table 7-7 (Page 7-25), there is no mention of the ingestion of sediment by the owl, and the incidental ingestion of soil is reported to comprise 1% of the diet. There is no reference for the source of the sediment ingestion rate. The apparent discrepancy between Table H-6 and Table 7-7 should be resolved.

Response: Please refer to comment #41.

APPENDIX K

EVALUATION OF BACKGROUND CONCENTRATIONS FOR COVERED LANDFILL SITES

Evaluation of Background Arsenic Concentrations for Covered Landfill Sites

Naval Air Station (NAS) Whiting Field, Milton, Florida

At NAS Whiting Field nine soil types, as identified by the U. S. Department of Agriculture, Soil Conservation Service (USSCS), are present. The Remedial Investigation (RI) sites at NAS Whiting Field are associated with seven of the nine soil types. The background surface soil data set for each RI site was initially determined to be comprised of background surface soil samples from the same USSCS soil types as occur on the individual sites. However, available information and review of historical aerial photographs indicated that in the construction of landfills at the facility, a borrow pit was dug to an approximate depth of 10 to 15 feet below land surface (bls) and the excavated soil was piled to the side. Following landfill operations, the borrow materials comprised of undifferentiated surface and subsurface soils, were used for the landfill cover. Any additional soils required to complete the landfill cover are believed to have been obtained from other borrow pits located at the facility.

If a mix of surface and subsurface soils were used in the cover for landfills, it would be appropriate to use the combined data set of surface and subsurface soil samples as the background screening value. However in order to be protective of human health and the environment, it is proposed that the background surface and subsurface data set be combined to a single value as be used as the "Industrial Use Soil Cleanup Goal". This modified "Industrial Use Soil Cleanup Goal" is specifically limited to the covered landfill sites including: Site 1, 2, 9, 10, 11, 13, 14, 15, and 16 and to the inorganic analyte arsenic.

Tables 3-8 through 3-18 in the General Information Report present the detected concentrations and summarize the analytical data for the individual background soil samples collected at NAS Whiting Field. A summary of the arsenic background data set and the modified "Industrial Use Soil Cleanup Goal" for arsenic is presented Table I-1. As indicated on the table the modified "Industrial Use Soil Cleanup Goal" for arsenic to be used at covered landfill sites is 4.62 mg/kg.

DRAFT

Table A-1 Summary of Arsenic Detected in Surface and Subsurface Background Soil Samples

Feasibility Study
Site 12, Tetraethyl Lead Disposal Area
Naval Air Station Whiting Field
Milton, Florida

Analyte	Frequency of Detection Surface Soil Samples ¹	Mean of Detected Concentrations Surface Soil Samples ²	Frequency of Detection Sub- surface Soil Samples ¹	Mean of Detected Concentrations Subsurface Soil Samples ²	Frequency of Detection Surface and Subsurface Soil Samples ¹	Mean of Detected Concentrations Surface and Subsurface Soll Samples ²	Surface and Subsurface Soil Background Screening Concentration (modified Industrial Use Cleanup Goal)
Inorganic Analytes	(mg/kg)						
Arsenic	15/15	1.54	14/14	3.14	29/29	2.31	4.62

¹ Frequency of detection is the number of samples in which the analyte was detected divided by the total number of samples analyzed.

Note: mg/kg = milligrams per kilogram.

² The mean of detected concentrations is the arithmetic mean of all samples in which the analyte was detected. It does not include those samples in which the analyte was not detected.

Table A-2 Comparison of Detected Arsenic Concentrations in Surface and Subsurface Soil Samples to Florida Soil Cleanup Goals

Feasibility Study
Site 12, Tetraethyl Lead Disposal Area
Naval Air Station Whiting Field
Milton, Florida

Analyte	Minimum Detected Concentration	Maximum Detected Concentration	Mean of Detected Concentrations	Soil Cleanup Target Levels for Florida (Residential) ¹	Soli Cleanup Target Levels for Florida (Industrial)	Surface and Subsurface Soil Background Screening Concentration (modified Industrial Use Cleanup Goal) ²
Inorganic Analyte (mg/kg)						
Arsenic	0.52	6.3	2.31	0.8	3.7	4.62

¹ Source: Chapter 62-785, Florida Administrative Code.

Note: mg/kg = milligrams per kilogram.

² The modified Industrial Use Cleanup Goal for arsenic is the Florida Department of Environmental Protection approved site specific cleanup goal for Perimeter Road sites at Naval Air Station, Whiting Field.

Department of Environmental Protection

Twin Towers Building 2500 Blair Stone Road Tallahassee, Florida 32399-2400 Virginia B. Wethere Secretary

April 27, 1998

Ms. Linda Martin
Department of the Navy, Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive, PO Box 190010
North Charleston, SC 29419-9010

file: arsenic1.doc

RE: Request for Site-Specific Arsenic Soil Cleamip Levels: Covered Landfill Sites, NAS Whiting Field

Dear Ms. Martin:

I have reviewed the request for approval of a site-specific Soil Cleanup Goal for arsenic at the "covered landfill sites" at NAS Whiting Field from Mr. Gerald Walker, ABB Environmental Services, dated April 22, 1998 (received April 22, 1998). Based on the prior presentation to Department Staff and the summary information furnished in the letter and the attached Appendix I, the request is granted to utilize a site-specific Soil Cleanup Goal for arsenic of 4.62 mg/kg at Sites 1, 2, 9, 10, 11, 12, 13, 14, 15 and 16., with the following conditions:

- The sites may be utilized for activities that involve less than full-time contact with the site. This may include, but is not limited to, a.) parks b.) recreation areas that receive heavy use (such as soccer or baseball fields) or, c.) agricultural sites where farming practices result in moderate site contact (approximately 100 days/year, or less).
- 2. The Navy must assure adherence to the land use by incorporating the site and conditions in a legally binding Land Use Contol agreement.
- 3. The above Soil Cleanup Goal shall not be utilized at any other site without specific Department approval.

If you have questions or require further clarification, please contact me at (904) 921-4230.

Pincerery,

James H. Cason, P.G.

Hemedial Project Manager

"Protect, Conserve and Manage Florida's Environment and Natural Resources"

Printed on recycled paper.